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ELLIPTIC EQUATION RELATIVE TO DOMAIN

EVOLUTION

Abstract

In the paper we consider the Dirichlet problem for the Poisson equation
relative to domain evolution. For studying this problem, at first we introduce a
space of a pair of convenx domains and define a scalar product in this space.
Using this we prove the existence and uniqueness of the stated problem and get
an analogy of the maximum principle.

1. Introduction
A wide class of problems of practice reduces to studying the change of the shape of

the object or body under consideration relative to some parameters [1-3]. Diffusion
processes, the problems on thermal extension and straightening of the body, the
elasticity theory problems, ecological problems, the problem on oil spot distribution
on sea surface, biological processes and etc. are the examples of such problems.

As a rule, by investigating such problems, variations of the points of the body
are studied. However, very often, not the alternation of the points of the body but
variation of its shape represents a great interest.

Study of the problem in such a statement is connected with some mathematical
difficulties [4-6, 10]. This in the first place is connected with definition of rate of
change of domain characterizing the body’s shape [7].

In the present paper, we consider a boundary value problem relative to domain
evalution. As first we study solvability of this problem and then prove the maximum
pronciple for the problem under consideration.

For investigating such problems, we define the rate of change of the shape of do-
main in linear space of a pair of convex sets. Such a definition of domain evolution
enables to investigase a wide class of such practical problems such as optimal control
problems.

2. Space of convex sets
Let M be a totality of convex closed bounded sets in Rm. The function

PD (x) = sup
l∈D

(l, x) , x ∈ D, (1)

is said to be a support function of the set D ∈ M , where PD (x) is continuously con-
vex and positive homogeneous ([8]). The latter means that PD (λx) = λPD (x) , λ >

0. Note that PD (0) = 0. To each convex closed bounded D ∈ M , formula (1) as-
signs a convex, continuous, positive-homogeneous function PD (x). The inverse is
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also true: for each contiunously-convex, positive-homogeneous function P (x) there
exists a unique closed convex bounded set D ∈ M such that P (x) = PD (x). The
set D coincides with the subdifferential of the function P (x) at the point 0 ∈ Rm

([8]).
Consider the direct product M × M , i.e. the totality of pairs (A,B), where

A,B ∈ M . Define in M ×M the operations of addition and multiplication by a real
number:

(A,B) + (C, D) = (A + C,B + D)

λ (A,B) = (λA, λB) if λ ≥ 0

λ (A,B) = (|λ|B, |λ|A) if λ < 0

Introduce in M × M the equivalence ratio: the pairs (A,B) and (C,D) are
equivalent if A + D = B + C. We denote it as (A, B) ≈ (C, D) or (A,B) = (C,D).
In [8] it is shown that the set M × M together with the above defined algebraic
operations is a linear space.

Let a = (A1, A2) , b = (B1, B2) , Ai, Bi ∈ M, i = 1, 2, B be a unique ball,
SB = ∂B be a unique sphere. Define the scalar product a • b in M ×M as follows

a • b =
∫

SB

p (x) q (x) ds, (2)

here P (x) = PA1 (x) − PA2 (x) , q (x) = PB1 (x) − PB2 (x) , PAi (x) , PBi (x) are
support functions of the sets Ai and Bi i = 1, 2, respectively.

It is shown that a • b satisfies all the axioms of a sclar product.
Denote the space M ×M with scalar product (2) by ML2. The distance in this

space between the sets A ∈ M and B ∈ M is determined as the norm of the element
a = (A, 0)− (B, 0) = (A,B),

‖a‖ML2
=
√

a • a =




∫

SB

[PA (x)− PB (x)]2 ds




1/2

. (3)

Let z = [z1, z2, ..., zn] , z = [y1, y2, ..., yn] be vectors, where xi, yi ∈ M ×M . In
this case, the scalar product and norm are determined in the following way:

z • y = z1 • y1 + z2 • y2 + ... + zn • yn,

‖z‖2 = ‖z1‖2 + ‖z2‖2 + ... + ‖zn‖2 .

For simplicity, instead of z ∈ ML
(n)
2 , write z ∈ ML2.
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3. Derivative domain of the function
Assume that at time t ∈ [0, T ] the domain under consideration has the shape

U (t). By changing t the domain U (t) also changes. The evolution rate of domain
U (t) is characterized by the variable

∂PU(t) (x)
∂t

= lim
∆t→0

PU(t+∆t) (x)− PU(t) (x)
∆t

, x ∈ SB. (4)

If there exist the domains V1 (t) , V2 (t) ∈ M, t ∈ [0, T ] such that

∂PU(t) (x)
∂t

= PV1(t) (x)− PV2(t) (x) ,

we call the variable v (t) = (V1 (t) , V2 (t)) ∈ M ×M the rate of evolution of domain
U (t).

Example 1. Let U (t) = Bt be a ball of radius t > 0 with the center at the
origin. It is known [9] that in this case PU(t) (x) = t · ‖x‖Rm . Then v (t) = (B1, 0) .

If U (t) is a rectangle

U (t) = {(x1, x2) : −t ≤ x1 ≤ 2t, t ≤ x2 ≤ 3t} ,

then v (t) = (U (1) , 0).
For any t consider the pair u (t) = (U1 (t) , U2 (t)) ∈ M ×M . Writing

u (t) = u1 (t)− u2 (t) = (U1 (t) , 0)− (U2 (t) , 0)

and assuming that
·
u1 (t) ,

·
u2 (t) ∈ M × M we similarly determine

·
u (t) =

·
u1 (t) −

·
u2 (t) ∈ M ×M .

We can show that for any u (t) , η (t) ∈ M × M, where
∥∥∥ ·u (t)

∥∥∥ ∈ L2 (t0, T ) ,∥∥∥ ·η (t)
∥∥∥ ∈ L2 (t0, T ) the following relation is valid:

T∫

t0

·
u (t) • η (t) dt = u (T ) • η (T )− u (t0) • η (t0) +

T∫

t0

u (t) • ·
η (t) dt. (5)

Now, let the domain U depend on the parameter y ∈ Rn. We can similarly determine
the partial derivatives of y1, y2, ..., yn.

Example 2. Let U (y1, y2) = y2
1V1+y2

2V2, where V1, V2 are some convex bounded
sets. Then, by checking we can see that if yi ≥ 0, i = 1, 2, then

∂U

∂yi
= (2yiVi, 0) .

Otherwise
∂U

∂yi
= (0, 2 |yi|V ) .

It is also clear that
∂2U

∂y2
i

= (2Vi, 0) .
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4. Problem statement
Let D ⊂ Rn be a given bounded domain with rather smooth boundary S, and

the set U ⊂ Rm depend on the parameter y = (y1, y2, ..., yn) ∈ D i.e. U = U (y).
Write that U ∈ C (D) if the support function PU(y) (x) of the set U (y) is continuous
with respect to y in D. U ∈ C1 (D) is determined in the same way.

Consider the following boundary value problem for the Poisson equation

∆U = −F (y) , y ∈ D, (6)

U (ξ) = G (ξ) , ξ ∈ S. (7)

Let

F (y) = (F1 (y) , F2 (y)) ∈ M×M, y ∈ D, G (ξ) = (G1 (ξ) , G2 (ξ)) ∈ M×M, ξ ∈ S

Unlike the traditional boundary value problems, here the solution of problem (6),(7)
is the set U = U (y) ∈ M or the pair of convex sets U (y) = (U1 (y) , U2 (y)) ∈ M×M .

Without loss of generality later on we’ll call such type functions the domain of
the function. We’ll understand equation (6) and boundary condition (7) as equality
of a pair of convex sets.

Theorem 1. Let Fi ∈ C1 (D) ∩ C
(
D

)
and Gi ∈ C (S) , i = 1, 2. Then there

exists a unique solution of problem (6), (7) U (y) = (U1 (y) , U2 (y)) ∈ M×M, y ∈ D.

Proof. For any x ∈ Rm consider the following boundary value problem

∆P (y; x) = PF1(y) (x)− PF2(y) (x) , y ∈ D, (8)

P (ξ; x) = PG1(ξ) (x)− PG2(ξ) (x) , ξ ∈ S. (9)

By L (y, z) denote the Green function of the first boundary value problem (the
Dirichlet problem) for the Laplace operator in domain D. Then for any x ∈ Rm the
solution of problem (6),(7) may be represented by the formula [11].

P (y;x) =
∫

S

∂L (y, z)
∂nz

[
PG2(z) (x)− PG1(z) (x)

]
dSz+

+
∫

D

L (y, z)
[
PF2(z) (x)− PF1(z) (x)

]
dz. (10)

Obviously, there exist positive functions L1 (y, z) , L2 (y, z) such that

∂L (y, z)
∂nz

= L2 (y, z)− L1 (y, z) .

Then we can write (10) in the form

P (y; x) =
∫

S

[
L1 (y, z) PG1(z) (x) + L2 (y, z) PG2(z) (x)

]
dSz+

∫

D

L (y, z) PF2(z) (x) dz−
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−
∫

S

[
L1 (y, z) PG2(z) (x) + L2 (y, z)PG1(z) (x)

]
dSz −

∫

D

L (y, z) PF1(z) (x) dz

Since the sets Fi (x) , Gi (x) , i = 1, 2, are convex, their support functions
PFi(y) (x) , PGi(y) (x) are convex and positive homogeneous in x ∈ Rm.

Taking into account that the Green’s function is nonnegative, all subintegrand
functions are convex with respect to x ∈ Rm. So,

P (y; x) = P1 (y; x)− P2 (y; x) ,

where Pi (y; x) , i = 1, 2, is convex and positive homogeneous with respect to x ∈ Rm.
Then for any y ∈ D there exist unique convex bounded sets U1 (y) , U2 (y) ⊂ Rm that

Pi (y;x) = PUi(y) (x) , x ∈ Rm, y ∈ D, i = 1, 2.

Thus, we get that the function

P (y; x) = PU1(y) (x)− PU2(y) (x)

is the solution of problem (8),(9). And this in its turn shows that
U (y) = (U1 (y) , U2 (y)) ∈ M ×M, y ∈ D is the solution of problem (6),(7) and this
solution is unique.

The theorem is proved.
It is interesting to investigate problem (6),(7) when F (y) , G (ξ) are convex sets

from the space Rm. It turns out to be that in this case the solution of problem
(6),(7) is also a convex set from Rm.

Theorem 2. Let for any y ∈ D and ξ ∈ S F (y) , G (ξ) be closed convex bounded
sets, and F ∈ C1 (D) ∩ C

(
D

)
, G ∈ C (S). Then there exists a unique domain of

the function U = U (y) ⊂ Rm of the solution of problem (6),(7) and this solution is
a closed, convex, bounded set.

Proof. At first consider the case

∆U = 0, y ∈ D, (11)

U (ξ) = G (ξ) , ξ ∈ S. (12)

Show that if G (ξ) ∈ M , ξ ∈ S, the solution of problem (11), (12) also belongs to
M . For any x ∈ Rm consider the following boundary value problem

∆P (y; x) = 0, y ∈ D, (13)

P (ξ; x) = PG(ξ) (x) , ξ ∈ S. (14)

It is clear that under the imposed conditions, for any x ∈ Rm there exists a unique so-
lution P (y; x) of problem (13),(14) [11]. Show that P (y; x) is positive-homogeneous
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and convex with respect to x ∈ Rm. Taking into account that the support function
of the set G (ξ) is positive-homogebeous, we have

PλG(ξ) (x) = λPG(ξ) (x) = PG(ξ) (λx) , λ ≥ 0,

Then from (13),(14) we get P (y;λx) = λP (y;x) i.e. P (y;x) is positive-homogeneous
with respect to x ∈ Rm. Now show the convexity of P (y; x) with respect to x ∈ Rm.

Take any x1, x2 ∈ Rm. It is clear that P

(
y;

x1 + x2

2

)
is the solution of the following

problem

∆P

(
y;

x1 + x2

2

)
= 0, y ∈ D, (15)

P

(
ξ;

x1 + x2

2

)
= PG(ξ)

(
x1 + x2

2

)
, ξ ∈ S. (16)

From the convexity condition of the set G (ξ) it follows that PG(ξ) (x) is convex with
respect to x ∈ Rm [9,13], i.e.

PG(ξ)

(
ξ;

x1 + x2

2

)
≤ 1

2
PG(ξ) (x1) +

1
2
PG(ξ) (x2) .

Using the maximum principle [11], it is easy to show

PG(ξ)

(
ξ;

x1 + x2

2

)
≤ P (y) . (17)

Here P (y) denotes the solution of the problem

∆P (y; x) = 0, y ∈ D

P (ξ) =
1
2
PG(ξ) (x1) +

1
2
PG(ξ) (x2) , ξ ∈ S.

It is clear, that

P (y) =
1
2
P (y;x1) +

1
2
P (y;x2) .

Then from (17) we get the convexity of P (y; x). So, P (y; x) is positive homogeneous,
convex and continuous with respect to x ∈ Rm. Then for any y ∈ D there exists a
unique convex bounded set U = U (y) ⊂ Rm such that

P (y; x) = PU(y) (x) , x ∈ Rm.

Then from (13),(14) we get

∆PU(y) (x) = 0, y ∈ D,

PU(ξ) (x) = PG(ξ) (x) , ξ ∈ S, x ∈ Rm.

Taking into account that for convex closed bounded sets the condition PA (x) =
PB (x) is equivalent on A = B, it follows from the latter that U = U (y) ∈ M is the
solution of problem (11),(12).
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Now come back to problem (6),(7). We look for the solution of problem (6),(7)
in the form

U (y) = V (y) + W (y) , (18)

where V = V (y) is the solution of problem (11),(13) and W = W (y) is the solution
of the following problem

∆W (y) = −F (y) , y ∈ D, (19)

W (ξ) = 0, ξ ∈ S. (20)

We showed that for any y ∈ D V = V (y) ∈ M . Show that W (y) ∈ M . Instead of
problem (19),(20) consider the problem

∆P (y; x) = −PF (y) (x) y ∈ D, (21)

PU(ξ) (x) = 0, ξ ∈ S, x ∈ Rm. (22)

Denote by L (y; z) the Green function of the first boundary value problem for the
Laplace operator in domain D. Then we can represent the solution of problem
(21),(22) in the form

P (y; x) =
∫

D

L (y; z) PF (z) (x) dz. (23)

It is clear that P (y;x) is positive-homogeneous with respect to x ∈ Rm. Show the
convexity of P (y;x) with respect to x ∈ Rm. Taking into account that the Green
function is non-negative [11], from (23) we have

P

(
y;

x1 + x2

2

)
=

∫

D

L (y; z) PF (z)

(
x1 + x2

2

)
dz ≤

≤ 1
2

∫

D

L (y; z) PF (z) (x1) dz +
1
2

∫

D

L (y; z) PF (z) (x2) dz =

=
1
2
P (y; x1) +

1
2
P (y; x2) , ∀x1, x2 ∈ Rm.

So, P (y;x) is positive-homogeneous convex and continuous with respect to x ∈ Rm.
Then for any y ∈ D there exists a unique convex bounded set W = W (y) ⊂ Rm

such that P (y; x) = PW (y) (x) , x ∈ Rm i.e. W = W (y) is the solution of problem
(21),(22). Then from (18) it is clear that the convex closed, bounded, set U = U (y)
is the solution of problem (6),(7). The theorem is proved.

The domain of the function (or of the function of the set) U = U (y) is called
harmonic in domain D ⊂ Rn, if U ∈ C2 (D) and at each point y ∈ D satisfies the
Laplace equation

∆U (x) = 0, x ∈ D.
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Theorem 3. (Maximum principle). Let U = U (y) be a harmonic function
in D, U ∈ C

(
D

)
, and U (ξ) , ξ ∈ S be a convex, closed, bounded set. If there exist

convex sets G0, G1 ⊂ Rm such that

G0 ⊂ U (ξ) ⊂ G1, ∀ξ ∈ S, (24)

then for any y ∈ D

G0 ⊂ U (y) ⊂ G1.

Proof. By condition of theorem 3, U (ξ) = G (ξ) ∈ M, ξ ∈ S i.e. U = U (y) is
the solution of problem (11),(12). Then by theorem 2, U (y) ∈ M, ∀y ∈ D. So, the
support function PU(y) (x) of the set U (y) is the solution of problem (13),(14). By
condition (24) [8,13]

P0 (x) ≤ PU(ξ) (x) ≤ P1 (x) , ∀x ∈ Rm, ξ ∈ S.

Here P0 (x) , P1 (x) is a support function of the set G0, G1 ⊂ Rm. Using the maximum
principle [11], we see that for any x ∈ Rm

P0 (x) ≤ PU(y) (x) ≤ P1 (x) , y ∈ D.

And this shows that [8,13]
G0 ⊂ U (y) ⊂ G1.

The theorem is proved.

5. Generalized solution of the first boundary value problem. Now let
F ∈ L2 (D) , G ∈ L2 (S) and domain F (y) , y ∈ D and G (ξ) , ξ ∈ S be convex and
bounded. The condition F ∈ L2 (D) means that the support function PF (y) (x) of
the set F (y) belongs to L2 (D), i.e. PF (y) (x) ∈ L2 (D) , ∀x ∈ Rm.

Theorem 4. Let for any y ∈ D and ξ ∈ S F (y) , G (ξ) be closed convex bounded
sets, Rm and F ∈ L2 (D) , G ∈ L2 (S). Then there exists a unique domain of the
function U ∈ W 1

2 (D) of solution of problem (6),(7) and almost for all y ∈ D this
solution is a closed convex bounded set.

Proof. As we have noted above, we can write problem (6),(7) in the equivalent
form

∆P (y; x) = PF (y) (x) , y ∈ D, (25)

P (ξ; x) = PG(ξ) (x) ξ ∈ S. (26)

It is known that for any x ∈ Rm the solution of problem is (25),(26) P (·;x) ∈
W 1

2 (D). It is clear that P (y;x) is positive-homogeneous and continuous with respect
to x ∈ Rm. Then we can show that P (y; x) is a convex function with respect to x ∈
Rm. For that it suffices to take the sequence of closed bounded sets Fn (y) , y ∈ D

and Gn (ξ) , ξ ∈ S satisfying the conditions of theorem 2 such that

max
x∈B

∥∥PFn(y) (x)− PF (y) (x)
∥∥

L2(D)
→ 0,
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max
x∈B

∥∥PGn(ξ) (x)− PG(ξ) (x)
∥∥

L2(S)
→ 0, as n →∞

Then the solution of problem (6), (7) the sequence of the domain of the function
Un = Un (y), for all y ∈ D is a closed convex bounded set and

max
x∈B

∥∥PUn(·) (x)− P (·, x)
∥∥

W 1
2 (D)

→ 0.

Hence it follows that P (y; x) is a convex function with respect to x ∈ Rm. Then
for any y ∈ D there exists a unique convex bounded set U = U (y) ⊂ Rm such that
PU(y) (x) = P (y;x) ∈ W 1

2 (D) , x ∈ Rm i.e. U ∈ W 1
2 (D) is the solution of problem

(6),(7).
The theorem is proved.
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