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ON THE BASIS IN THE SPACE Lp (0, 1), 1 < p < +∞
OF THE SYSTEM OF EIGEN FUNCTIONS OF

STURM-LIOUVILLE PROBLEM WITH A

SPECTRAL PARAMETER IN BOUNDARY

CONDITIONS

Abstract

We consider the following spectral problem

−y′′ (x) = λy (x) , x ∈ (0, 1) ,

(a0λ + b0) y (0) = (c0λ + d0) y′ (0) ,

(a1λ + b1) y (1) = (c1λ + d1) y′ (1) ,

where λ is a spectral parameter, ai, bi, ci, di, i = 0, 1 are real constants,
moreover

σ0 = a0d0 − b0c0 < 0, σ1 = a1d1 − b1c1 > 0.

Necessary and sufficient basicity conditions in the space Lp (0, 1), 1 < p < ∞
of the system of eigen functions of this problem with two removed functions are
found.

Consider the following boundary value problem

−y′′ (x) + q (x) y (x) = λy (x) , x ∈ (0, 1) , (1)

(a0λ + b0) y (0) = (c0λ + d0) y′ (0) , (2)

(a1λ + b1) y (1) = (c1λ + d1) y′ (1) , (3)

where λ is a spectral parameter, q (x) is a real continuous function on [0, 1], ai, bi,
ci, di, i = 0, 1 are real constants, moreover

σ0 = a0d0 − b0c0 < 0, σ1 = a1d1 − b1c1 > 0. (4)

The problem of the form (1)-(3) arises, for example, by separating variables in a
dynamic boundary value problem describing small torsional vibrations of a bar with
both pulley stiffened ends. A more complete information on the physical sense of
the problems of type (1)-(3) may be found in [1] and [2].

In the paper [3] the complete description of general characteristics of arrangement
of eigenvalues on a real axis is given, vibrational properties of eigenfunctions are
studied, asymptotic formulae for eigenvalues and eigenfunctions of problem (1)-(3)
are obtained. The basis properties of eigenfunctions where it is established that
the system of eigenfunctions of this problem after removing two arbitrary functions
having different parity ordinal number forms a basis in the space Lp, 1 < p < ∞ is
also investigated.
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In the paper [4], problem (1)-(3) is reduced to an eigen value problem for a linear
operator acting in the Hilbert space H = L2 (0, 1) ⊕ C2, necessary and sufficient
condition of basicity in Lp (0, 1), 1 < p < ∞, of the subsystem of eigen functions of
this problem is established. More exactly, it is proved the following theorem.

Theorem A. Let r and l be arbitrary fixed entire non-negative numbers. If

∆(r, l) =
∣∣∣∣

1 1
c1y

′
r (1)− a1yr (1) c1y

′
l (1)− a1yl (1)

∣∣∣∣ 6= 0. (5)

then the system of eigen functions {yk}∞k=0,k 6=r,l of problem (1)-(3) forms a basis in
the space Lp (0, 1), 1 < p < ∞, for p = 2 the Riesz basis, if ∆(r, l) = 0, this system
is incomplete and not minimal in the space Lp (0, 1), 1 < p < ∞.

The basis properties of the system of root functions in the space Lp (0, 1), 1 <

p < ∞ of problem (1)-(3) (in special cases) were investigated also in the papers [5]
and [6]. In the case q ≡ 0, bj = cj = 0, (−1)j+1 aj > 0, dj = 1, j = 0, 1, (therewith
σ0 < 0, σ1 > 0) in [5] it was proved that if a0 6= a1 then the system of eigenfunctions
of problem (1)-(3) with two removed arbitrary functions forms a basis in the space
Lp (0, 1), 1 < p < ∞; if a0 = −a1, then the system of eigenfunctions with two
removed arbitrary functions having different parity numbers forms a basis in the
space Lp (0, 1), 1 < p < ∞, if a0 = −a1, then the system of eigenfunction with two
arbitrary removed functions having the same order parity, is neither complete nor
minimal in Lp (0, 1), 1 < p < ∞. In the case q ≡ 0, bj = cj = 0, aj < 0, dj = 1,
j = 0, 1 (therewith σ0 < 0, σ1 < 0) necessary and sufficient basicity condition in
Lp (0, 1), 1 < p < ∞, of the system of the root functions of problem (1)-(3) with
two removed root functions is found in [6].

The present paper is devoted to the investigation of basis properties of the sub-
system of eigenfunctions of problem (1)-(3) for q ≡ 0.

Note that the solution of equation (1) satisfying the initial conditions

y (0, λ) = c0λ + d0, y′ (0, λ) = a0λ + b0 (6)

is of the form

y (x, λ) = (c0λ + d0) cos
√

λx + (a0λ + b0)
sin
√

λx√
λ

. (7)

Taking into account boundary condition (3), we get

cot
√

λ {(a0λ + b0) (c1λ + d1)− (a1λ + b1) (c0λ + d0)} =

=
1√
λ

(a0λ + b0) (a1λ + b1) + (c0λ + d0) (c1λ + d1)
√

λ.

Thus, the eigenvalues λ0 < λ1 < ... < λk < ... of problem (1)-(3) are the roots
of the equation

cot
√

λ =
(a0λ + b0) (a1λ + b1) + (c0λ + d0) (c1λ + d1) λ

{(a0λ + b0) (c1λ + d1)− (a1λ + b1) (c0λ + d0)}
√

λ
(8)
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and by (7) has only the eigenfunctions

yk (x) = (c0λ + d0) cos
√

λkx + (a0λ + b0)
sin
√

λkx√
λk

, k = 0, 1, ....

Then we have

yk (1) = (c0λk + d0) cos
√

λk + (a0λk + b0)
sin
√

λk√
λk

=

= sin
√

λk

{
(c0λk + d0) cot

√
λk +

1√
λk

(a0λk + b0)
}

=

= sin
√

λk

{
(c0λ + d0) {(a0λk + b0) (a1λk + b1) + (c0λk + d0) (c1λk + d1) λk}

{(a0λk + b0) (c1λk + d1)− (a1λk + b1) (c0λ + d0)}
√

λ
+

+
(a0λk + b0) {(a0λk + b0) (c1λk + d1)− (a1λk + b1) (c0λk + d0)}

{(a0λk + b0) (c1λk + d1)− (a1λk + b1) (c0λ + d0)}
√

λ

}
=

= sin
√

λk

(c1λk + d1)
{

(a0λk + b0)
2 + (c0λk + d0)

2 λk

}

{(a0λk + b0) (c1λk + d1)− (a1λk + b1) (c0λ + d0)}
√

λk
. (9)

Note that
sin

√
λk = (−1)k 1

(
1 + cot2

√
λk

)1/2
.

We have

1 + cot2
√

λk = 1 +
{(a0λk + b0) (a1λk + b1) + (c0λk + d0) (c1λ + d1) λk}2

{(a0λk + b0) (c1λk + d1)− (a1λk + b1) (c0λ + d0)}2 λk

=

= {{(a0λk + b0) (c1λk + d1)− (a1λk + b1) (c0λk + d0)}2 λk+

+ {(a0λk + b0) (a1λk + b1) + (c0λk + d0) (c1λk + d1) λk}2×
×{(a0λk + b0) (c1λk + d1)− (a1λk + b1) (c0λk + d0)}−2 λ−1

k =

=
{

(a0λk + b0)
2 (c1λk + d1)

2 + (a1λk + b1)
2 (c0λk + d0)

2
}

λk+

+
{

(a0λk + b0)
2 (a1λk + b1)

2 + (c0λk + d0)
2 (a1λk + b1)

2 λ2k

}
×

×{(a0λk + b0) (c1λk + d1)− (a1λk + b1) (c0λk + d0)}−2 λ−1
k =

=

{
(a0λk + b0)

2 (c0λk + d0)
2 λk (a1λk + b1)

2 + (c1λ + d1)
2 λk

}

{(a0λk + b0) (c1λk + d1)− (a1λk + b1) (c0λ + d0)}2 λk

.

Taking into account the last two equalities, from (9) we find

yk (1) = (−1)k×

× {(a0λk + b0) (c1λk + d1)− (a1λk + b1) (c0λ + d0)}
√

λ
{

(a0λk + b0)
2 + (c0λk + d0)

2 λk

}1/2 {
(a1λk + b1)

2 + (c1λk + d1)
2 λk

}1/2
×
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×
(c1λk + d1)

{
(a0λk + b0)

2 + (c0λk + d0)
2 λk

}

{(a0λk + b0) (c1λk + d1)− (a1λk + b1) (c0λk + d0)}
√

λk
=

= (−1)k (c1λk + d1)

(
(a0λk + b0)

2 + (c0λk + d0)
2 λk

(a1λk + b1)
2 + (c1λk + d1)

2 λk

)1/2

.

Thus, we have

yk (1) = (−1)k (c1λk + d1)

(
(a0λk + b0)

2 + (c0λk + d0)
2 λk

(a1λk + b1)
2 + (c1λk + d1)

2 λk

)1/2

. (10)

Let the following relation be fulfilled

a1 = a0, b1 = b0, c1 = −c0, d1 = −d0. (11)

Then from (10) we get
yk (1) = (−1)k (c1λk + d1) . (12)

If (cjλr + dj) (cjλl + dj) 6= 0, j = 0, 1 then by (14) from [4] (see also [3]), equal-
ities (6) and (12) we have

∆ (r, l) = ∆1 (r, l) =
∣∣∣∣

1 1
c1y

′
r (1)− a1yr (1) c1y

′
l (1)− a1yl (1)

∣∣∣∣ =

=

∣∣∣∣∣
1 1

b1c1−a1d1
c1λr+d1

yr (1) b1c1−a1d1
c1λl+d1

yr (1)

∣∣∣∣∣ =

=

∣∣∣∣∣
1 1

yr(1)
c1λr+d1

yl(1)
c1λl+d1

∣∣∣∣∣ =
∣∣∣∣

1 1
(−1)r (−1)l

∣∣∣∣ . (13)

If c0 6= 0, λl = −d0/c0, then λl = −d1/c1, cjλr + dj 6= 0, j = 0, 1. Consequently,
by (12) we have

∆ (r, l) = ∆5 (r, l) =

∣∣∣∣∣
1 1

yr(1)
c1λr+d1

− c1y′l(1)
σ1

∣∣∣∣∣ =

∣∣∣∣∣
1 1

(−1)r − c1y′l(1)
σ1

∣∣∣∣∣ . (14)

From formula (7) we get

yl (1) = y (1, λl) = (c0λl + d0) cos
√

λl + (a0λl + b0)
sin
√

λl√
λl

=

= (a0λl + b0)
sin
√

λl√
λl

= 0.

Taking into account this equality, from formula (7) we find

y′l (1) = y′ (1, λl) = −
√

λl (c0λl + d0) sin
√

λlx + (a0λ + b0) cos
√

λl =

=
(

a0

(
−d0

c0

)
+ b0

)
cos

√
λl = −a0d0 − b0c0

c0
cos

√
λl =
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= −a1d1 − b1c1

c1
cos

√
λl = −σ1

c1

√
1− sin2

√
λl = −(−1)k σ1

c1
.

Taking into account this relation in (14), we get

∆5 (r, l) =
∣∣∣∣

1 1
(−1)r (−1)l

∣∣∣∣ . (15)

From (13) and (15) it follows that if r and l are entire non-negative numbers
having the same parity, then ∆r,l = 0 and by theorem A, the system of eigenfunctions
{yk}∞k=0,k 6=r,l of problem (1)-(3) for q ≡ 0 is neither complete nor minimal in the space
Lp (0, 1), 1 < p < +∞.

Thus, we proved
Theorem 1. Let r and l be entire non-negative numbers having the same parity,

and condition (11) be fulfilled. Then the system of eigenfunctions {yk}∞k=0, k 6=r,l of
problem (1)-(3) for q ≡ 0 is neither complete nor minimal in the space Lp (0, 1),
1 < p < +∞.

From this theorem it is seen that the condition of theorem 4 from [3] about that
the numbers r and l have different parities is essential.

Let r and l be entire non-negative numbers having the same parities. Then it
holds the equality

∆ (r, l) = ∆1 (r, l) =

∣∣∣∣∣
1 1

yr(1)
c1λr+d1

yl(1)
c1λl+d1

∣∣∣∣∣ =

= (−1)r

∣∣∣∣∣∣
1 1(

(a0λl+b0)2+(c0λl+d0)2λl

(a1λl+b1)2+(c1λl+d1)2λl

)1/2 (
(a0λr+b0)2+(c0λr+d0)2λr

(a1λr+b1)2+(c1λr+d1)2λr

)1/2

∣∣∣∣∣∣
. (16)

Now, let’s consider the function

F (λ) =

(
(a0λ + b0)

2 + (c0λ + d0)
2 λ

(a1λ + b1)
2 + (c1λ + d1)

2 λ

)1/2

. (17)

Let c2
0 + c2

1 > 0 . We rewrite the function F (λ) in the form

F (λ) =

(
(a0λ + b0)

2 + (c0λ + d0)
2 λ

(a1λ + b1)
2 + (c1λ + d1)

2 λ

)1/2

=

=

(
c2
0λ

3 +
(
a2

0 + 2c0d0

)
λ2 +

(
d2

0 + 2a0b0

)
λ + b2

0

c2
1λ

3 +
(
a2

1 + 2c1d1

)
λ2 +

(
d2

1 + 2a1b1

)
λ + b2

1

)1/2

.

Hence we have
F ′ (λ) = (1/2) (F (λ))−1/2×

×{
c2
1λ

3 +
(
a2

1 + 2c1d1

)
λ2 +

(
d2

1 + 2a1b1

)
λ + b2

1

}−2×
×{(3c2

0λ
2 + 2

(
a2

0 + 2c0d0

)
λ +

(
d2

0 + 2a0b0

))×
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× (
c2
1λ

3 +
(
a2

1 + 2c1d1

)
λ2 +

(
d2

1 + 2a1b1

)
λ + b2

1

)−
× (

c2
0λ

3 +
(
a2

0 + 2c0d0

)
λ2 +

(
d2

0 + 2a0b0

)
λ + b2

0

)×
× (

3c2
1λ

2 + 2
(
a2

1 + 2c1d1

)
λ +

(
d2

1 + 2a1b1

))}
=

= (1/2) (F (λ))−
1
2
{
c2
1λ

3 +
(
a2

1 + 2c1d1

)
λ2 +

(
d2

1 + 2a1b1

)
λ + b2

1

}−2×
×{

c2
0

(
a2

1 + 2c1d1

)− c2
1

(
a2

0 + 2c0d0

)}
λ4 + 2{c2

0

(
d2

1 + 2a1b1

)−
−c2

1

(
d2

0 + 2a0b0

)}λ3 + {3 (
c2
0b

2
1 − c2

1b
2
0

)
+

(
a2

0 + 2c0d0

) (
d2

1 + 2a1b1

)−
− (

a2
1 + 2c1d1

) (
d2

0 + 2c1d1

) (
d2

0 + 2a0b0

)}λ2+

+2
{
b2
1

(
a2

0 + 2c0d0

)− b2
0

(
a2

1 + 2c1d1

)}
+

+b2
1

(
d2

0 + 2a0b0

)− b2
0

(
d2

1 + 2a1b1

)}. (18)

It follows from formula (18) that either
1) c2

0

(
a2

1 + 2c1d1

)− c2
1

(
a2

0 + 2c0d0

) 6= 0;
or
2) c2

0

(
a2

1 + 2c1d1

)− c2
1

(
a2

0 + 2c0d0

)
= 0 , c2

0

(
d2

1 + 2a1b1

)− c2
1

(
d2

0 + 2a0b0

) 6= 0;
or
3) c2

0

(
a2

1 + 2c1d1

) − c2
1

(
a2

0 + 2c0d0

)
= 0 , c2

0

(
d2

1 + 2a1b1

) − c2
1

(
d2

0 + 2a0b0

)
= 0,

c2
0b

2
1 − c2

1b
2
0 = 0, then there exists λ∗ ∈ R such that F ′ (λ) 6= 0 for λ ≥ λ∗, i.e. the

function F (λ) is strongly monotone for λ ≥ λ∗. Consequently, there exists an entire
non-negative number k∗ such that for r, l ≥ k∗ we’ll have ∆ (r, l) = ∆1 (r, l) 6= 0
from (16) and (17), i.e. condition (5) is fulfilled. Then on the base of theorem A,
the system of eigen functions {yk (x)}∞k=0,k 6=r,l, r, l ≥ k∗ of problem (1)-(3) for q ≡ 0
forms the Riesz basis in the space Lp (0, 1), 1 < p < ∞, for p = 2 the Riesz basis.

And if
4) c2

0

(
a2

1 + 2c1d1

) − c2
1

(
a2

0 + 2c0d0

)
= 0, c2

0

(
d2

1 + 2a1b1

) − c2
1

(
d2

0 + 2a0b0

)
= 0,

c2
0b

2
1 − c2

1b
2
0 = 0, then F ′ (λ) = 0 for all λ ∈ R, i.e. F (λ) ≡ const. Consequently,

from (16), (17) we’ll have ∆ (r, l) = ∆1 (r, l) = 0. Then on the base of theorem A

the system of eigenfunctions {yk (x)}∞k=0,k 6=r,l of problem (1)-(3) for q ≡ 0 is neither
complete nor minimal in the space Lp (0, 1), 1 < p < ∞.

Now let c0 = c1 = 0. Then from formula (10) we get

yk (1) = (−1)k d1

(
(a0λ + b0)

2 + d2
0λk

(a1λ + b1)
2 + d2

1λk

)1/2

. (19)

Consider the function

F (λ) =

(
(a0λ + b0)

2 + d2
0λ

(a1λ + b1)
2 + d2

1λ

)1/2

. (20)

We rewrite the function F (λ) in the following form:

F (λ) =

(
(a0λ + b0)

2 + d2
0λ

(a1λ + b1)
2 + d2

1λ

)1/2

=

(
a2

0λ
2 +

(
2a0b0 + d2

0

)
λ + b2

0

a2
1λ

2 +
(
2a1b1 + d2

1

)
λ + b2

1

)1/2

. (21)
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From (21) we get

F ′ (λ) =
1
2

(F (λ))−1/2 {
a2

1λ +
(
d2

1 + 2a1b1

)
λ + b2

1

}−2

×{(2a2
0λ +

(
d2

0 + 2a0b0

)) (
a2

1λ
2 +

(
d2

1 + 2a1b1

)
λ + b2

1

)−
− (

a2
0λ

2 +
(
d2

0 + 2a0b0

)
λ + b2

0

) (
2a2

1λ +
(
d2

1 + 2a1b1

))} =

= (1/2) (F (λ))−1/2 × {
a2

1λ +
(
d2

1 + 2a1b1

)
λ + b2

1

}−2×
×{{a2

0

(
d2

1 + 2a1b1

)− a2
1

(
d2

0 + 2a0b0

)}
λ2+

+2
(
a2

0b
2
1 − a2

1b
2
0

)
λ +

{
b2
1

(
d2

0 + 2a0b0

)− b2
0

(
d2

1 + 2a1b1

)}
. (22)

From (22) it follows that either
1) a2

0

(
d2

1 + 2a1b1

)− a2
1

(
d2

0 + 2a0b0

) 6= 0;
or
2) a2

0

(
d2

1 + 2a1b1

)−a2
1

(
d2

0 + 2a0b0

)
= 0, a2

0b
2
1−a2

1b
2
0 6= 0, then there exists λ∗∗ ∈ R

such that F ′ (λ) 6= 0 for λ ≥ λ∗∗, i.e. the function F (λ) is a strictly monotone for
λ ≥ λ∗∗. Consequently, there exists an entire non-negative number k∗∗ such that
for r, l ≥ k∗∗ we’ll have ∆ (r, l) = ∆1 (r, l) 6= 0, from (16), (17). Then on the base
of theorem A the system of eigen functions {yk (x)}∞k=0,k 6=r,l, r, l ≥ k∗∗ of problem
(1)-(3) for q ≡ 0 forms a basis in the space Lp (0, 1), 1 < p < ∞, for p = 2 the Riesz
basis.

And if
3) a2

0

(
d2

1 + 2a1b1

) − a2
1

(
d2

0 + 2a0b0

)
= 0, a2

0b
2
1 − a2

1b
2
0 = 0, then F ′ (λ) = 0 for

all λ ∈ R i.e. F ′ (λ) = const. Consequently, from (16), (17) we’ll have ∆ (r, l) =
∆1 (r, l) = 0. Then again on the base of theorem A, the system of eigenfunctions
{yk (x)}∞k=0,k 6=r,l, of problem (1)-(3) for q ≡ 0 is neither complete nor minimal in the
space Lp (0, 1), 1 < p < ∞.

So, we proved the following
Theorem 2. Let r and l be entire non-negative numbers of the same parity.

Then there exists such an entire non-negative number k
(
k = max {k∗, k∗∗}), that

for r, l ≥ k the system of eigen functions {yk (x)}∞k=0,k 6=r,l of problem (1)-(3) for
q ≡ 0 in the cases

a) c2
0 + c2

1 > 0 and either
1) c2

0

(
a2

1 + 2c1d1

)− c2
1

(
a2

0 + 2c0d0

) 6= 0, or
2) c2

0

(
a2

1 + 2c1d1

)− c2
1

(
a2

0 + 2c0d0

)
= 0, c2

0

(
d2

1 + 2a1b1

)− c2
1

(
d2

0 + 2a0b0

) 6= 0
or
3) c2

0

(
a2

1 + 2c1d1

) − c2
1

(
a2

0 + 2c0d0

)
= 0, c2

0

(
d2

1 + 2a1b1

) − c2
1

(
d2

0 + 2a0b0

)
= 0,

c2
0b

2
1 − c2

1b
2
0 6= 0,

b) c0 = c1 = 0 and either
1) a2

0

(
d2

1 + 2a1b1

)− a2
1

(
d2

0 + 2a0b0

) 6= 0; or
2) a2

0

(
d2

1 + 2a1b1

) − a2
1

(
d2

0 + 2a0b0

)
= 0, a2

0b
2
1 − a2

1b
2
0 6= 0 forms a basis in the

spaces Lp (0, 1), 1 < p < ∞, for p = 2 the Riesz basis. In the cases
c) c2

0 + c2
1 > 0 and c2

0

(
a2

1 + 2c1d1

)− c2
1

(
a2

0 + 2c0d0

)
= 0,

c2
0

(
d2

1 + 2a1b1

)− c2
1

(
d2

0 + 2a0b0

)
= 0, c2

0b
2
1 − c2

1b
2
0 = 0;
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d) c0 = c1 = 0 and a2
0

(
d2

1 + 2a1b1

) − a2
1

(
d2

0 + 2a0b0

)
= 0, a2

0b
2
1 − a2

1b
2
0 = 0, the

system of eigenfunctions {yk (x)}∞k=0,k 6=r,l is neither complete nor minimal in the
space Lp (0, 1), 1 < p < +∞.

Note that in the case c0 = c1 = 0 and b0 = b1 = 0

F (λ) =
(

(a2
0λ + d2

0

(a2
1λ + d2

1

)1/2

,

F ′ (λ) =
1
2

(
(a2

1λ + d2
1

(a2
0λ + d2

0

)1/2 (
a2

0d
2
1 − a2

1d
2
0

)
λ2

(
a2

1λ + d2
1

)2 .

Hence it follows that if a2
0d

2
1 − a2

1d
2
0 6= 0, then F ′ (λ) 6= 0 for λ ∈ R\ {0} and

consequently the function F (λ) is strongly monotone in R. From (16) and (17)
we’ll have ∆ (r, l) = ∆5 (r, l) 6= 0. Then on the base of theorem A, the system of
eigenfunctions {yk (x)}∞k=0,k 6=r,l of problem (1)-(3) for q ≡ 0 forms a basis in the
space Lp (0, 1), 1 < p < ∞, for p = 2 the Riesz basis. But if a2

0d
2
1 − a2

1d
2
0 = 0, then

this system is neither complete nor minimal in the space Lp (0, 1), 1 < p < +∞.
Recall that in the case d0 = −1, d1 = 1 this result was obtained by N.Yu. Kapustin
[5].
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