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ON REMOVABLE SETS FOR DEGENERATED
ELLIPTIC EQUATIONS

Abstract

The questions of compact removability for degenerated elliptic equations in
classes bounded functions is considered.

Let En be n dimensional Euclidean space of the points x = (x1...,xn). Dennote
the ball BR(x0) =

{
x :

∣∣x− x0
∣∣ < R

}
for R > 0 and the cylinder QR

T (x0) = B(x0)∪
(0, T ). Later, let for x0 ∈ En, R > 0 and k > 0,

εk(x0·) =

{
x :

n∑

i=1

((
xi − x0

i

)2
/Rni

)
< (kR)2

}

be an ellipsoid.
Let D be an bounded domain in En, with the boundary of domain ∂D, and

0 ∈ ∂D. ε is a such king of ellipsoid that
−
D ⊂ ε. B(ε) is a set of all functions,

satisfying in
−
ε the uniform Lipchitz condition and having zero near the ∂ε.

Denote by (α) the vector (α) = (a1...,an) and by W 1
2,n(D) the Banach space of the

functions u(x) given on D with the finite norm

‖u‖W1,2,α
=




∫

D

(
u2 +

n∑

i=1

λi (x) u2
i

)
dx




1/2

(1)

there, ui =
∂u

∂xi
, i = 1, n

λi (x) = (|x|λ)αi , |x|α =
n∑

i=1

|xi|
2

2+αi (2)

0 ≤ αi <
2

n− 1

Let
0

W 1
2,α(D) the Banach space of the functions from C∞

0 (D) closed by the norm
of the space W 1

2,α(D).
Denote by M(D) the set of all bounded functions in D.
Let E ⊂ D be some compact. Denote by Aε(D) of all functions u(x) ∈ C∞(D)

of which there exists some neighborhood of the compact E in which u(x) = 0.
The compact E is called the removable relative to the first boundary value prob-

lem for the operator L in the space M(D) if all generalized solution of the equation
Lu = 0 in D \E formed in zero on ∂D and belonging to the space M(D) identically

equal to zero. We will say that the function n(x) ∈
◦

W 1
2,ε(ε) if there exists the se-

quence of the functions
{
u(m)(x)

}
,m = 1, 2..., such that um(x) ∈ B(ε), um(x) ≥ 0

for x ∈ H and lim
m→∞

∥∥u(m) − u
∥∥

W 1
2,α(ε)

= 0.
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The function u(x) ∈ W 1
2,α(D) is nonnegative on ∂D in sense W 1

2,α(D) if there
exists the sequence of the functions

{
u(m)(x)

}
, m = 1, 2... such that u(m)(x) ∈

C1,0, u(m)(x) ≥ 0 for x ∈ ∂D and lim
m→∞

∥∥u(m) − u
∥∥

W 1
2,α(D)

= 0. It is easy to

determine the inequalities u(x) ≥ const, u(x) ≥ v(x), u(x) ≤ 0, and also equality

u(x) = 1 on the set H in the sense
◦

W 1
2,ε(ε).

Let ω(x) be measurable function in D, finite and positive for a.e. x ∈ D. Denote
by Lp,ω(D) the Banach space of the functions given on D, with the norm

‖u‖L p,ω(D) =
(∫ (

ω(x)p/2 |u|p dx
)1/p

)
, 1 < p < ∞ (3)

Let W 1
p,α(D) be a Banach space of the function given on u(x), with the finite

norm D.

‖u‖W 1
p,α(D) =




∫

D

(
|u|P +

n∑

i=1

(λi(x))p/2 |uxi |p
)

dx




1/p

, 1 < p < ∞ (4)

Analogously to W
0,1
p,α(D), it is introduced the subspace

0
W 1

p,α(D) for 1 < p < ∞.

The space conjugated to
0

W 1
p,α(D), we will denote by

◦
W 1

p,α(D).
The questions of compact removability for Laplace equation is studied by Car-

leson [1]. The compact removability for elliptic and parabolic equations of nonduver-
gent structure is considererd by Landis [2], Gadjiev, Mamedova [1]. The removability
condition of compact in the space of continuous functions in the papers Harvey and
Polking [4], Kilpelainen and Zhong [5] is considered. The different questions of qual-
itative properties of solutions of uniformly degenerated elliptic equations is studied
by Chanillo and Weeden [6]. In paper [7] the second order uniform divergent elliptic
operator is considered.

We will consider the elliptic operator in the bounded domain D ⊂ En

L =
n∑

i,j=1

∂

∂xi

(
ai,j(x)

∂

∂xj

)
(5)

In assumption that ‖aij(x)‖ is a real symmetric matrix with measurable in D
elements, more over, for all ξ ∈ En and a.e. x ∈ D, the condition

α
n∑

i=1

λi(x)ξ2
i ≤

n∑

i,j=1

aij(x)ξiξj ≤ α−1
n∑

i=1

λi(x)ξ2
1 (6)

Here α ∈ (0, 1] is a const.
The function u(x) ∈ W 1

2,α(D) is called the generalized solution of the equation

Lu = f(x) in D, if for any function η(x) ∈
0

W 1
2,α(D) the integral identity

∫

D

∑

i,j=1

aij(x)uxiηxij
dx =

∫

D

fηdx (7)
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is fulfilled.
Here f(x) is a given function from L2(D).
Let E ⊂ D be some compact. The function n(x) ∈ W 1

2,α(D) is called generalized
solution of the equation Lu = f(x) in D \E vanishing on ∂D if integral identity (7)
is fulfilled for any function η(x) ∈ AE(D).

We will assume that the coefficients of the operator Z continued in En \ D
with saving condition (2),(6). For is, it is sufficient, for example, to assume that
aij(x) = δijλi(x) for x ∈ En \D, i, j = 1...n where δij is a Croneker symbol.

Let h(x) ∈ W 1
2,α(D), f (0)(x) ∈ L2(D), f i(x) ∈ Lα,λ−1(D), i = 1, 2...n, be a given

functions. Let us consider the first

Lu = f
(0)
(x) +

n∑

i=1

∂f i(x)
∂xi

, x ∈ D (8)

{u(x)− h (x)} ∈
0

W 1
2,α(D)

The function u(x) ∈ W 1
2,α(D) we will call generalized solution of problem (8) if for

any function η(x) ∈
0

W 1
2,α(D), the integral identity

∫

D

n∑

i,j=1

aij(x)uxiηxj
dx =

∫

D

(−f0η +
n∑

i=1

f iηxi
)dx (9)

is fulfilled.
Our aim to get the necessary and sufficient condition of compact removability E

in the class bounded functions.
Z-capacity potential u(x) is weak solution of the equation Lu = −µ equaling to

zero ∂ε and can be represented in the following form

u(x) =
∫

ε

g(x, z)dµ(z)

where µ measure on H.
On the other side, there exists the sequence of the functions

{
η(m) (x)} ,

m = 1, 2..., such that η(m)(x) ∈ W 1
2,α(ε), η(m)(x) = 1 for x ∈ H and

lim
m→∞

∥∥η(m) − u
∥∥

W 1
2,α(ε)

= 0.

We conclude that it first is equal to µ(H) at any natural m, while the left part
tends to capL(H) as m →∞. Thus

capL(H) = µ(H)

Theorem. Let relative to the coefficients of the operator L condition (2)-(6) be
fulfilled. Then, for removability of the compact E ⊂ D relative to the first boundary
value problem for the operator L in the space µ(D), it is necessary and sufficient
that

capL(E) = 0. (10)

For proof we used property of capacity capL(E) and some auxiliary proposition.
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