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Akbar D. HASANOV

A HARNACK INEQUALITY FOR THE SOLUTION

OF KOLMOGOROV EQUATION

Abstract

In the paper, an inequality of Harnack type is obtained for non-negative
solutions of Kolmogorov equations in one-dimensional case under the condition
of Cordes type.

In the paper we consider an operator of the form

L = a (x, y, z)
∂2

∂x2
− x

∂

∂y
− ∂

∂t
, (x, y, t) ∈ R3, (1)

where the coefficient a (x, y, t) is measurable, bounded and satisfies the ellipticity
condition

0 < C1 ≤ a (x, y, t) ≤ C2. (2)

The equation Lu = 0 is called the Kolmogorov equation. This equation was first
introduced and investigated in A.N. Kolmogorov’s classic paper [1].

The paper is devoted to investigation of internal properties of the solutions of the
equation under consideration, i.e. to the proof of a Harnack type inequality under
the Cordes type condition. Note that subject to the Cordes type condition for
parabolic equations with discontinuous coefficients, the similar results were proved
in the works of Yu. Mozer [2], E.M. Landis [3] and R.Ya. Glagoleva [4]. In the
papers of N.V. Krylov and M.V. Safonov [5], Harnack inequality without restriction
of Cordes type condition was proved for solving parabolic equations with measurable
coefficients.

Recently, there is great interest to investigation of quality properties of Kol-
mogorov equations. So, for instance, in the papers [8,9]. Harnack type inequality
for non-negative values of this equation is obtained. [8] considers the Kolmogorov
equation in divergent form, where the Holder continuity condition with the exponent
α (0 < α < 1) is required from the coefficients of the equation and their derivatives.
Their methods are based on the mean-value theorem for solving the equation. In
the paper [9] the Kolmogorov equation in non-divergent form is considered and the
Holder continuity condition with the exponent α (0 < α ≤ 1) is required from the
coefficients.

In the present paper, such restrictions are not imposed: we consider the Kol-
mogorov equation in non-divergent form with a bounded and measurable coefficient
but subject to the Cordes type condition. The method used in the paper is very
close to Landis method, i.e. it is based on the lemma on increase of the solution of
Kolmogorov equation proved by the author in [7].

10. Denote by Ct1,t2;y1,y2

x0,R a cylinder defined by the inequalities:

t1 < t < t2, y1 < y < y2, |x− x0| < R.
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Give some definitions and statements without proof from [6].
Let D ∈ R3 be a bounded domain. The aggregate of points (x0, y0, t0) for each

of which there will be found such h > 0 that even if one of the cylinders

C
t0−h,t0;y0−h+(x0−h)(t−t0),y0+(x0−h)(t−t0)
x0,h

or
C

t0−h,t0;y0+(x0+h)(t−t0),y0+(x0+h)(t−t0)+h
x0,h

belongs to the domain D, will be denoted by M .
We’ll call the set Γ (D) = ∂D\M an eigen boundary of the domain D and the

set γ (D) = ∂D\Γ (D) an upper cover of D.
Theorem 1. (Maximum principle). Let D be a bounded domain in R3,

γ (D) be its upper cover, Γ (D) its eigen boundary.
Let in D ∪ γ (D) operator (1) be defined, and u (x, y, t) be a sub solution (super

solution) for operator (1) in D ∪ γ (D) (see [6]). Then

sup
D

u = lim
(x,y,t)→Γ(D)

(x,y,t)∈D

u (x, y, t) ,


inf

D
u = lim

(x,y,t)→Γ(D)

(x,y,t)∈D

u (x, y, t)


 .

20. We’ll consider Cordes type equations, i.e such equations

Lu = 0, (3)

for which the constrants C1 and C2 of inequality (2) satisfy the condition

2C2

C1
< 3.

For negative solution of equation (3) prove a Harnack type inequality.
As a preliminary we prove an auxiliary lemma being a corollary of the increase

theorem (see [7]).
Assume

b = min
(

1
10C2

, 1
)

.

Lemma 1. Let in the cylinder C0,bη2;0,2bη3

η,η the domain D intersecting the cylin-

der C
1
2
bη2;bη2;bη3,2bη3

η, η
2

and having parallel points on the eigen boundary of the cylinder

C0,bη2;0,2bη3

η,η be situated. Denote by Γ the part of the boundary D situated sbrongly
interior to the cylinder C0,bη2;0,2bη3

η,η . Let in D, the solution of equation (3) that is
continuous in D, positive in D and vanishing on Γ be defined.

Then for any K > 0 there will be found δ > 0 dependent on K, C1 and C2 such
that from the inequality

mesD < δη6 (4)
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it follows the inequality
sup
D

u

sup
D∩C

1
2 bη2,bη2;bη3,2bη3

η,
η
2

u
> K. (5)

Proof. Take β = C1 and S = 2C2
C1

. Then b0 = 1
10C2

and by the condition

b = min
(

1
10C2

, 1
)
, i.e. the condition b ≤ b0 is satisfied.

Let ξ be a constant of theorem 3 from [7]. Then in this case ξ depends only on
C1 and C2. Let further m be such a least natural number that

(
1 +

ξ

2

)m

< K.

Assume

δ =
b2

49m6
.

Divide the difference

C0,bη2;0,2bη3

η,η \C
1
2
bη2,bη2;bη3,2bη3

η, η
2

(6)

into m parts by the eigen boundaries Γi, of the cylinders

C(i) = C
1
2
bη2(1− i

m),bη2;bη3(1− i
m),2bη3

η, η
2 (1+ i

m) , i = 0, 1, ...,m− 1.

Γ0 coincides with the eigen boundary of the cylinder C
1
2
bη2,bη2;bη3,2bη3

η, η
2

.
Assume

Mi = max
D∩Γi

u, i = 0, 1, ..., m− 1.

Let Mi be attained at the point
(
xi, yi, ti

) ∈ Γi. Consider the cylinder

C
(i)
1 = C

ti−b( η
2m)2

,ti;yi+(xi− η
2m)(t−ti)−2b( η

2m)3
,yi+(xi− η

2m)(t−ti)
xi, η

2m
.

Show that
C

(i)
1 ⊂ C(i+1), i = 0, 1, ..., m− 1.

Let (x, y, t) be any point from C
(i)
1 . From

(
xi, yi, ti

) ∈ Γi we have
∣∣xi − η

∣∣ ≤ η
2

(
1 + i

m

)
1
2bη2

(
1− i

m

) ≤ ti ≤ bη2

bη3
(
1− i

m

) ≤ yi ≤ 2bη3





. (7)

It is easy to show that

|x− η| < η

2

(
1 +

i + 1
m

)
and

1
2
bη2

(
1− i + 1

m

)
< t < bη2. (8)

It remains to show

bη3

(
1− i + 1

m

)
< y < 2bη3. (9)
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The right side of inequality (9) is obvious, prove the left side. From (x, y, t) ∈ C
(i)
1

and (8) we get

y > yi − 2bη3

8m3
+

(
xi − η

2m

) (
t− ti

) ≥

≥ bη3

(
1− i

m

)
− bη3

4m3
+

(
η +

η

2

(
1 +

i

m

)
− η

2m

)(
ti − bη2

4m2
− ti

)
=

= bη3

(
1− i

m
− 3

8m2
− i + 1

8m3

)
.

Now it suffices to show

bη3

(
1− i

m
− 3

8m2
− i + 1

8m3

)
≥ bη3

(
1− i + 1

m

)
.

If we simplify the last inequality, we get

8m2 − 4m ≥ 0,

and this is true for any m ∈ N , i.e. (9) is proved. Consequently, we proved that

C
(i)
1 ⊂ C(i+1), i = 0, 1, ...,m− 1.

In the cylinder C
(i)
1 we consider the cylinders

C
(i)
2 = C

ti− b
2(

η
8m)2

,ti;yi+(xi− η
2m)(t−ti)− b

2(
η

4m)3
,yi+(xi− η

2m)(t−ti)
xi, η

32m

and

C
(i)
3 = C

ti−b( η
2m)2

,ti−15b( η
8m)2

; yi+(xi− η
2m)(t−ti)− 17b

2 ( η
4m)3

, yi+(xi− η
2m)(t−ti)− 15b

2 ( η
4m)3

xi, η
32m

.

It is clear that

mesC
(i)
3 =

b2η6

2 · 48m6
. (10)

Denote the set D∩C
(i)
1 by D′. If now we apply theorem 5 from [7] to the cylinders

C
(i)
1 , C

(i)
2 , C

(i)
3 and domain D′; we get

sup
D′

u ≥
[
1 + ξ

mesE

mesC
(i)
3

]
sup

D′∩C
(i)
2

u. (11)

On the other hand

sup
D′

u = sup
D′∩C

(i)
1

u ≤ sup
D∩C(i+1)

u = u
(
xi+1, yi+1, ti+1

)
= Mi+1. (12)

In addition, the point
(
xi, yi, ti

) ∈ D′ ∩ C
(i)
2 , therefore

sup
D′∩C

(i)
2

u ≥ u
(
xi, yi, ti

)
= Mi. (13)
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Then from (11), (12) and (13) we get

Mi+1 ≥
[
1 + ξ

mesE

mesC
(i)
3

]
Mi. (14)

Now, taking into account (10), we get

mesE = mes
(
C

(i)
3 \D′

)
> mes

(
C

(i)
3

)
−mesD >

>
b2η6

2 · 48m6
− 1

2
· b2η6

2 · 48m6
=

1
2
· b2η6

2 · 48m6
=

1
2
mes

(
C

(i)
3

)
.

Thus, from (14) we deduce

Mi+1 ≥
(

1 +
ξ

2

)
Mi.

If we repeat all these operations for i = 0, 1, ..., m− 1, we get

Mm >

(
1 +

ξ

2

)m

M0

and so, by the maximum principle (theorem 1)

sup
D

u > K sup u

D∩C
1
2 bη2,bη2;bη3,2bη3

η,
η
2

.

The lemma is proved.
Consider the following transformation:

x′ = x + x0 − η, t′ = t + t0 − bη2, y′ = y + (x0 − η)
(
t− bη2

)
+ y0 − 2bη3. (15)

If we apply transformation (15) to the cylinders C0,bη2;0,2bη3

η,η and C
1
2
bη2,bη2;bη3,2bη3

η, η
2

then these cylinders will pass to the following ones

C1 = C
t0−bη2,t0;y0+(x0−η)(t−t0)−2bη3,y0+(x0−η)(t−t0)
x0,η

C2 = C
t0− 1

2
bη2,t0;y0+(x0−η)(t−t0)−bη3,y0+(x0−η)(t−t0)

x0, η
2



 . (16)

Then we can get the statement, similar to lemma 1 in cylinders (16).
Lemma 2. Let all the conditions of lemma 1 be satisfied in cylinders (16). Then

for any K > 0 there will be found δ > 0 dependent on K, C1 and C2, such that
from the inequality mesD < δη6 it follows the inequality

sup
D

u

sup
D∩C2

u
> K. (17)

Now we can formulate a Harnack type inequality for non-negative solution of
equation (3).
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Theorem 2. (Harnack inequality). Let in the cylinder C0,bR2;0,2bR3

R,R the
non-negative solution u (x, y, t) of equation (3) be defined.

Then,

sup
C

1
32 bR2, 2

32 bR2;bR3, 1716 bR3

R, 1
32 R

u (x, y, t) / inf
C

31
32 bR2,bR2; 3116 bR3,2bR3

R, 1
32 R

u (x, y, t) < C3, (18)

where C3 > 0 is a constant dependent on C1 and C2.
Proof. It is clear that it suffices to prove the theorem for the case R = 1. For

convenience denote

C1 = C0,b;0,2b
1,1 , C2 = C

31
32

b,b; 31
16

b,2b

1, 1
32

, C3 = C
1
32

b, 2
32

b;b, 17
16

b

1, 1
32

.

Then being proved inequality (18) will take the form

sup
C3

u/inf
C2

u < C.

The theorem will be proved if from the assumption

sup
C3

u = 2

it will follow that
inf
C2

u > ν,

where ν > 0 is a constant dependent on C1 and C2.
Indeed, we can take the function V = 2u

sup
C3

u and prove inequality (18) for V , and

this proves inequality (18) for the function u. Therefore, we suppose that sup
C3

u = 2.

Assume
C̃3 = C

0, 2
32

b; 15
16

b, 17
16

b

1, 1
16

.

Denote by G1 the point set (x, y, t) ∈ C̃3, where u (x, y, t) > 1.
Assume in lemma 2 K = 27 and find the appropriate δ. Further we assume

ε0 =
(

1
4096

)6

δ. (19)

Consider two separate cases

mesG1 ≥ ε0

and
mesG1 < ε0.

Case 1. mesG1 ≥ ε0.
Let S = 2C2

C1
, β = C1. Equation (3) is a Cordes type equation, therefore S <

3. Besides, G1 ⊂ C0,b;0,2b
1,1 ⊂ C0,1;0,2

1,1 . Then by the property of (S, β) capacity
γs,β (G1) ≥ CmesG1 ≥ Cε0 (see. [6]).
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Let µ be an admissible measure on G1 such that

µG1 >
1
2
γs,β (G1) >

C

2
mesG1.

Assume

V (x, y, t) =
∫

G1

gs,β (x, ξ; y, ς; t− τ) dµ (ξ, ς, τ)− b−s exp
[
− 1

5βb

]
µ (G1) (see.[7]).

Then, taking into account inequality (20) (see [7]), we find that on the eigen bound-
ary of C1 (outside of G1) it is fulfilled

V ≤ 0.

Further, µ is an admissible measure, therefore V ≤ 1 in C1\G1. This means that
on the eigen boundary of C1\G1

u ≥ V,

therefore, by the maximum principle

u|C1\G1
≥ V |C1\G1

.

By inequality (21) (see [7])

u|C2 ≥ V |C2 ≥ b−s exp
[
− 1

5, 3βb

]
µG1 − b−s exp

[
− 1

5βb

]
µG1 >

>
Cε0b

−s

2

(
exp

[
− 1

5, 3βb

]
− exp

[
− 1

5βb

])
.

Thus, in case 1 for ν we can take

Cε0b
−s

2

(
exp

[
− 1

5, 3βb

]
− exp

[
− 1

5βb

])
.

Case 2. mesG1 < ε0.
Assume

C(ρ) = C
b
32(1−ρ2), 2

32
b;b(1−ρ3), 17

16
b

1, 1
32

+ρ
.

It is clear that C(0) = C3 and C( 1
32) ⊂ C̃3.

Assume
G(1)

ρ = G1 ∩
(
C(ρ)\C(0)

)
.

From (19) we have

mesG
(1)
1
64

<

((
1
64

)2
)6

δ.

On the other hand
mesG(1)

ρ ≥ O
(
ρ6

)
as ρ → 0.
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Then
mesG(1)

ρ ≥ O
(
ρ12

)
as ρ → 0,

and therefore for rather small ρ > 0

mesG(1)
ρ ≥ (

ρ2
)6

δ.

Therefore there will be found ρ1, 0 < ρ1 < 1
64 such that

mesG(1)
ρ1

=
(
ρ2
1

)6
δ. (20)

On the eigen boundary of the cylinder C(ρ2
1) find the point

(
x1, y1, t1

) ∈ G1 where
u

(
x1, y1, t1

) ≥ 2. By the maximum principle it is possible to find such a point

because sup
C3

u = 2 and C3 ⊂ C(ρ2
1).

Take the cylinder

C(1) = C
t1−bρ4

1,t1;y1−2bρ6
1+(x1−ρ2

1)(t−t1),y1+(x1−ρ2
1)(t−t1)

x1,ρ2
1

.

It is easy to prove that this sylinder is disposed in the margin between the cylinders
C(0) and C(ρ1).

Assume
V1 (x, y, t) = u (x, y, t)− 1.

We have V1

(
x1, y1, t1

) ≥ 1 and V1 (x, y, t) > 0 in G1, V1 (x, y, t) ≤ 0 outside of G1.
Denote by D(1) that component of the set G1 ∩ C(1) that contains the point(

x1, y1, t1
)
. Applying lemma 2 to the cylinder C(1) and to the domain D(1) in it,

that is possible by (20):
sup
D(1)

u > sup
D(1)

V1 ≥ 2 · 26.

Denote by G2 the points set (x, y, t) ∈ C̃3, where

u (x, y, t) > 26.

Consider C(ρ1+ρ), 0 < ρ < 1
32 − ρ1. Assume

G(2)
ρ = G2 ∩

(
C(ρ1+ρ)\C(ρ1)

)
.

From relation 0 < ρ < 1
32 − ρ1 it follows that ρ1 < ρ + ρ1 < 1

32 , and therefore
C(ρ1+ρ) ∈ C̃3. Since ρ1 < 1

64 , and G2 ⊂ G1, then from (19)

mesG
(2)
1
64

<

((
1
64

)2
)6

δ.

We again get
mesG(2)

ρ ≥ O
(
ρ6

)
as ρ → 0,
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consequently,
mesG(2)

ρ ≥ O
(
ρ12

)
as ρ → 0.

Then for rather small positive ρ by the same reasonings that as before

mesG(2)
ρ ≥ (

ρ2
)6

δ.

Therefore, there will be found such ρ2 from the interval
(
0, 1

64

)
that

mesG(2)
ρ2

=
(
ρ2
2

)6
δ. (21)

Find on the eigen boundary C(ρ1+ρ2
2) the point

(
x2, y2, t2

)
, where u

(
x2, y2, t2

)
>

2 · 26. Take the cylinder

C(2) = C
t2−bρ4

2,t2;y2−2bρ6
2+(x2−ρ2

2)(t−t2),y2+(x2−ρ2
2)(t−t2)

x2,ρ2
2

.

It is clear that this cylinder is disposed in the margin between the cylinders C(ρ1)

and C(ρ1+ρ2
2).

Assume
V2 (x, y, t) = u (x, y, t)− 26,

thus, V2

(
x2, y2, t2

)
> 26 and V2 (x, y, t) > 0 in G2, V2 (x, y, t) ≤ 0 outside of G2.

Denote by D(2) the component of the set G2∩C(2) that contains the point
(
x2, y2, t2

)
.

Applying lemma 2 to the cylinder C(2) and the domain D(2) in it, we find (from
(21))

sup
D(2)

u > sup
D(2)

V2 ≥ 26 · 27 = 2 · 22·6.

If ρ1 + ρ2 <
1
64

, we continue the process. Denote by G3 the points set (x, y, t) ∈ C̃3,

where u > 22·6.
Consider C(ρ1+ρ2+ρ), 0 < ρ <

1
64
− ρ1 − ρ2. It follows from this that ρ1 + ρ2 <

ρ + ρ1 + ρ2 < 1
64 , and therefore C(ρ1+ρ2+ρ) ⊂ C̃3.

Assume
G(3)

ρ = G3 ∩
(
C(ρ1+ρ2+ρ)\C(ρ1+ρ2)

)

and find such ρ3 <
1
64

that

mesG(3)
ρ3

=
(
ρ2
3

)6
δ,

and on the eigen boundary of C(ρ1+ρ2+ρ2
3) there is a point

(
x3, y3, t3

)
, where

u
(
x3, y3, t3

)
> 2 · 22·6. Then in the margin between C(ρ1+ρ2) and C(ρ1+ρ2+ρ3) we

find the cylinder C(3) and the domain D(3) in it and etc.
We’ll continue this process until for the first time there will be ρ1 +ρ2 + ...+ρk ≥

1
64

.

Note that therewith ρk <
1
64

, ρ1 + ... + ρk <
1
32

. In the sequel, the moment

when the sum ρ1 + ... + ρk will exceed 1
64 will occur: otherwise we could continue
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the process infinitely, and since at its each step the value of u increases more than
26 times, the function u could be unbounded in C̃3.

So, let

ρ1 + ... + ρk−1 <
1
64

and
ρ1 + ... + ρk ≥

1
64

. (22)

To each number i, i = 1, 2, ..., k there corresponds the set G
(i)
ρi
⊂ C̃3 satisfying the

equality
mesG(i)

ρi
=

(
ρ2

i

)6
δ (23)

and
u|

G
(i)
ρi

> 26(i−1). (24)

From (22) it follows that there will be found such i0 that

ρi0 >
1

2
i0
2

+8
.

Otherwise,

ρ1 + ρ2 + ... + ρk ≤
1

2
1
2
+8

+
1

2
2
2
+8

+ ... +
1

2
k
2
+8

<
1

256
· 1

2
1
2 − 1

<
1
64

,

but it is impossible by (22).
Then (23), (24) give us

mesG(i0)
ρi0

=
(
ρ2

i0

)6
δ >

(
1

2i0+16

)6

δ = 2−6(i0+16)δ, (25)

u|
G

(i0)
ρi0

> 2(i0−1)6. (26)

Let µ be an admissible measure defined on G
(i0)
ρi0

and such that µ
(
G

(i0)
ρi0

)
>

γs,β

�
G

(i0)
ρi0

�

2 , so that on account of the property of (s.β)-capacity (see [6])

µ
(
G(i0)

ρi0

)
>

C

2
mesG(i0)

ρi0
,

i.e.
µ

(
G(i0)

ρi0

)
>

C

2
2−6(i0+16)δ. (27)

Consider the function

V (x, y, t) = 26(i0−1)




∫

G
(i0)
ρi0

gs,β (x, ξ; y, ς; t− τ) dµ (ξ, ς, τ)− b−s exp
[
− 1

5βb

]
µ

(
G(i0)

ρi0

)

 .
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On the lower foot of the cylinder C1 outside of G
(i0)
ρi0

this function negative, on the
lateral bounds that are eigen boundaries, it is negative on account of inequality (20)
(saee [7]). Outside of the set G

(i0)
ρi0

C1 in doesn’t exceed 26(i0−1). Therefore, by the

maximum principle it doesn’t exceed u everywhere in C1\ G
(i0)
ρi0

.
Applying inequality (21) (see [7]), we find

inf
C2

u > inf
C2

V ≥ 26(i0−1)b−s

(
exp

[
− 1

5, 3βb

]
− exp

[
− 1

5βb

])
µ

(
G(i0)

ρi0

)
>

> 26(i0−1)b−s

(
exp

[
− 1

5, 3βb

]
− exp

[
− 1

5βb

])
· C

2
· 2−6(i0+16)δ =

= 2−103Cδb−s

(
exp

[
− 1

5, 3βb

]
− exp

[
− 1

5βb

])
.

Accept the number standing in the right side of the inequality for ν. It obviously
depends on C1 and C2.

We proved the theorem for R = 1. If we make transformations x′ = αx, t′ = α2t,
y′ = α3y for α = R and take into account that operator (1) remains invariant in
this transformation, we can confirm that the theorem is true for any R > 0.
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