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PARABOLIC FRACTIONAL MAXIMAL OPERATOR
IN PARABOLIC LOCAL MORREY-TYPE SPACES

Abstract

In this paper, we study the boundedness of the parabolic fractional maximal
operator in parabolic local Morrey-type spaces. We reduce the problem of
boundedness of the parabolic fractional maximal operator Mα, 0 ≤ α < γ
in general parabolic local Morrey-type spaces to the problem of boundedness
of the supremal operator in weighted Lp-spaces on the cone of non-negative
non-decreasing functions.

1. Introduction
For x ∈ Rn and r > 0, let B(x, r) denote the open ball centered at x of radius r

and
{
B(x, r) denote the set Rn\B(x, r).

Let P be a real n×n matrix, all of whose eigenvalues have positive real part. Let
At = tP (t > 0), and set γ = trP . Then, there exists a quasi-distance ρ associated
with P such that (see, for example, [4, 5])

(a) ρ(Atx) = tρ(x), t > 0, for every x ∈ Rn;

(b) ρ(0) = 0, ρ(x− y) = ρ(y − x) ≥ 0

and ρ(x− y) ≤ k(ρ(x− z) + ρ(y − z));

(c) dx = ργ−1dσ(w)dρ, where ρ = ρ(x), w = Aρ−1x

and dσ(w)is a C∞measure on the ellipsoid {w : ρ(w) = 1}.

Then, {Rn, ρ, dx} becomes a space of homogeneous type in the sense of Coifman-
Weiss. Moreover, we always assume the following properties on ρ:

(d) For every x,

c1|x|α1 ≤ ρ(x) ≤ c2|x|α2 if ρ(x) ≥ 1

c3|x|α3 ≤ ρ(x) ≤ c4|x|α4 if ρ(x) ≤ 1

and
ρ(θx) ≤ ρ(x) for 0 < θ < 1.

Here αi and ci (i = 1, . . . , 4) are some positive constants. Similar properties
hold for ρ∗ which is associated with the matrix P ∗.

There are some important examples for the above spaces:
1. Let (Px, x) ≥ (x, x) (x ∈ Rn). In this case, ρ(x) is defined by the unique

solution of |At−1x| = 1, and k = 1. This space is just the one studied by Calderon
and Torchinsky in [4].

2. Let P be a diagonal matrix with positive diagonal entries, and let ρ(x) be the
unique solution of |At−1x| = 1.
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2a) If all diagonal entries are greater than or equal to 1, this space was studied
by E.B. Fabes and N.M. Riviere [5]. More precisely they studied the weak (1, 1) and
Lp estimates of the singular integral operators on this space in 1966.

2b) If there are diagonal entries smaller than 1, then ρ satisfies the above (a)−(d)
with k ≥ 1.

Let f ∈ Lloc
1 . The parabolic fractional maximal function MP

α f is defined by

MP
α f(x) = sup

t>0
|EP (x, t)|−1+α

γ

∫
EP (x,t)

|f(y)|dy, 0 ≤ α < γ.

If α = 0, then MP ≡ MP
0 is the parabolic maximal operator. If P = I, then

Mα ≡ M1
α is the fractional maximal operator and M ≡ M I

0 is the Hardy-Littlewood
maximal operator.

In the theory of partial differential equations, together with weighted Lp,w spaces,
Morrey spaces Mp,λ play an important role. They were introduced by C. Morrey
in 1938 [9]. These spaces appeared to be quite useful in the study of a number of
problems in the theory of partial differential equations, in particular in the study of
local behavior of solutions of parabolic or quasi-elliptic differential equations. The
parabolic Morrey space is defined as follows: for 1 ≤ p ≤ ∞, 0 ≤ λ ≤ γ, a function
f ∈ Mp,λ,P if f ∈ Lloc

p and

∥f∥Mp,λ,P
≡ ∥f∥Mp,λ,P (Rn) = sup

x∈Rn, r>0
r−λ/p∥f∥Lp(EP (x,r)) < ∞.

Note thatMp,λ ≡ Mp,λ,1. (If λ = 0, thenMp,0,P = Lp; if λ = γ, thenMp,γ,P = L∞;
if λ < 0 or λ > γ, then Mp,λ,P = Θ, where Θ is the set of all functions equivalent
to 0 on Rn.)

Also, by WMp,λ,P we denote the weak Morrey space of all functions f ∈ WLloc
p

for which

∥f∥WMp,λ,P
≡ ∥f∥WMp,λ,P (Rn) = sup

x∈Rn, r>0
r−λ/p∥f∥WLp(EP (x,r)) < ∞,

where WLp(EP (x, r)) denotes the weak Lp-space of measurable functions f for which

∥f∥WLp(EP (x,r)) ≡ ∥fχ
EP (x,r)

∥WLp(Rn) = sup
t>0

t |{y ∈ EP (x, r) : |f(y)| > t}|1/p . (1)

If in the place of the power function r−λ/p in the definition of Mp,λ,P we consider
any positive measurable weight function w defined on (0,∞), then it becomes the
Morrey-type space Mp,w,P .

The following statement, containing the results in [6] was proved in [7] (see also
[8]).

Theorem 1.1. Let 1 ≤ p1 ≤ p2 < ∞ and α = γ
(

1
p1

− 1
p2

)
. Moreover, let w1

and w2 be positive measurable functions satisfying the following condition:∥∥w−1
1 (r) r

α− γ
p1

−1∥∥
L1(t,∞)

≤ cw−1
2 (t) t

α− γ
p1 . (2)

Then for p1 > 1 MP
α is bounded from Mp1,w1,P to Mp2,w2,P , and for p1 = 1 MP

α

is bounded from M1,w1,P to WMp2,w,P .



Transactions of NAS of Azerbaijan
[Parabolic fractional maximal operator in...]

61

Earlier, in [6] a weaker version of Theorem 1.1 was proved: it was assumed
that w1 = w2 = w and that w is a positive non-increasing function satisfying the
pointwise doubling condition, namely that for some c > 0

c−1w(r) ≤ w(t) ≤ cw(r)

for all t, r > 0 such that 0 < r ≤ t ≤ 2r.

2. Definitions and basic properties of parabolic local Morrey-type
spaces

Definition 2.1. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable
function on (0,∞). We denote by LMpθ,w,P , GMpθ,w,P , the parabolic local Morrey-
type spaces, the global Morrey-type spaces respectively, the spaces of all functions
f ∈ Lloc

p with finite quasinorms

∥f∥LMpθ,w,P
≡ ∥f∥LMpθ,w,P (Rn) =

∥∥w(r)∥f∥Lp(EP (0,r))

∥∥
Lθ(0,∞)

,

∥f∥GMpθ,w,P
= sup

x∈Rn
∥f(x+ ·)∥LMpθ,w,P

respectively.
We denote by the (isotropic) local Morrey-type spaces, the global Morrey-type

spaces respectively LMpθ,w ≡ LMpθ,w,I , GMpθ,w ≡ GMpθ,w,I , where I be a n × n
identity matrix and

∥f∥LMp∞,1,P
= ∥f∥GMp∞,1,P

= ∥f∥Lp .

Furthermore, GMp∞,r−λ/p,P ≡ Mp,λ,P , 0 ≤ λ ≤ γ.
Lemma 2.2. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function

on (0,∞).
1.If for all t > 0

∥w(r)∥Lθ(t,∞) = ∞, (3)

then LMpθ,w,P = GMpθ,w,P = Θ, where Θ is the set of all functions equivalent to 0
on Rn.

2. If for all t > 0
∥w(r)rγ/p∥Lθ(0,t) = ∞, (4)

then for all functions f ∈ LMpθ,w,P , continuous at 0, f(0) = 0, and for 0 < p < ∞
GMpθ,w,P = Θ.

Proof. 1. Let (3) be satisfied and f be not equivalent to zero. Then for some
t0 > 0

A = ∥f∥Lp(EP (0,t0)) > 0.

Hence

∥f∥GMpθ,w,P
≥ ∥f∥LMpθ,w,P

≥
∥∥w(r)∥f∥Lp(EP (0,r))

∥∥
Lθ(t0,∞)

≥ A∥w(r)∥Lθ(t0,∞).

Therefore ∥f∥GMpθ,w,P
= ∥f∥LMpθ,w,P

= ∞.

2. Let (4) be satisfied. If f ∈ LMpθ,w,P and there exists

lim
r→0

|EP (0, r)|−1/p∥f∥Lp(EP (0,r)) = B, (5)
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then B = 0.
Indeed, if B > 0, then there exists t0 > 0 such that

|EP (0, r)|−1/p∥f∥Lp(EP (0,r)) ≥
B

2
(6)

for all 0 < r ≤ t0. Consequently,

∥f∥LMpθ,w,P
≥
∥∥w(r)∥f∥Lp(EP (0,r))

∥∥
Lθ(0,t0)

≥ B

2
v1/pn

∥∥∥w(r)rγ/p∥∥∥
Lθ(0,t0)

,

where vn is the volume of the unit ellipsoid {x : ρ(x) = 1}. Hence ∥f∥LMpθ,w,P
= ∞,

f /∈ LMpθ,w,P and we have arrived at a contradiction.
If f ∈ LMpθ,w,P and it is continuous at 0, then (5) holds with B = |f(0)|. Hence

f(0) = 0.
Next let 0 < p < ∞ and let f ∈ GMpθ,w,P , then by the generalized Lebesgue

theorem on differentiation of integrals (see, for example, [10]) for almost all x ∈ Rn

lim
r→0

|EP (x, r)|−1/p∥f∥Lp(EP (x,r)) = |f(x)|.

By the above argument for all those x we have f(x) = 0. Hence f is equivalent to
zero.

Definition 2.3. Let 0 < p, θ ≤ ∞. We denote by Ωθ the set of all functions w
which are non-negative, measurable on (0,∞), not equivalent to 0 and such that for
some t > 0

∥w(r)∥Lθ(t,∞) < ∞.

Moreover, we denote by Ωp,θ,P the set of all functions w which are non-negative,
measurable on (0,∞), not equivalent to 0 and such that for some t1, t2 > 0

∥w(r)∥Lθ(t1,∞) < ∞, ∥w(r)rγ/p∥Lθ(0,t2) < ∞.

Keeping in mind Lemma 2.2, when considering the spaces LMpθ,w,P we always
assume that w ∈ Ωθ, and when considering the spaces GMpθ,w,P we always assume
that w ∈ Ωp,θ,P .

Example 2.4. Defined the test function ft, t > 0, by the following way

ft(x) = χEP (0,2t)\EP (0,t)(x), x ∈ Rn, t > 0.

Note that, for 0 < p < ∞

∥ft∥Lp(EP (0,r)) = 0, 0 < r ≤ t, ∥ft∥Lp(EP (0,r)) ≤ Ct
γ
p , t < r < ∞, (7)

where C > 0 depends only on n and p. Then

∥ft∥LMpθ,w,P
=
∥∥w(r)∥ft∥Lp(EP (0,r))

∥∥
Lθ(t,∞)

≤ Ct
γ
p ∥w(r)∥Lθ(t,∞).

Then ft ∈ LMpθ,w,P for some t > 0 and w ∈ Ωθ.
Lemma 2.5. Let 1 < p1 ≤ ∞, 0 < p2 ≤ ∞, 0 ≤ α < γ, 0 < θ1, θ2 ≤ ∞,

w1 ∈ Ωθ1 , and w2 ∈ Ωθ2. Then the condition

α ≤ γ

p1
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is necessary for the boundedness of MP
α from LMp1θ1,w1,P to LMp2θ2,w2,P .

Proof. Assume that α > γ/p1 and MP
α is bounded from LMp1θ1,w1,P to

LMp2θ2,w2,P . Since w1 ∈ Ωθ1 for some t > 0 ∥w1∥Lθ(t,∞) < ∞. Let f(x) =

ρ(x)βχ {EP (0,t)
, where −α < β < −γ/p. Note that f ∈ LMp1θ1,w1,P . On the other

hand for all x ∈ Rn

MP
α f(x) ≥ lim

t→∞
|EP (x, t)|−1+α/γ

∫
EP (x,t)\EP (x,ρ(x)+2)

ρ(y)βdy ≥ c lim
t→∞

tα+β = ∞,

where c depends only on n, α and β, hence f /∈ LMp2θ2,w2,P .
For the isotropic case P = I, Lemma 2.2 was proved in [1] and Lemma 2.5 was

proved in [2].
Throughout this paper a . b, (b & a), means that a ≤ λb, where λ > 0 depends

on unessential parameters. If b . a . b, then we write a ≈ b.

3. Lp-estimates of parabolic fractional maximal function over ellipsoids
We consider the following “partial” parabolic fractional maximal functions

MP
α,rf(x) = sup

0<t≤r
|EP (x, t)|−1+α

γ

∫
EP (x,t)

|f(y)|dy,

M
P
α,rf(x) = sup

t>r
|EP (x, t)|−1+α

γ

∫
EP (x,t)

|f(y)|dy.

Lemma 3.1. Let 0 < p ≤ ∞, 0 ≤ α < γ and f ∈ Lloc
1 . Then for any ellipsoid

EP (x, r) in Rn

∥MP
α f∥WLp(EP (x,r)) & r

γ
p M

P
α,rf(x). (8)

Proof. If y ∈ EP (x, r) and t > 2kr, then EP (x, t
2k ) ⊂ EP (y, t) and

MP
α f(y) ≥ 2α−γ sup

t>2r

1

|EP (x, t
2k )|

1−α
γ

∫
EP (x, t

2k
)
|f(z)|dz = 2α−γM

P
α,rf(x).

Hence, if f is not equivalent to 0 on Rn, then

∥MP
α f∥WLp(EP (x,r)) ≥ sup

0<t<2α−γM
P
α,rf(x)

t
∣∣{y ∈ EP (x, r) : MP

α f(y) > t}
∣∣ 1p ≥

≥ sup
0<t<2α−γM

P
α,rf(x)

t(vnr
γ)

1
p = 2α−γv

1
p
n r

γ
p M

P
α,rf(x).

(If f is equivalent to 0 inequality (8) is trivial.)
Lemma 3.2. Let 0 < p ≤ ∞, 0 ≤ α < γ and f ∈ Lloc

1 . Then for any ellipsoid
EP (x, r) in Rn

∥MP
α f∥Lp(EP (x,r)) ≈ ∥MP

α (fχ
EP (x,2kr)

)∥Lp(EP (x,r)) + r
γ
p M

P
α,2krf(x). (9)

Proof. It is obvious that for any ellipsoid EP (x, r)

∥MP
α f∥Lp(EP (x,r)) . ∥MP

α (fχ
EP (x,2kr)

)∥Lp(EP (x,r)) + ∥MP
α (fχ {EP (x,2kr)

)∥Lp(EP (x,r)).



64
[V.S.Guliyev,Sh.A.Muradova]

Transactions of NAS of Azerbaijan

Let y be an arbitrary point in EP (x, r). If EP (y, t) ∩
{EP (x, 2kr) ̸= ∅, then t > r.

Indeed, if z ∈ EP (y, t) ∩
{EP (x, 2kr), then t > ρ(z − y) ≥ 1

kρ(z − x) − ρ(x − y) >
2r − r = r.

On the other hand EP (y, t) ∩
{EP (x, 2kr) ⊂ EP (x, 2kt). Indeed, if z ∈ EP (y, t) ∩

{EP (x, 2kr), then we get ρ(z − x) ≤ kρ(z − y) + kρ(y − x) < kt+ kr < 2kt.
Hence

MP
α (fχ {EP (x,2kr)

)(y) = sup
t>0

1

|EP (y, t)|1−
α
γ

∫
EP (y,t)∩ {EP (x,2kr)

|f(z)|dz ≤

. sup
t≥r

1

|EP (x, 2kt)|1−
α
γ

∫
EP (x,2kt)

|f(y)|dy = M
P
α,2krf(x)

and the right-hand side inequality in (9) follows.
The left-hand side inequality in (9) follows by Lemma 3.1 and obvious inequality

∥MP
α f∥Lp(EP (x,r)) ≥ ∥MP

α (fχ
EP (x,2kr)

)∥Lp(EP (x,r)).

Lemma 3.3. Let 1 ≤ p1 ≤ p2 ≤ ∞ and 0 ≤ α < γ. The inequality

∥MP
α (fχEP (x,2kr))∥Lp2 (EP (x,r)) . r

α−γ
(

1
p1

− 1
p2

)
∥f∥Lp1 (EP (x,2kr)) (10)

holds for all f ∈ Lloc
p1 if and only if in the case p1 > 1

α ≥ γ

(
1

p1
− 1

p2

)
, (11)

and in the case p1 = 1

p2 < ∞ and α > γ

(
1− 1

p2

)
. (12)

Moreover for 1 ≤ p2 < ∞ and α = γ
(
1− 1

p2

)
the inequality

∥MP
α (fχEP (x,2kr))∥WLp2 (EP (x,r)) . ∥f∥L1(EP (x,2kr)) (13)

holds for all f ∈ Lloc
1 .

Proof. Recall the well-known inequalities for the fractional maximal operator
[10]. If 1 < p1 ≤ p2 ≤ ∞, then

∥MP

γ
(

1
p1

− 1
p2

)f∥Lp2 (Rn) . ∥f∥Lp1 (Rn) . (14)

Also if 1 ≤ p2 < ∞, then

∥MP

γ
(
1− 1

p2

)f∥WLp2 (Rn) . ∥f∥L1(Rn) . (15)

If 1 < p1 ≤ p2 ≤ ∞, inequality (11) holds and z ∈ EP (x, r), then

MP
α (fχEP (x,2kr))(z) = sup

0<t≤3kr
|EP (z, t)|

α
γ
−1
∫
EP (z,t)

∣∣∣f(y)χEP (x,2kr)(y)
∣∣∣ dy,
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because for t > 3kr EP (z, t) ⊃ EP (x, 2kr) hence

|EP (z, t)|
α
γ
−1
∫
EP (z,t)

∣∣∣f(y)χEP (x,2kr)(y)
∣∣∣ dy ≤

≤ |EP (z, 3kr)|
α
γ
−1
∫
EP (z,3kr)

∣∣∣f(y)χEP (x,2kr)(y)
∣∣∣ dy.

Therefore

MP
α (fχEP (x,2kr))(z) . r

α−γ
(

1
p1

− 1
p2

)
M

γ
(

1
p1

− 1
p2

) (fχEP (x,2kr)

)
(z)

and by (14)

∥MP
α (fχEP (x,2kr))∥Lp2(EP (x,r)) . r

α−γ
(

1
p1

− 1
p2

) ∥∥∥∥Mγ
(

1
p1

− 1
p2

) (fχEP (x,2kr)

)∥∥∥∥
Lp2(Rn)

.

. r
α−γ

(
1
p1

− 1
p2

)
∥f∥Lp1 (EP (x,2kr)) .

If 1 ≤ p2 < ∞ and inequality (13) holds, then by (15) and (1)

∥MP
α

(
fχEP (x,2kr)

)
∥Lp2 (EP (x,r)) ≤ ∥

(
MP

α

(
fχEP (x,2kr)

))∗
∥Lp2 (0,|EP (x,r)|) ≤

≤ sup
0<t≤|EP (x,r)|

t
1−α

γ

(
MP

α

(
fχEP (x,2kr)

))∗
(t)∥t

α
γ
−1∥Lp2 (0,|EP (x,r)|) .

. r
α−γ

(
1− 1

p2

) ∥∥∥MP
α

(
fχEP (x,2kr)

)∥∥∥
WL γ

γ−α
(Rn)

. r
α−γ

(
1− 1

p2

)
∥f∥L1(EP (x,2kr)) .

Inequality (13) follows directly from (15).

If p1 > 1 and α < γ
(

1
p1

− 1
p2

)
, then inequality (14) cannot hold for all f ∈ Lloc

p1 .

Indeed if f ∈ Lp1(Rn) and f � 0 then by passing in (10) to the limit as r → ∞ we
arrive at a contradiction.

Assume that p1 = 1, 1 ≤ p2 < ∞ and α = γ
(
1− 1

p2

)
. Then by passing to the

limit in (10) we get
∥MP

α f∥Lp2 (Rn) . ∥f∥L1(Rn)

which, according to known results [10], is not possible.

Corollary 3.4. Let 1 ≤ p1 ≤ ∞, 0 < p2 ≤ ∞, γ
(

1
p1

− 1
p2

)
+
≤ α < γ if p1 > 1,

and γ
(
1− 1

p2

)
+
< α < γ if p1 = 1. Then the inequality

∥MP
α (fχEP (x,2kr))∥Lp2 (EP (x,r)) . r

α−γ
(

1
p1

− 1
p2

)
∥f∥Lp1 (EP (x,2kr))

holds for all f ∈ Lloc
p1 .

Moreover for 0 < p2 < ∞ and α = γ
(
1− 1

p2

)
+

the inequality

∥MP
α (fχEP (x,2kr))∥WLp2 (EP (x,r)) . r

α−γ
(
1− 1

p2

)
∥f∥L1(EP (x,2kr)) (16)
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holds for all f ∈ Lloc
1 .

Proof. If p2 ≥ p1, the statement follows by Lemma 3.3. If p2 < p1, then by
applying Hölder’s inequality and statement of Lemma 3.3 we have

∥MP
α (fχEP (x,2kr))∥Lp2 (EP (x,r)) . r

γ
p2

− γ
p1 ∥MP

α (fχEP (x,2kr))∥Lp1(EP (x,r)) ≤

. r
α−γ

(
1
p1

− 1
p2

)
∥f∥Lp1(EP (x,2kr)) .

Inequality (16) similarly follows by Hölder’s inequality for weak Lp-spaces.
Lemmas 3.2, 3.3 and Corollary 3.4 imply the following statement.

Lemma 3.5. Let 1 ≤ p1 ≤ ∞, 0 < p2 ≤ ∞, γ
(

1
p1

− 1
p2

)
+
≤ α < γ if p1 > 1,

and γ
(
1− 1

p2

)
+

< α < γ if p1 = 1. Then for any ellipsoid EP (x, r) ⊂ Rn the

inequality

∥MP
α f∥Lp2 (EP (x,r)) . r

α−γ
(

1
p1

− 1
p2

)
∥f∥Lp1 (EP (x,2kr)) + r

γ
p2 M

P
α,2krf(x) (17)

holds for all f ∈ Lloc
p1 .

Moreover for 0 < p2 < ∞ and α = γ
(
1− 1

p2

)
+

the inequality

∥MP
α f∥WLp2 (EP (x,r)) . r

α−γ
(
1− 1

p2

)
∥f∥L1(EP (x,2kr)) + r

γ
p2 M

P
α,2krf(x) (18)

holds for all f ∈ Lloc
1 .

Lemma 3.6. Let 0 < p < ∞.

1. If γ
(
1− 1

p

)
+
< α < γ, then for any ellipsoid EP (x, r) ⊂ Rn the equivalences

∥MP
α f∥Lp(EP (x,r)) ≈ ∥MP

α f∥WLp(EP (x,r)) ≈ r
γ
p M

P
α,rf(x) (19)

hold for all f ∈ Lloc
1 .

2. If α = γ
(
1− 1

p

)
+
, then for any ellipsoid EP (x, r) ⊂ Rn the equivalence

∥MP
α f∥WLp(EP (x,r)) ≈ r

γ
p M

P
α,rf(x) (20)

holds for all f ∈ Lloc
1 .

3. If 1 < p1 < ∞, γ
(

1
p1

− 1
p

)
+
≤ α < γ

p1
, then for any ellipsoid EP (x, r) ⊂ Rn

the inequalities

r
γ
p M

P
α,rf(x) . ∥MP

α f∥Lp(EP (x,r)) . r
γ
p

(
M

P
αp1,r(|f |

p1)(x)
) 1

p1 (21)

hold for all f ∈ Lloc
1 .

Proof. Denote

A1 : = r
γ
p sup
t≥2kr

1

|EP (x, t)|1−
α
γ

∫
EP (x,t)

|f(y)|dy,

A2 : = r
α−γ

(
1
p1

− 1
p

)
∥f∥Lp1 (EP (x,2kr)).
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By Lemma 3.5
∥MP

α f∥Lp(EP (x,r)) ≤ A1 +A2.

By applying Hölder’s inequality we get

A1 . r
γ
p sup
t≥2kr

1

|EP (x, t)|
1
p1

−α
γ

(∫
EP (x,t)

|f(y)|p1dy

) 1
p1

= r
γ
p

(
M

P
αp1,2kr(|f |

p1)(x)
) 1

p1 .

On the other hand, since α < γ
p1

it follows that

A2 ≈ r
γ
p

(
sup
t≥2kr

|EP (x, t)|
α
γ
− 1

p1

)
∥f∥Lp1 (EP (x,2kr)) .

. r
γ
p

 sup
t≥2kr

1

|EP (x, t)|
1
p1

−α
γ

(∫
EP (x,t)

|f(y)|p1dy

) 1
p1

 .

. r
γ
p

(
M

P
αp1,r(|f |

p1)(x)
) 1

p1 .

Estimates from below follow by Lemma 3.1.
Remark 3.7. We note that the right-hand side inequality in (21) implies the

inequality

∥MP
α f∥Lp(EP (x,r)) . r

γ
p

(∫ ∞

r

(∫
EP (x,t)

|f(y)|p1dy

)
dt

tγ−αp1+1

) 1
p1

.

This follows since

(
M

P
αp1,r(|f |

p1)(x)
) 1

p1 .
(∫ ∞

r

(∫
EP (x,t)

|f(y)|p1dy

)
dt

tγ−αp1+1

) 1
p1

.

In fact

(
M

P
αp1,r(|f |

p1)(x)
) 1

p1 = sup
t≥r

1

|EP (x, t)|
1
p1

−α
γ

(∫
EP (x,t)

|f(y)|p1dy

) 1
p1

≤

≤ sup
t≥r

1

|EP (x, t)|
1
p1

−α
γ

(∫
EP (x,r)

|f(y)|p1dy

) 1
p1

+

+sup
t≥r

1

|EP (x, t)|
1
p1

−α
γ

(∫
EP (x,t)\EP (x,r)

|f |p1dy

) 1
p1

.

. 1

|EP (x, r)|
1
p1

−α
γ

(∫
EP (x,r)

|f(y)|p1dy

) 1
p1

+ sup
t≥r

(∫
EP (x,t)\EP (x,r)

|f(y)|p1
ρ(y)γ−αp1

dy

) 1
p1

.

By using the equality

1

ργ−αp1
=

1

γ − αp1

∫ ∞

ρ

dτ

τγ−αp1+1
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with ρ = r or ρ = ρ(y) and the Fubini theorem we get

(
M

P
αp1,r(|f |

p1)(x)
) 1

p1 .
(∫ ∞

r

(∫
EP (x,r)

|f(y)|p1dy

)
dτ

τγ−αp1+1

) 1
p1

+

+sup
t≥r

(∫ t

r

(∫
EP (x,τ)\EP (x,r)

|f(y)|p1dy

)
dτ

τγ−αp1+1

) 1
p1

.

.
(∫ ∞

r

(∫
EP (x,τ)

|f(y)|p1dy

)
dτ

τγ−αp1+1

) 1
p1

.

Remark 3.8. Statement 3 of Lemma 3.6 also makes sense if α = γ
p1

in which
case the right-hand side inequality in (21) takes the form

∥MP
γ
p1

f∥Lp(EP (x,r)) . r
γ
p ∥f∥Lp1 (Rn).

This inequality easily follows directly by the definition of MP
γ
p1

f and Hölder’s in-

equality.
Remark 3.9. All statements of this section in the isotropic case P = I were

proved in [3].

4. Parabolic fractional maximal operator and supremal operator
For a measurable set E ⊂ Rn and a function v non-negative and measurable

on E, let Lp,v(E) be the weighted Lp-space of all functions f measurable on E for
which

∥f∥Lp,v(E) = ∥vf∥Lp(E) < ∞.

Let M(0,∞) be the set of all Lebesgue measurable functions on (0,∞) and
M+(0,∞) its subset consisting of all non-negative functions on (0,∞). We denote
by M+(0,∞; ↑) the cone of all functions in M+(0,∞) which are non-decreasing on
(0,∞) and we set

A =

{
φ ∈ M+(0,∞; ↑) : lim

t→0+
φ(t) = 0

}
.

Let u be continuous and non-negative on (0,∞). We define the supremal oper-
ators S u and Su on g ∈ M(0,∞) by

(S ug)(t) : = ∥u g∥L∞(0,t), t ∈ (0,∞),

(Sug)(t) : = ∥u g∥L∞(t,∞), t ∈ (0,∞).

In the case u(r) = rβ, β ∈ R

(S βg)(t) : = ∥rβ g(r)∥L∞(0,t), t ∈ (0,∞),

(Sβg)(t) : = ∥rβ g(r)∥L∞(t,∞), t ∈ (0,∞).

Also let S ≡ S 0 and S ≡ S0.
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If in Lemma 3.6 x = 0, then in the above notation it reduces to the following
statement.

Lemma 4.1. Let 0 < p < ∞.

1. If γ
(
1− 1

p

)
+
< α < γ, then for any r > 0 the inequalities

∥MP
α f∥Lp(EP (0,r)) ≈ ∥MP

α f∥WLp(EP (0,r)) ≈ r
γ
p Sα−γ

(
∥f∥L1(EP (0,·))

)
(r) (22)

holds for all f ∈ Lloc
1 .

2. If α = γ
(
1− 1

p

)
+
, then for any r > 0 the inequality

∥MP
α f∥WLp(EP (0,r)) ≈ r

γ
p Sα−γ

(
∥f∥L1(EP (0,·))

)
(r) (23)

holds for all f ∈ Lloc
1 .

3. If 1 < p1 < ∞, γ
(

1
p1

− 1
p

)
+
≤ α < γ

p1
, then for any r > 0 the inequality

r
γ
p Sα−γ

(
∥f∥L1(EP (0,·))

)
(r) . ∥MP

α f∥Lp(EP (0,r)) .

. r
γ
p Sα− γ

p1

(
∥f∥Lp1 (EP (0,·))

)
(r)

(24)

holds for all f ∈ Lloc
1 .

4. If 1 ≤ p1 < ∞, γ
(

1
p1

− 1
p

)
+
≤ α < γ

p1
, then for any r > 0 the inequality

r
γ
p Sα−γ

(
∥f∥L1(EP (0,·))

)
(r) . ∥MP

α f∥WLp(EP (0,r)) .

. r
γ
p Sα− γ

p1

(
∥f∥Lp1 (EP (0,·))

)
(r)

(25)

holds for all f ∈ Lloc
1 .

Lemma 4.2. Let 1 ≤ p1 < ∞, 0 < p2 < ∞, γ
(

1
p1

− 1
p2

)
+
≤ α < γ

p1
if p1 > 1,

and γ
(
1− 1

p2

)
+

< α < γ if p1 = 1. Let also 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1, and

w2 ∈ Ωθ2.

Then the operator MP
α is bounded from LMp1θ1,w1,P to LMp2θ2,w2,P if, and in

the case p1 = 1 only if, the operator Sα− γ
p1

is bounded from Lθ1,w1(r)(0,∞) to

L
θ2,w2(r)r

γ
p2
(0,∞) on the cone A.

Proof.

Sufficiency. Since Sα− γ
p1

is bounded from Lθ1,w1(r)(0,∞) to L
θ2,w2(r)r

γ
p2
(0,∞)

on the cone A, by Lemma 4.1 we have

∥MP
α f∥LMp2θ2,w2,P

. ∥Sα− γ
p1

(
∥f∥Lp1 (EP (0,·))

)
∥L

θ2,w2(r)r

γ
p2

.

. ∥w1(r)∥f∥Lp1 (EP (0,r))∥Lθ1
(0,∞) = ∥f∥LMp1θ1,w1,P

.
(26)

Necessity. Let p1 = 1 and the inequality

∥MP
α f∥LMp2θ2,w2,P

. ∥f∥LM1θ1,w1,P
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be satisfied. Then by (23)

∥Sα−γ

(
∥f∥L1(EP (0,·))

)
∥L

θ2,w2(r)r

γ
p2

. ∥∥f∥L1(EP (0,·))∥Lθ1,w1
. (27)

Let g ∈ A. Then there exists a sequence of non-negative functions fn ∈ Lloc
1 such

that
gn(r) = ∥fn∥L1(EP (0,r)) ↗ g(r), r ∈ (0,∞).

By (27) and the Fatou lemma

∥Sα−γ g∥L
θ2,w2(r)r

γ
p2

. ∥g∥Lθ1,w1
.

5. Necessary and sufficient conditions
By Lemma 4.2 and Theorem 5.4 in [3] we get

Theorem 5.1. Let 1 ≤ p1 < ∞, 0 < p2 < ∞, γ
(

1
p1

− 1
p2

)
+

≤ α < γ
p1

if

p1 > 1, and γ
(
1− 1

p2

)
+
< α < γ if p1 = 1. Let also 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 , and

w2 ∈ Ωθ2.
Then the operator MP

α is bounded from LMp1θ1,w1,P to LMp2θ2,w2,P if, and in
the case p1 = 1 only if,

(i) if θ1 ≤ θ2 and θ1 < ∞, then

sup
t>0

(
t
α− γ

p1 ∥w2(r)r
γ
p2 ∥Lθ2

(0,t)+∥w2(r)r
α−γ

(
1
p1
− 1

p2

)
∥Lθ2

(t,∞)

)
∥w1∥−1

Lθ1
(t,∞)<∞; (28)

(ii) if θ2 < θ1 < ∞, then∥∥∥∥w2(t)t
α−γ

(
1
p1

− 1
p2

)
∥w2(r)r

α−γ
(

1
p1

− 1
p2

)
∥

θ2
θ1−θ2

Lθ2
(t,∞)∥w1∥

− θ1
θ1−θ2

Lθ1
(t,∞)

∥∥∥∥
Lθ2

(0,∞)

< ∞ (29)

and∥∥∥∥w2(t)t
γ
p2 ∥w2(r)r

γ
p2 ∥

θ2
θ1−θ2

Lθ2
(0,t) S

(
r
α− γ

p1 ∥w1∥−1
Lθ1

(r,∞)

)
(t)

θ1
θ1−θ2

∥∥∥∥
Lθ2

(0,∞)

< ∞; (30)

(iii) if θ1 = ∞, then∥∥∥w2(t)t
γ
p2 S

(
r
α− γ

p1 ∥w1∥−1
L∞(r,∞)

)
(t)
∥∥∥
Lθ2

(0,∞)
< ∞. (31)

Corollary 5.2. Let 1 ≤ p1 < ∞, 0 < p2 < ∞, γ
(

1
p1

− 1
p2

)
+
≤ α < γ

p1
if p1 > 1,

and γ
(
1− 1

p2

)
+

< α < γ if p1 = 1. Let also w1, w2 be non-negative measurable

functions satisfying w1 ∈ Ωp1∞, w2 ∈ Ωp2∞ and

ess sup
t>0

(
w2(t)t

γ
p2 ess sup

t<r<∞

r
α− γ

p1

∥w1∥L∞(r,∞)

)
< ∞, (32)
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Then MP
α is bounded from Mp1,w1,P to Mp2,w2,P .

Proof. It is easy to see that boundedness ofMP
α from LMp1∞,w1,P to LMp2∞,w2,P

implies boundedness ofMP
α fromGMp1∞,w1,P ≡ Mp1,w1,P toGMp2∞,w2,P ≡ Mp2,w2,P .

Remark 5.3. Note that condition (32) is weaker than condition (2) in Theorem
1.1. Indeed, if condition (2) holds, then for any r satisfying t < r < ∞ we get

1

w2(t)t
γ
p2

&
∫ ∞

t

ds

w1(s)s
γ
p1

−α+1
≥
∫ ∞

r

ds

w1(s)s
γ
p1

−α+1
≥

≥
∫ ∞

r

ds

∥w1∥L∞(s,∞)s
γ
p1

−α+1
≥ 1

∥w1∥L∞(r,∞)

∫ ∞

r

ds

s
γ
p1

−α+1
≈

≈
1

∥w1∥L∞(r,∞)r
γ
p1

−α
.

Thus

ess sup
t<r<∞

r
α− γ

p1

∥w1∥L∞(r,∞)
. 1

w2(t)t
γ
p2

, t ∈ (0,∞),

so condition (32) holds.

On the other hand the functions w1(t) = t
α− γ

p1 , w2(t) = t
− γ

p2 satisfy condition
(32), but do not satisfy condition (2).

Theorem 5.1 contains necessary and sufficient conditions if p1 = 1. If p1 > 1
it contains sufficient conditions. However for θ1 ≤ θ2 and the limiting case α =

γ
(

1
p1

− 1
p2

)
Theorem 5.1 together with the appropriate necessity condition implies

necessary and sufficient conditions.

Theorem 5.4. Let 1 < p1 ≤ p2 < ∞, 0 < θ1 ≤ θ2 ≤ ∞, α = γ
(

1
p1

− 1
p2

)
,

w1 ∈ Ωθ1 and w2 ∈ Ωθ2, then the condition∥∥∥∥∥w2(r)

(
r

t+ r

) γ
p2

∥∥∥∥∥
Lθ2

(0,∞)

≤ c∥w1∥Lθ1
(t,∞) (33)

for all t > 0, where c > 0 is independent of t, is necessary and sufficient for the
boundedness of MP

α from LMp1θ1,w1,P to LMp2θ2,w2,P .
Proof. Sufficiently follows by Theorem 5.1 because condition (33) is equivalent

to condition (28) if θ1 < ∞ and to condition (31) if θ1 = θ2 = ∞. To prove necessity
one should act like in paper [2].

Recall that, for 0 < p ≤ ∞

∥f∥LMpp,w = ∥f∥Lp,W
,

where for all x ∈ Rn W (x) = ∥w∥Lp(ρ(x),∞). For this reason Theorem 5.4 im-

plies necessary and sufficient conditions for boundedness of MP
α from one weighted

Lebesgue spaces Lp1,W1 to another one Lp2,W2 for the case of radially non-increasing
weights W1 and W2.

Corollary 5.5. Let 1 < p1 ≤ p2 < ∞, α = γ
(

1
p1

− 1
p2

)
, and W1, W2 be non-

increasing radially symmetric functions with respect to the distance ρ. Then the
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condition ∥∥∥∥∥w2(r)

(
r

t+ r

)γ/p2
∥∥∥∥∥
Lθ2

(0,∞)

≤ c∥w1∥Lθ1
(t,∞) (34)

for all t > 0, where functions w1 and w2 are defined by the equations

W1(x) = ∥w1∥Lp1 (ρ(x),∞), W2(x) = ∥w2∥Lp2 (ρ(x),∞), x ∈ Rn, (35)

c > 0 is independent of t, is necessary and sufficient for the boundedness of MP
α

from Lp1,W1 to Lp2,W2.
In the isotropic case Corollary 5.5 was proved in [3].
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