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A SOLUTION METHOD FOR A SYSTEM OF
NONLINEAR DIFFERENTIAL EQUATIONS

Abstract

The system of nonlinear differential equations being a generalization of Toda
and Volterra chains is considered. Lax representation for this system is found.
The solution of the Cauchy problem for the mentioned system is found by the
method of the inverse spectral problem.

Applications of the methods of the inverse spectral problem to integration of
nonlinear dynamical systems such as Toda chain and Volterra chain (see [1]-[5] and
their references) are known well. Initial boundary value problems for the systems
of differential equations of Toda chain and Volterra chain type are undoubtedly of
applied interest and therefore they are the subject of active study already in the
course of a number of years (see [3], [4]).

For the real-valued functions an = an(t) ∈ C(1)[0,∞), bn = bn(t) ∈
∈ C(1)[0,∞) consider the Cauchy problem for the following system of equations





an =
α

2
an(bn − bn+1) +

β

2
an(a2

n−1 − a2
n+1 + b2

n − b2
n+1),

bn = α(a2
n−1 − a2

n) + β[a2
n−1(bn−1 + bn)− a2

n(bn + bn+1), n = 0, ..., N,

a−1 = aN = 0, · = d

dt
,

(1)

an(0) = a0
n > 0, bn(0) = b0

n, n = 0, ..., N, (2)

where α and β are real numbers. Note that the system of equations (1) becomes
Toda’s chain for α = 1, β = 0 and Volterra’s chain for α = 0, β = 1, bn ≡ 0.

In the present paper, by the method of the inverse spectral problem we obtain
formulas for finding the solution of problem (1)-(2) at any time t. Global solvability
of problem (1)-(2) is proved.

1. Preliminary information
In this item we formulate some known facts related to the inverse spectral prob-

lem for finite Jacobi matrices a lot of which are contained with their proofs in [2],
[6]. [7].

Consider (N + 1)-dimensional Jacobi matrix

L =




b0 a0 0 0 0
a0 b1 a1 0 0

.............................
0 0 0 ... bN−1 bN−1

0 0 0 ... bN−1 bN−1




.

Introduce the difference equation

an−1yn−1 + bnyn + anyn+1 = λyn, n = 0, 1, ..., N,
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a−1 = aN = 0, an > 0, n = 0, ..., N − 1. (3)

where λ is a spectral parameter. Denote by pn = pn(λ) the solution of equation (3)
with initial conditions p−1 = 0, p0 = 1. It is known that the eigen values, of the
matrix L are real, prime and coincide with the zeros of the polynomial pN+1(λ).

Let λ0, λ1, ..., λN be eigen values of the matrix L. Introduce the normalizing
coefficients, assuming

αk =
∞∑

n=0

p2
n(λk), k = 0, 1, ..., N. (4)

The totality {λn, αn > 0}N
n=0 is said to be spectral data of the matrix. The

inverse spectral problem for the Jacobi matrix L consists of renewal of the elements
an, n = 0, 1, ..., N and bn, n = 0, 1, ..., N by spectral data {λn, αn}N

n=0 for which
equality (4) is valid.

The matrix L is uniquely determined by spectral data and may be found in the
following way. Construct the moments Sn, n = 0, 1, .., 2N + 1 by the formula

Sn =
N∑

k=0

λn
kα−1

k (5)

and the Hankel determinants Dn,−1 ≤ n ≤ N by the formulae

D−1 = 1, Dn =

∣∣∣∣∣∣∣∣

S0 S1 ... Sn

S1 S2 ... Sn+1

...........................
Sn Sn+1 ... S2n

∣∣∣∣∣∣∣∣
. (6)

Introduce also the determinants ∆−1 = 0, ∆0 = S0, ∆n, 1 ≤ n ≤ N

∆n =

∣∣∣∣∣∣∣∣

S0 S1 ... Sn−1 Sn+1

S1 S2 ... Sn Sn+2

...........................
Sn Sn+1 ... S2n−1 S2n+1

∣∣∣∣∣∣∣∣
.

Calculate an and bn by the formulae

an = (Dn−1Dn+1)
1
2 D−1

n , bn = 4nD−1
n −4n−1D

−1
n−1. (7)

It should be noted that the Hankel determinants Dn are positive.Indeed, for any

n the quadratic form
n∑

j,k=0

Sj+kxjxk is representable in the form

n∑

j,k=0

Sj+kxjxk =
N∑

k=0

α−1
k




n∑

j,k=0

xjλ
j
k




2

,

whence it follows that
n∑

j,k=0

Sj+kxjxk ≥ 0,
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and the sign of equality may be attained only when x0 = ... = xn = 0. Consequently,

the quadratic form
n∑

j,k=0

Sj+kxjxk and the determinants Dn are positive.

2. Formulae for solving problem (1)-(2)
Now let the elements an, bn of the matrix L depend on t:L = L(t) and satisfy sys-

tem (1). The following lemma describs the evolution of spectral data {λk(t), αk(t)}N
k=0

of the matrix L = L(t).
Theorem 1. Evolution of spectral data of the matrix L = L(t) is described by

the formulae
λk(t) = λk(0) = λk,

α−1
k (t) = α−1

k (0)e−
αλk+βλ2

k
2

t

(
N∑

k=0

α−1
k (0)e−

αλk+βλ2
k

2
t

)−1

, k = 0, ..., N. (9)

Proof. Introduce the (N + 1)-dimensional matrix A = A(t) that acts on the
vector y = (y0, ..., yn)T by the formula

(Ay)n =
α

2
(anyn+1 − an−1yn−1)+

+
β

2
[anan+1yn+2 + an(bn + bn+1)yn+1 − an−1(bn−1 + bn)yn−1 − an−2an−1yn−2] .

where by calculating (Ay)j , j = 0, 1, N − 1, N it should be taken into account that
yk = 0, k = −2, − 1, N + 1, N + 2. It is easy to verify that the matrix A is
skew-symmetric: A∗ = −A. Furthermore, the matrices L and A form Lax pair, i.e.
a system of equations (1) is equivalent to the matrix equation (10)

·
L = LA−AL. (10)

Since equality (10) implies (see [3], [4]) unitary equivalence of the family of matrices
L = L(t), then the eigen values λk(t), k = 0, 1, ..., N of the matrix L = L(t) are
independent of t :

λk(t) = λk(0) = λk, k = 0, 1, ..., N.

Consider the equation
Ly = λy, (11)

where the parameter λ is independent of t. Differentiating equality (11) with respect
to t and using (10), we find that the matrix B acting by the formula

(By)n = yn + (Ay)n , n = 0, 1, ..., N,

transforms the solution of equation (11) to the solution of just the same equation.
Now let p (λk, t) = {pn (λk, t)}N

n=0 be an eigen vector of the matrix L =
= L(t) responding to the eigen value λk, k = 0, 1, ..., N, moreover pn (λk, t) = 1.
Then Bpn (λk, t) is also an eigen vector of the matrix L corresponding to the eigen
value of the operator λk. Directly it is verified that (Bpn (λk, t))0 =
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= β
λ2

k − b2
0 − a2

0

2
+ α

λk − b0

2
. Since the eigen values of the operator L = L(t) are

prime, then the following equalities are true

Bpn (λk, t) =
[
α

λk − b0

2
+ β

λ2
k − b2

0 − a2
0

2

]
p (λk, t) , k = 0, 1, ..., N. (12)

Now find the dynamics of the normalizing coefficient

αk(t) =
N∑

n=0

p2
n (λk, t) , (k = 0, 1, ..., N).

Taking into attention that

·
αk(t) = 2

∞∑

n=0

pn (λk, t) pn (λk, t) ,

allowing for formula (12) we find

·
αk(t) =

[
α

λk − b0

2
+ β

λ2
k − b2

0 − a2
0

2

]
αk(t)+

+
N∑

n=0

(Ap2
n (λk, t))npn (λk, t) .

On the other hand, from the skew-symmetry of the matrix A it follows that the
sum

N∑

n=0

(Ap2
n (λk, t))npn (λk, t)

vanishes. Then we get the equation

·
αk(t) =

[
α

λk − b0

2
+ β

λ2
k − b2

0 − a2
0

2

]
αk(t),

from which it follows that

α−1
k (t) = α−1

k (0) exp
(
−αλk + βλ2

k

2

)
×

× exp




τ∫

0

βb2
0(τ) + βa2

0(τ)− ab0(τ)
2

dτ


 , (13)

In (13), the functions a0(t), b0(t) may not be arbitrary, they should provide
fulfilment of the equality

N∑

n=0

α−1
k (t) = 1.

Then we’ll have

exp




τ∫

0

βb2
0(τ) + βa2

0(τ)− ab0(τ)
2

dτ


 =
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=

(
N∑

n=0

α−1
k (0) exp

(
−αλk + βλ2

k

2
t

))−1

, k = 0, 1, ..., N.

Together with (13) the last equality leads us to relation (9).
The theorem is proved.
The results of this item allow to find the solution of problem (1)-(2). More

exactly, by initial data an(0) = ân, bn(0) = b̂n we construct the spectral data
{λk, αk(0)}N

k=0. Calculate the spectral data {λk, αk(t)}N
k=0 by formula (9). Solving

in totality {λk, αk(t)}N
k=0 the inverse spectral problem by means of formula (5)-(8),

where instead of α−1
k (0) we should substitute (9), we construct the solution.

3. Existence of the solution
The method for constructing the solution of the problem, suggested in the pre-

vious item requires a unique solvability of problem (1)-(2). In this item we’ll be
engaged in this matter.

Theorem 2. For any initial data a0
n > 0, b0

n problem (1)-(2) has a unique
solution determined on the semi-axis [0,∞).

Proof. First of all note that the right sides of the system of equations (1) are
continuously differentiable functions of variables a0, ..., aN−1, b0, ..., bN−1, bN .

Then passing to the integral equation by the standard method, and using the
sequential approximations method, we find that problem (1)-(2) has at some interval
[0, t0) a unique solution an(t), bn(t). Therewith, from (1) we have

a0(t) = an(0) exp




t∫

0

[α

2
(bn(τ)− bn+1(τ))+

+
β

2
(
a2

n−1(τ)− a2
n+1(τ) + b2

n(τ)− b2
n+1(τ)

)]
dτ

)
,

from which it follows that an(t) > 0.
Further, since for t ∈ [0, t0) equality (10) is true, then the family of the matrices

L = L(t) is unitary equivalent, i.e. there exists an (N + 1) dimensional unitary
matrix U(t) such that

U(0) = E, L(t) = U∗(t)L(0)U(t),

where E is a (N + 1)−dimensional matrix. From the last relations we get

‖L(t)‖ = ‖L(0)‖ , t ∈ [0, t0), (14)

where ‖·‖ is the norm of the matrix L(t) in (N + 1)−dimensional space of vectors

y = (y0, ..., yN ) with the norm ‖y‖ =

(
N∑

n=0

y2
n

) 1
2

. Now, from formula (14) allowing

for very obvious inequalities

|an(t)| ≤ ‖L(t)‖ , |bn(t)| ≤ ‖L(t)‖
it follows that the solution an(t), bn(t) is continuable on all the positive semi-axis.

The theorem is proved.



106
[A.Kh.Khanmamedov,H.M.Masmaliyev]

Transactions of NAS of Azerbaijan

References

[1]. Berezansky Yu.M. A remark on a loaded Toda chain // Ukr. Math. Zhurnal.
1985, vol. 37, No3, pp. 352-355. (Russian)

[2]. Berezansky Yu.M., Hechtman M.I., Shmoish M.E. Integration of some chains
of nonlinear difference equations by the method of the inverse spectral problem //
Ukr. Math. Zhurnal. 1986, vol. 38, No1, pp. 84-89. (Russian)

[3]. Toda M. Theory of nonlinear lattices. M.Nauka, 1984, 262 p. (Russian)
[4]. Teschl G. Jacobi operators and completely integrable nonlinear lattices. //

Math. Surv. and Monographs, 72. Amer. Math Soc Providence, RI, 2000.
[5]. Huseynov I.M., Khanmamedov Ag.Kh. On an algorithm for solving Cauchy

problem for a finite Langmuir chain // Zh. Vychis. Mat. i matem. fiziki. 2009, vol.
49, No9, pp. 1589-1593. (Russian)

[6]. Berezansky Yu.M. Expansion in eigen functions of self-adjoint operators.
Kiev. Naukova Dumka, 1965. (Russian)

[7]. Huseynov I.M. Finite dimensional inverse problem. // Trans. Acad. Sci. of
Azerb. Ser. Phys.-Techn. and Math. 2001, vol. 21, No1, pp. 80-87.

Agil Kh.Khanmamedov
Institute of Mathematics and Mechanics of NAS of Azerbaijan,
9, B.Vahabzade str., AZ1141, Baku, Azerbaijan.
Tel.: (99412) 539 47 20 (apt.).
Baku State University
23, Z.Khalilov str., AZ1148, Baku, Azerbaijan
Tel.: (99412) 438 05 82 (off.)

Haji M.Masmaliyev
Baku State University
23, Z.Khalilov str., AZ1148, Baku, Azerbaijan
Tel.: (99412) 438 05 82 (off.).

Received September 08, 2011; Revised November 30, 2011


