Vagif S. GULIYEV¹, Shamsiya A. MURADOVA

PARABOLIC FRACTIONAL MAXIMAL OPERATOR IN PARABOLIC LOCAL MORREY-TYPE SPACES

Abstract

In this paper, we study the boundedness of the parabolic fractional maximal operator in parabolic local Morrey-type spaces. We reduce the problem of boundedness of the parabolic fractional maximal operator M_{α} , $0 \leq \alpha < \gamma$ in general parabolic local Morrey-type spaces to the problem of boundedness of the supremal operator in weighted L_p -spaces on the cone of non-negative non-decreasing functions.

1. Introduction

For $x \in \mathbb{R}^n$ and r > 0, let B(x,r) denote the open ball centered at x of radius r and ${}^{\complement}B(x,r)$ denote the set $\mathbb{R}^n\backslash B(x,r)$.

Let P be a real $n \times n$ matrix, all of whose eigenvalues have positive real part. Let $A_t = t^P$ (t > 0), and set $\gamma = trP$. Then, there exists a quasi-distance ρ associated with P such that (see, for example, [4, 5])

- (a) $\rho(A_t x) = t \rho(x), \quad t > 0, \text{ for every } x \in \mathbb{R}^n;$
- (b) $\rho(0) = 0$, $\rho(x y) = \rho(y x) > 0$ and $\rho(x-y) \le k(\rho(x-z) + \rho(y-z));$
- (c) $dx = \rho^{\gamma-1} d\sigma(w) d\rho$, where $\rho = \rho(x), w = A_{\rho^{-1}} x$ and $d\sigma(w)$ is a C^{∞} measure on the ellipsoid $\{w : \rho(w) = 1\}$.

Then, $\{\mathbb{R}^n, \rho, dx\}$ becomes a space of homogeneous type in the sense of Coifman-Weiss. Moreover, we always assume the following properties on ρ :

(d) For every x,

$$c_1|x|^{\alpha_1} \le \rho(x) \le c_2|x|^{\alpha_2}$$
 if $\rho(x) \ge 1$
 $c_3|x|^{\alpha_3} \le \rho(x) \le c_4|x|^{\alpha_4}$ if $\rho(x) \le 1$

and

$$\rho(\theta x) \le \rho(x)$$
 for $0 < \theta < 1$.

Here α_i and c_i (i = 1, ..., 4) are some positive constants. Similar properties hold for ρ^* which is associated with the matrix P^* .

There are some important examples for the above spaces:

- 1. Let $(Px,x) \geq (x,x)$ $(x \in \mathbb{R}^n)$. In this case, $\rho(x)$ is defined by the unique solution of $|A_{t-1}x|=1$, and k=1. This space is just the one studied by Calderon and Torchinsky in [4].
- 2. Let P be a diagonal matrix with positive diagonal entries, and let $\rho(x)$ be the unique solution of $|A_{t-1}x|=1$.

¹ The research of V. Guliyev was partially supported by the grant of Science Development Foundation under the President of the Republic of Azerbaijan project EIF-2010-1(1)-40/06-1.

[V.S.Guliyev,Sh.A.Muradova]

- 2_a) If all diagonal entries are greater than or equal to 1, this space was studied by E.B. Fabes and N.M. Riviere [5]. More precisely they studied the weak (1,1) and L^p estimates of the singular integral operators on this space in 1966.
- 2_b) If there are diagonal entries smaller than 1, then ρ satisfies the above (a)-(d) with $k \geq 1$.

Let $f \in L_1^{loc}$. The parabolic fractional maximal function $M_{\alpha}^P f$ is defined by

$$M_{\alpha}^{P} f(x) = \sup_{t>0} |\mathcal{E}_{P}(x,t)|^{-1+\frac{\alpha}{\gamma}} \int_{\mathcal{E}_{P}(x,t)} |f(y)| dy, \quad 0 \le \alpha < \gamma.$$

If $\alpha=0$, then $M^P\equiv M_0^P$ is the parabolic maximal operator. If P=I, then $M_\alpha\equiv M_\alpha^1$ is the fractional maximal operator and $M\equiv M_0^I$ is the Hardy-Littlewood maximal operator.

In the theory of partial differential equations, together with weighted $L_{p,w}$ spaces, Morrey spaces $\mathcal{M}_{p,\lambda}$ play an important role. They were introduced by C. Morrey in 1938 [9]. These spaces appeared to be quite useful in the study of a number of problems in the theory of partial differential equations, in particular in the study of local behavior of solutions of parabolic or quasi-elliptic differential equations. The parabolic Morrey space is defined as follows: for $1 \leq p \leq \infty$, $0 \leq \lambda \leq \gamma$, a function $f \in \mathcal{M}_{p,\lambda,P}$ if $f \in L_p^{\text{loc}}$ and

$$||f||_{\mathcal{M}_{p,\lambda,P}} \equiv ||f||_{\mathcal{M}_{p,\lambda,P}(\mathbb{R}^n)} = \sup_{x \in \mathbb{R}^n, \ r > 0} r^{-\lambda/p} ||f||_{L_p(\mathcal{E}_P(x,r))} < \infty.$$

Note that $\mathcal{M}_{p,\lambda} \equiv \mathcal{M}_{p,\lambda,\mathbf{1}}$. (If $\lambda = 0$, then $\mathcal{M}_{p,0,P} = L_p$; if $\lambda = \gamma$, then $\mathcal{M}_{p,\gamma,P} = L_{\infty}$; if $\lambda < 0$ or $\lambda > \gamma$, then $\mathcal{M}_{p,\lambda,P} = \Theta$, where Θ is the set of all functions equivalent to 0 on \mathbb{R}^n .)

Also, by $W\mathcal{M}_{p,\lambda,P}$ we denote the weak Morrey space of all functions $f\in WL_p^{\mathrm{loc}}$ for which

$$||f||_{W\mathcal{M}_{p,\lambda,P}} \equiv ||f||_{W\mathcal{M}_{p,\lambda,P}(\mathbb{R}^n)} = \sup_{x \in \mathbb{R}^n, \ r > 0} r^{-\lambda/p} ||f||_{WL_p(\mathcal{E}_P(x,r))} < \infty,$$

where $WL_p(\mathcal{E}_P(x,r))$ denotes the weak L_p -space of measurable functions f for which

$$||f||_{WL_p(\mathcal{E}_P(x,r))} \equiv ||f\chi_{\mathcal{E}_P(x,r)}||_{WL_p(\mathbb{R}^n)} = \sup_{t>0} t \left| \{y \in \mathcal{E}_P(x,r) : |f(y)| > t \} \right|^{1/p}. \quad (1)$$

If in the place of the power function $r^{-\lambda/p}$ in the definition of $\mathcal{M}_{p,\lambda,P}$ we consider any positive measurable weight function w defined on $(0,\infty)$, then it becomes the Morrey-type space $\mathcal{M}_{p,w,P}$.

The following statement, containing the results in [6] was proved in [7] (see also [8]).

Theorem 1.1. Let $1 \le p_1 \le p_2 < \infty$ and $\alpha = \gamma \left(\frac{1}{p_1} - \frac{1}{p_2}\right)$. Moreover, let w_1 and w_2 be positive measurable functions satisfying the following condition:

$$\left\| w_1^{-1}(r) \, r^{\alpha - \frac{\gamma}{p_1} - 1} \right\|_{L_1(t,\infty)} \le c w_2^{-1}(t) \, t^{\alpha - \frac{\gamma}{p_1}}. \tag{2}$$

Then for $p_1 > 1$ M_{α}^P is bounded from $\mathcal{M}_{p_1,w_1,P}$ to $\mathcal{M}_{p_2,w_2,P}$, and for $p_1 = 1$ M_{α}^P is bounded from $\mathcal{M}_{1,w_1,P}$ to $W\mathcal{M}_{p_2,w,P}$.

Transactions of NAS of Azerbaijan _____ [Parabolic fractional maximal operator in...]

Earlier, in [6] a weaker version of Theorem 1.1 was proved: it was assumed that $w_1 = w_2 = w$ and that w is a positive non-increasing function satisfying the pointwise doubling condition, namely that for some c > 0

$$c^{-1}w(r) \le w(t) \le cw(r)$$

for all t, r > 0 such that $0 < r \le t \le 2r$.

2. Definitions and basic properties of parabolic local Morrey-type spaces

Definition 2.1. Let $0 < p, \theta \le \infty$ and let w be a non-negative measurable function on $(0,\infty)$. We denote by $LM_{p\theta,w,P}$, $GM_{p\theta,w,P}$, the parabolic local Morreytype spaces, the global Morrey-type spaces respectively, the spaces of all functions $f \in L_p^{\text{loc}}$ with finite quasinorms

$$||f||_{LM_{p\theta,w,P}} \equiv ||f||_{LM_{p\theta,w,P}(\mathbb{R}^n)} = ||w(r)||f||_{L_p(\mathcal{E}_P(0,r))}||_{L_{\theta}(0,\infty)},$$

$$||f||_{GM_{p\theta,w,P}} = \sup_{x \in \mathbb{R}^n} ||f(x+\cdot)||_{LM_{p\theta,w,P}}$$

respectively.

We denote by the (isotropic) local Morrey-type spaces, the global Morrey-type spaces respectively $LM_{p\theta,w} \equiv LM_{p\theta,w,I}$, $GM_{p\theta,w} \equiv GM_{p\theta,w,I}$, where I be a $n \times n$ identity matrix and

$$||f||_{LM_{p\infty,1,P}} = ||f||_{GM_{p\infty,1,P}} = ||f||_{L_p}.$$

Furthermore, $GM_{p\infty,r^{-\lambda/p},P} \equiv \mathcal{M}_{p,\lambda,P}, \ 0 \leq \lambda \leq \gamma.$ **Lemma 2.2.** Let $0 < p, \theta \leq \infty$ and let w be a non-negative measurable function on $(0,\infty)$.

1. If for all
$$t > 0$$

$$||w(r)||_{L_{\theta}(t,\infty)} = \infty, \tag{3}$$

then $LM_{p\theta,w,P} = GM_{p\theta,w,P} = \Theta$, where Θ is the set of all functions equivalent to 0on \mathbb{R}^n .

2. If for all t > 0

$$||w(r)r^{\gamma/p}||_{L_{\theta}(0,t)} = \infty, \tag{4}$$

then for all functions $f \in LM_{p\theta,w,P}$, continuous at 0, f(0) = 0, and for 0 $GM_{p\theta,w,P} = \Theta$.

Proof. 1. Let (3) be satisfied and f be not equivalent to zero. Then for some $t_0 > 0$

$$A = ||f||_{L_p(\mathcal{E}_P(0,t_0))} > 0.$$

Hence

$$||f||_{GM_{p\theta,w,P}} \ge ||f||_{LM_{p\theta,w,P}} \ge ||w(r)||f||_{L_p(\mathcal{E}_P(0,r))}||_{L_{\theta}(t_0,\infty)} \ge A||w(r)||_{L_{\theta}(t_0,\infty)}.$$

Therefore $||f||_{GM_{p\theta,w,P}} = ||f||_{LM_{p\theta,w,P}} = \infty$.

2. Let (4) be satisfied. If $f \in LM_{p\theta,w,P}$ and there exists

$$\lim_{r \to 0} |\mathcal{E}_P(0, r)|^{-1/p} ||f||_{L_p(\mathcal{E}_P(0, r))} = B,$$
(5)

[V.S.Guliyev,Sh.A.Muradova]

then B=0.

Indeed, if B > 0, then there exists $t_0 > 0$ such that

$$|\mathcal{E}_P(0,r)|^{-1/p} ||f||_{L_p(\mathcal{E}_P(0,r))} \ge \frac{B}{2}$$
 (6)

for all $0 < r \le t_0$. Consequently,

$$||f||_{LM_{p\theta,w,P}} \ge ||w(r)||f||_{L_p(\mathcal{E}_P(0,r))}||_{L_{\theta}(0,t_0)} \ge \frac{B}{2} v_n^{1/p} ||w(r)r^{\gamma/p}||_{L_{\theta}(0,t_0)},$$

where v_n is the volume of the unit ellipsoid $\{x : \rho(x) = 1\}$. Hence $||f||_{LM_{p\theta,w,P}} = \infty$, $f \notin LM_{p\theta,w,P}$ and we have arrived at a contradiction.

If $f \in LM_{p\theta,w,P}$ and it is continuous at 0, then (5) holds with B = |f(0)|. Hence f(0) = 0.

Next let $0 and let <math>f \in GM_{p\theta,w,P}$, then by the generalized Lebesgue theorem on differentiation of integrals (see, for example, [10]) for almost all $x \in \mathbb{R}^n$

$$\lim_{r \to 0} |\mathcal{E}_P(x,r)|^{-1/p} ||f||_{L_p(\mathcal{E}_P(x,r))} = |f(x)|.$$

By the above argument for all those x we have f(x) = 0. Hence f is equivalent to zero.

Definition 2.3. Let $0 < p, \theta \le \infty$. We denote by Ω_{θ} the set of all functions w which are non-negative, measurable on $(0, \infty)$, not equivalent to 0 and such that for some t > 0

$$||w(r)||_{L_{\theta}(t,\infty)} < \infty.$$

Moreover, we denote by $\Omega_{p,\theta,P}$ the set of all functions w which are non-negative, measurable on $(0,\infty)$, not equivalent to 0 and such that for some $t_1,t_2>0$

$$||w(r)||_{L_{\theta}(t_1,\infty)} < \infty, \qquad ||w(r)r^{\gamma/p}||_{L_{\theta}(0,t_2)} < \infty.$$

Keeping in mind Lemma 2.2, when considering the spaces $LM_{p\theta,w,P}$ we always assume that $w \in \Omega_{\theta}$, and when considering the spaces $GM_{p\theta,w,P}$ we always assume that $w \in \Omega_{p,\theta,P}$.

Example 2.4. Defined the test function f_t , t > 0, by the following way

$$f_t(x) = \chi_{\mathcal{E}_P(0,2t)\setminus\mathcal{E}_P(0,t)}(x), \quad x \in \mathbb{R}^n, \quad t > 0.$$

Note that, for 0

$$||f_t||_{L_p(\mathcal{E}_P(0,r))} = 0, \quad 0 < r \le t, \quad ||f_t||_{L_p(\mathcal{E}_P(0,r))} \le Ct^{\frac{\gamma}{p}}, \quad t < r < \infty,$$
 (7)

where C > 0 depends only on n and p. Then

$$||f_t||_{LM_{p\theta,w,P}} = ||w(r)||f_t||_{L_p(\mathcal{E}_P(0,r))}||_{L_{\theta}(t,\infty)} \le Ct^{\frac{\gamma}{p}}||w(r)||_{L_{\theta}(t,\infty)}.$$

Then $f_t \in LM_{p\theta,w,P}$ for some t > 0 and $w \in \Omega_{\theta}$.

Lemma 2.5. Let $1 < p_1 \le \infty$, $0 < p_2 \le \infty$, $0 \le \alpha < \gamma$, $0 < \theta_1, \theta_2 \le \infty$, $w_1 \in \Omega_{\theta_1}$, and $w_2 \in \Omega_{\theta_2}$. Then the condition

$$\alpha \le \frac{\gamma}{p_1}$$

Transactions of NAS of Azerbaijan _____ [Parabolic fractional maximal operator in...]

is necessary for the boundedness of M_{α}^{P} from $LM_{p_{1}\theta_{1},w_{1},P}$ to $LM_{p_{2}\theta_{2},w_{2},P}$.

Proof. Assume that $\alpha > \gamma/p_1$ and M_{α}^P is bounded from $LM_{p_1\theta_1,w_1,P}$ to $LM_{p_2\theta_2,w_2,P}$. Since $w_1 \in \Omega_{\theta_1}$ for some t > 0 $\|w_1\|_{L_{\theta}(t,\infty)} < \infty$. Let f(x) = $\rho(x)^{\beta}\chi_{\mathfrak{c}_{\mathcal{E}_{P}(0,t)}}$, where $-\alpha < \beta < -\gamma/p$. Note that $f \in LM_{p_{1}\theta_{1},w_{1},P}$. On the other hand for all $x \in \mathbb{R}^n$

$$M_{\alpha}^{P} f(x) \ge \lim_{t \to \infty} |\mathcal{E}_{P}(x,t)|^{-1+\alpha/\gamma} \int_{\mathcal{E}_{P}(x,t) \setminus \mathcal{E}_{P}(x,\rho(x)+2)} \rho(y)^{\beta} dy \ge c \lim_{t \to \infty} t^{\alpha+\beta} = \infty,$$

where c depends only on n, α and β , hence $f \notin LM_{p_2\theta_2, w_2, P}$.

For the isotropic case P = I, Lemma 2.2 was proved in [1] and Lemma 2.5 was proved in [2].

Throughout this paper $a \lesssim b$, $(b \gtrsim a)$, means that $a \leq \lambda b$, where $\lambda > 0$ depends on unessential parameters. If $b \lesssim a \lesssim b$, then we write $a \approx b$.

3. L_p -estimates of parabolic fractional maximal function over ellipsoids We consider the following "partial" parabolic fractional maximal functions

$$\underline{M}_{\alpha,r}^{P} f(x) = \sup_{0 < t \le r} |\mathcal{E}_{P}(x,t)|^{-1 + \frac{\alpha}{\gamma}} \int_{\mathcal{E}_{P}(x,t)} |f(y)| dy,$$
$$\overline{M}_{\alpha,r}^{P} f(x) = \sup_{t > r} |\mathcal{E}_{P}(x,t)|^{-1 + \frac{\alpha}{\gamma}} \int_{\mathcal{E}_{P}(x,t)} |f(y)| dy.$$

Lemma 3.1. Let $0 , <math>0 \le \alpha < \gamma$ and $f \in L_1^{loc}$. Then for any ellipsoid $\mathcal{E}_P(x,r)$ in \mathbb{R}^n

$$||M_{\alpha}^{P}f||_{WL_{p}(\mathcal{E}_{P}(x,r))} \gtrsim r^{\frac{\gamma}{p}} \overline{M}_{\alpha,r}^{P} f(x).$$
(8)

Proof. If $y \in \mathcal{E}_P(x,r)$ and t > 2kr, then $\mathcal{E}_P(x,\frac{t}{2k}) \subset \mathcal{E}_P(y,t)$ and

$$M_{\alpha}^P f(y) \geq 2^{\alpha - \gamma} \sup_{t > 2r} \frac{1}{|\mathcal{E}_P(x, \frac{t}{2k})|^{1 - \frac{\alpha}{\gamma}}} \int_{\mathcal{E}_P(x, \frac{t}{2k})} |f(z)| dz = 2^{\alpha - \gamma} \overline{M}_{\alpha, r}^P f(x).$$

Hence, if f is not equivalent to 0 on \mathbb{R}^n , then

$$||M_{\alpha}^{P}f||_{WL_{p}(\mathcal{E}_{P}(x,r))} \ge \sup_{0 < t < 2^{\alpha - \gamma} \overline{M}_{\alpha,r}^{P}f(x)} t \left| \left\{ y \in \mathcal{E}_{P}(x,r) : M_{\alpha}^{P}f(y) > t \right\} \right|^{\frac{1}{p}} \ge$$

$$\geq \sup_{0 < t < 2^{\alpha - \gamma} \overline{M}_{\alpha,r}^P f(x)} t(v_n r^{\gamma})^{\frac{1}{p}} = 2^{\alpha - \gamma} v_n^{\frac{1}{p}} r^{\frac{\gamma}{p}} \overline{M}_{\alpha,r}^P f(x).$$

(If f is equivalent to 0 inequality (8) is trivial.)

Lemma 3.2. Let $0 , <math>0 \le \alpha < \gamma$ and $f \in L_1^{loc}$. Then for any ellipsoid $\mathcal{E}_P(x,r)$ in \mathbb{R}^n

$$||M_{\alpha}^{P}f||_{L_{p}(\mathcal{E}_{P}(x,r))} \approx ||M_{\alpha}^{P}(f\chi_{\mathcal{E}_{P}(x,2kr)})||_{L_{p}(\mathcal{E}_{P}(x,r))} + r^{\frac{\gamma}{p}} \overline{M}_{\alpha,2kr}^{P}f(x).$$
(9)

Proof. It is obvious that for any ellipsoid $\mathcal{E}_P(x,r)$

$$\|M_{\alpha}^{P}f\|_{L_{p}(\mathcal{E}_{P}(x,r))} \lesssim \|M_{\alpha}^{P}(f\chi_{\mathcal{E}_{P}(x,2kr)})\|_{L_{p}(\mathcal{E}_{P}(x,r))} + \|M_{\alpha}^{P}(f\chi_{\mathfrak{C}_{\mathcal{E}_{P}(x,2kr)}})\|_{L_{p}(\mathcal{E}_{P}(x,r))}.$$

 $64 \frac{}{[V.S.Guliyev,Sh.A.Muradova]}$

Let y be an arbitrary point in $\mathcal{E}_P(x,r)$. If $\mathcal{E}_P(y,t) \cap {}^{\complement}\mathcal{E}_P(x,2kr) \neq \emptyset$, then t > r. Indeed, if $z \in \mathcal{E}_P(y,t) \cap {}^{\complement}\mathcal{E}_P(x,2kr)$, then $t > \rho(z-y) \ge \frac{1}{k}\rho(z-x) - \rho(x-y) >$

On the other hand $\mathcal{E}_P(y,t) \cap {}^{\complement}\mathcal{E}_P(x,2kr) \subset \mathcal{E}_P(x,2kt)$. Indeed, if $z \in \mathcal{E}_P(y,t) \cap$ ${}^{\complement}\mathcal{E}_{P}(x,2kr)$, then we get $\rho(z-x) \leq k\rho(z-y) + k\rho(y-x) < kt + kr < 2kt$.

$$\begin{split} M_{\alpha}^{P}(f\chi_{\mathfrak{C}_{\mathcal{E}_{P}(x,2kr)}})(y) &= \sup_{t>0} \frac{1}{\left|\mathcal{E}_{P}(y,t)\right|^{1-\frac{\alpha}{\gamma}}} \int_{\mathcal{E}_{P}(y,t)\cap \,^{\complement}\!\mathcal{E}_{P}(x,2kr)} |f(z)| dz \leq \\ &\lesssim \sup_{t\geq r} \frac{1}{\left|\mathcal{E}_{P}(x,2kt)\right|^{1-\frac{\alpha}{\gamma}}} \int_{\mathcal{E}_{P}(x,2kt)} |f(y)| dy = \overline{M}_{\alpha,2kr}^{P} f(x) \end{split}$$

and the right-hand side inequality in (9) follows.

The left-hand side inequality in (9) follows by Lemma 3.1 and obvious inequality

$$\|M_{\alpha}^P f\|_{L_p(\mathcal{E}_P(x,r))} \ge \|M_{\alpha}^P (f\chi_{\mathcal{E}_P(x,2kr)})\|_{L_p(\mathcal{E}_P(x,r))}.$$

Lemma 3.3. Let $1 \le p_1 \le p_2 \le \infty$ and $0 \le \alpha < \gamma$. The inequality

$$||M_{\alpha}^{P}(f\chi_{\mathcal{E}_{P}(x,2kr)})||_{L_{p_{2}}(\mathcal{E}_{P}(x,r))} \lesssim r^{\alpha-\gamma\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)} ||f||_{L_{p_{1}}(\mathcal{E}_{P}(x,2kr))}$$
(10)

holds for all $f \in L_{p_1}^{loc}$ if and only if in the case $p_1 > 1$

$$\alpha \ge \gamma \left(\frac{1}{p_1} - \frac{1}{p_2}\right),\tag{11}$$

and in the case $p_1 = 1$

$$p_2 < \infty \quad and \quad \alpha > \gamma \left(1 - \frac{1}{p_2} \right).$$
 (12)

Moreover for $1 \leq p_2 < \infty$ and $\alpha = \gamma \left(1 - \frac{1}{p_2}\right)$ the inequality

$$||M_{\alpha}^{P}(f\chi_{\mathcal{E}_{P}(x,2kr)})||_{WL_{p_{2}}(\mathcal{E}_{P}(x,r))} \lesssim ||f||_{L_{1}(\mathcal{E}_{P}(x,2kr))}$$

$$\tag{13}$$

holds for all $f \in L_1^{loc}$.

Proof. Recall the well-known inequalities for the fractional maximal operator [10]. If $1 < p_1 \le p_2 \le \infty$, then

$$\|M_{\gamma\left(\frac{1}{p_1} - \frac{1}{p_2}\right)}^P f\|_{L_{p_2}(\mathbb{R}^n)} \lesssim \|f\|_{L_{p_1}(\mathbb{R}^n)}. \tag{14}$$

Also if $1 \leq p_2 < \infty$, then

$$\|M_{\gamma(1-\frac{1}{p_2})}^P f\|_{WL_{p_2}(\mathbb{R}^n)} \lesssim \|f\|_{L_1(\mathbb{R}^n)}.$$
 (15)

If $1 < p_1 \le p_2 \le \infty$, inequality (11) holds and $z \in \mathcal{E}_P(x,r)$, then

$$M_{\alpha}^{P}(f\chi_{\mathcal{E}_{P}(x,2kr)})(z) = \sup_{0 < t \leq 3kr} |\mathcal{E}_{P}(z,t)|^{\frac{\alpha}{\gamma}-1} \int_{\mathcal{E}_{P}(z,t)} |f(y)\chi_{\mathcal{E}_{P}(x,2kr)}(y)| dy,$$

 $\frac{}{[Parabolic\ fractional\ maximal\ operator\ in...]}$

because for t > 3kr $\mathcal{E}_P(z,t) \supset \mathcal{E}_P(x,2kr)$ hence

$$\left|\mathcal{E}_{P}(z,t)\right|^{\frac{\alpha}{\gamma}-1}\int_{\mathcal{E}_{P}(z,t)}\left|f(y)\chi_{\mathcal{E}_{P}(x,2kr)}(y)\right|dy \le$$

$$\leq |\mathcal{E}_P(z,3kr)|^{\frac{\alpha}{\gamma}-1} \int_{\mathcal{E}_P(z,3kr)} |f(y)\chi_{\mathcal{E}_P(x,2kr)}(y)| dy.$$

Therefore

$$M_{\alpha}^{P}(f\chi_{\mathcal{E}_{P}(x,2kr)})(z) \lesssim r^{\alpha-\gamma\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)} M_{\gamma\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)}\left(f\chi_{\mathcal{E}_{P}(x,2kr)}\right)(z)$$

and by (14)

$$||M_{\alpha}^{P}(f\chi_{\mathcal{E}_{P}(x,2kr)})||_{L_{p_{2}}(\mathcal{E}_{P}(x,r))} \lesssim r^{\alpha-\gamma\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)} ||M_{\gamma\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)} \left(f\chi_{\mathcal{E}_{P}(x,2kr)}\right)||_{L_{p_{2}}(\mathbb{R}^{n})} \lesssim r^{\alpha-\gamma\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)} ||f||_{L_{p_{1}}(\mathcal{E}_{P}(x,2kr))}.$$

If $1 \le p_2 < \infty$ and inequality (13) holds, then by (15) and (1)

$$\|M_{\alpha}^{P}\left(f\chi_{\mathcal{E}_{P}(x,2kr)}\right)\|_{L_{p_{2}}(\mathcal{E}_{P}(x,r))} \leq \|\left(M_{\alpha}^{P}\left(f\chi_{\mathcal{E}_{P}(x,2kr)}\right)\right)^{*}\|_{L_{p_{2}}(0,|\mathcal{E}_{P}(x,r)|)} \leq$$

$$\leq \sup_{0 < t \leq |\mathcal{E}_{P}(x,r)|} t^{1-\frac{\alpha}{\gamma}}\left(M_{\alpha}^{P}\left(f\chi_{\mathcal{E}_{P}(x,2kr)}\right)\right)^{*}(t)\|t^{\frac{\alpha}{\gamma}-1}\|_{L_{p_{2}}(0,|\mathcal{E}_{P}(x,r)|)} \lesssim$$

$$\lesssim r^{\alpha-\gamma\left(1-\frac{1}{p_{2}}\right)}\|M_{\alpha}^{P}\left(f\chi_{\mathcal{E}_{P}(x,2kr)}\right)\|_{WL_{\frac{\gamma}{\gamma-\alpha}}(\mathbb{R}^{n})} \lesssim r^{\alpha-\gamma\left(1-\frac{1}{p_{2}}\right)}\|f\|_{L_{1}(\mathcal{E}_{P}(x,2kr))}.$$

Inequality (13) follows directly from (15).

If $p_1 > 1$ and $\alpha < \gamma\left(\frac{1}{p_1} - \frac{1}{p_2}\right)$, then inequality (14) cannot hold for all $f \in L_{p_1}^{loc}$. Indeed if $f \in L_{p_1}(\mathbb{R}^n)$ and $f \nsim 0$ then by passing in (10) to the limit as $r \to \infty$ we arrive at a contradiction.

Assume that $p_1 = 1$, $1 \le p_2 < \infty$ and $\alpha = \gamma \left(1 - \frac{1}{p_2}\right)$. Then by passing to the limit in (10) we get

$$||M_{\alpha}^{P}f||_{L_{p_{2}}(\mathbb{R}^{n})} \lesssim ||f||_{L_{1}(\mathbb{R}^{n})}$$

which, according to known results [10], is not possible.

Corollary 3.4. Let $1 \le p_1 \le \infty$, $0 < p_2 \le \infty$, $\gamma \left(\frac{1}{p_1} - \frac{1}{p_2}\right)_{\perp} \le \alpha < \gamma$ if $p_1 > 1$, and $\gamma \left(1 - \frac{1}{p_2}\right)_{\perp} < \alpha < \gamma$ if $p_1 = 1$. Then the inequality

$$||M_{\alpha}^{P}(f\chi_{\mathcal{E}_{P}(x,2kr)})||_{L_{p_{2}}(\mathcal{E}_{P}(x,r))} \lesssim r^{\alpha-\gamma\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)} ||f||_{L_{p_{1}}(\mathcal{E}_{P}(x,2kr))}$$

holds for all $f \in L_{p_1}^{loc}$.

Moreover for $0 < p_2 < \infty$ and $\alpha = \gamma \left(1 - \frac{1}{p_2}\right)$, the inequality

$$||M_{\alpha}^{P}(f\chi_{\mathcal{E}_{P}(x,2kr)})||_{WL_{p_{2}}(\mathcal{E}_{P}(x,r))} \lesssim r^{\alpha-\gamma\left(1-\frac{1}{p_{2}}\right)} ||f||_{L_{1}(\mathcal{E}_{P}(x,2kr))}$$
(16)

 $\frac{66}{[V.S.Guliyev,Sh.A.Muradova]}$

holds for all $f \in L_1^{loc}$.

Proof. If $p_2 \geq p_1$, the statement follows by Lemma 3.3. If $p_2 < p_1$, then by applying Hölder's inequality and statement of Lemma 3.3 we have

$$\begin{split} \|M_{\alpha}^{P}(f\chi_{\mathcal{E}_{P}(x,2kr)})\|_{L_{p_{2}}(\mathcal{E}_{P}(x,r))} &\lesssim r^{\frac{\gamma}{p_{2}} - \frac{\gamma}{p_{1}}} \|M_{\alpha}^{P}(f\chi_{\mathcal{E}_{P}(x,2kr)})\|_{L_{p_{1}}(\mathcal{E}_{P}(x,r))} \leq \\ &\lesssim r^{\alpha - \gamma\left(\frac{1}{p_{1}} - \frac{1}{p_{2}}\right)} \|f\|_{L_{p_{1}}(\mathcal{E}_{P}(x,2kr))} \,. \end{split}$$

Inequality (16) similarly follows by Hölder's inequality for weak L_p -spaces. Lemmas 3.2, 3.3 and Corollary 3.4 imply the following statement.

Lemma 3.5. Let $1 \le p_1 \le \infty$, $0 < p_2 \le \infty$, $\gamma \left(\frac{1}{p_1} - \frac{1}{p_2}\right)_{\perp} \le \alpha < \gamma$ if $p_1 > 1$, and $\gamma\left(1-\frac{1}{p_2}\right)_+<\alpha<\gamma$ if $p_1=1$. Then for any ellipsoid $\mathcal{E}_P(x,r)\subset\mathbb{R}^n$ the

$$||M_{\alpha}^{P}f||_{L_{p_{2}}(\mathcal{E}_{P}(x,r))} \lesssim r^{\alpha-\gamma\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)}||f||_{L_{p_{1}}(\mathcal{E}_{P}(x,2kr))} + r^{\frac{\gamma}{p_{2}}}\overline{M}_{\alpha,2kr}^{P}f(x)$$
(17)

holds for all $f \in L_{n_1}^{loc}$.

Moreover for $0 < p_2 < \infty$ and $\alpha = \gamma \left(1 - \frac{1}{p_2}\right)$, the inequality

$$||M_{\alpha}^{P}f||_{WL_{p_{2}}(\mathcal{E}_{P}(x,r))} \lesssim r^{\alpha-\gamma\left(1-\frac{1}{p_{2}}\right)}||f||_{L_{1}(\mathcal{E}_{P}(x,2kr))} + r^{\frac{\gamma}{p_{2}}} \overline{M}_{\alpha,2kr}^{P}f(x)$$
(18)

holds for all $f \in L_1^{loc}$.

Lemma 3.6. Let 0 .

1. If $\gamma\left(1-\frac{1}{p}\right)_{\perp} < \alpha < \gamma$, then for any ellipsoid $\mathcal{E}_P(x,r) \subset \mathbb{R}^n$ the equivalences

$$||M_{\alpha}^{P}f||_{L_{p}(\mathcal{E}_{P}(x,r))} \approx ||M_{\alpha}^{P}f||_{WL_{p}(\mathcal{E}_{P}(x,r))} \approx r^{\frac{\gamma}{p}} \overline{M}_{\alpha,r}^{P}f(x)$$
(19)

hold for all $f \in L_1^{loc}$.

2. If $\alpha = \gamma \left(1 - \frac{1}{p}\right)_{\perp}$, then for any ellipsoid $\mathcal{E}_P(x,r) \subset \mathbb{R}^n$ the equivalence

$$||M_{\alpha}^{P}f||_{WL_{p}(\mathcal{E}_{P}(x,r))} \approx r^{\frac{\gamma}{p}} \overline{M}_{\alpha,r}^{P} f(x)$$
(20)

holds for all $f \in L_1^{loc}$.

3. If $1 < p_1 < \infty$, $\gamma\left(\frac{1}{p_1} - \frac{1}{p}\right)_{\perp} \le \alpha < \frac{\gamma}{p_1}$, then for any ellipsoid $\mathcal{E}_P(x,r) \subset \mathbb{R}^n$ the inequalities

$$r^{\frac{\gamma}{p}} \overline{M}_{\alpha,r}^P f(x) \lesssim \|M_{\alpha}^P f\|_{L_p(\mathcal{E}_P(x,r))} \lesssim r^{\frac{\gamma}{p}} \left(\overline{M}_{\alpha p_1,r}^P (|f|^{p_1})(x)\right)^{\frac{1}{p_1}}$$
(21)

hold for all $f \in L_1^{loc}$.

Proof. Denote

$$A_1 := r^{\frac{\gamma}{p}} \sup_{t \ge 2kr} \frac{1}{\left|\mathcal{E}_P(x,t)\right|^{1-\frac{\alpha}{\gamma}}} \int_{\mathcal{E}_P(x,t)} |f(y)| dy,$$

$$A_2 := r^{\alpha - \gamma \left(\frac{1}{p_1} - \frac{1}{p}\right)} ||f||_{L_{p_1}(\mathcal{E}_P(x,2kr))}.$$

 $\frac{}{[Parabolic\ fractional\ maximal\ operator\ in...]}}$

By Lemma 3.5

$$||M_{\alpha}^{P}f||_{L_{p}(\mathcal{E}_{P}(x,r))} \leq A_{1} + A_{2}.$$

By applying Hölder's inequality we get

$$A_{1} \lesssim r^{\frac{\gamma}{p}} \sup_{t \geq 2kr} \frac{1}{|\mathcal{E}_{P}(x,t)|^{\frac{1}{p_{1}} - \frac{\alpha}{\gamma}}} \left(\int_{\mathcal{E}_{P}(x,t)} |f(y)|^{p_{1}} dy \right)^{\frac{1}{p_{1}}} = r^{\frac{\gamma}{p}} \left(\overline{M}_{\alpha p_{1},2kr}^{P}(|f|^{p_{1}})(x) \right)^{\frac{1}{p_{1}}}.$$

On the other hand, since $\alpha < \frac{\gamma}{p_1}$ it follows that

$$\begin{split} A_2 &\approx r^{\frac{\gamma}{p}} \left(\sup_{t \geq 2kr} |\mathcal{E}_P(x,t)|^{\frac{\alpha}{\gamma} - \frac{1}{p_1}} \right) \|f\|_{L_{p_1}(\mathcal{E}_P(x,2kr))} \lesssim \\ &\lesssim r^{\frac{\gamma}{p}} \left(\sup_{t \geq 2kr} \frac{1}{|\mathcal{E}_P(x,t)|^{\frac{1}{p_1} - \frac{\alpha}{\gamma}}} \left(\int_{\mathcal{E}_P(x,t)} |f(y)|^{p_1} dy \right)^{\frac{1}{p_1}} \right) \lesssim \\ &\lesssim r^{\frac{\gamma}{p}} \left(\overline{M}_{\alpha p_1,r}^P(|f|^{p_1})(x) \right)^{\frac{1}{p_1}}. \end{split}$$

Estimates from below follow by Lemma 3.1.

Remark 3.7. We note that the right-hand side inequality in (21) implies the inequality

$$||M_{\alpha}^{P}f||_{L_{p}(\mathcal{E}_{P}(x,r))} \lesssim r^{\frac{\gamma}{p}} \left(\int_{r}^{\infty} \left(\int_{\mathcal{E}_{P}(x,t)} |f(y)|^{p_{1}} dy \right) \frac{dt}{t^{\gamma - \alpha p_{1} + 1}} \right)^{\frac{1}{p_{1}}}.$$

This follows since

$$\left(\overline{M}_{\alpha p_1,r}^P(|f|^{p_1})(x)\right)^{\frac{1}{p_1}} \lesssim \left(\int_r^\infty \left(\int_{\mathcal{E}_P(x,t)} |f(y)|^{p_1} dy\right) \frac{dt}{t^{\gamma-\alpha p_1+1}}\right)^{\frac{1}{p_1}}.$$

In fact

$$\begin{split} \left(\overline{M}_{\alpha p_{1},r}^{P}(|f|^{p_{1}})(x)\right)^{\frac{1}{p_{1}}} &= \sup_{t \geq r} \frac{1}{|\mathcal{E}_{P}(x,t)|^{\frac{1}{p_{1}} - \frac{\alpha}{\gamma}}} \left(\int_{\mathcal{E}_{P}(x,t)} |f(y)|^{p_{1}} dy\right)^{\frac{1}{p_{1}}} \leq \\ &\leq \sup_{t \geq r} \frac{1}{|\mathcal{E}_{P}(x,t)|^{\frac{1}{p_{1}} - \frac{\alpha}{\gamma}}} \left(\int_{\mathcal{E}_{P}(x,r)} |f(y)|^{p_{1}} dy\right)^{\frac{1}{p_{1}}} + \\ &+ \sup_{t \geq r} \frac{1}{|\mathcal{E}_{P}(x,t)|^{\frac{1}{p_{1}} - \frac{\alpha}{\gamma}}} \left(\int_{\mathcal{E}_{P}(x,t) \setminus \mathcal{E}_{P}(x,r)} |f|^{p_{1}} dy\right)^{\frac{1}{p_{1}}} \lesssim \\ &\lesssim \frac{1}{|\mathcal{E}_{P}(x,r)|^{\frac{1}{p_{1}} - \frac{\alpha}{\gamma}}} \left(\int_{\mathcal{E}_{P}(x,r)} |f(y)|^{p_{1}} dy\right)^{\frac{1}{p_{1}}} + \sup_{t \geq r} \left(\int_{\mathcal{E}_{P}(x,t) \setminus \mathcal{E}_{P}(x,r)} \frac{|f(y)|^{p_{1}}}{\rho(y)^{\gamma - \alpha p_{1}}} dy\right)^{\frac{1}{p_{1}}}. \end{split}$$
By using the equality

$$\frac{1}{\rho^{\gamma - \alpha p_1}} = \frac{1}{\gamma - \alpha p_1} \int_{0}^{\infty} \frac{d\tau}{\tau^{\gamma - \alpha p_1 + 1}}$$

 $68 \; \underline{ \\ | V.S.Guliyev, Sh.A.Muradova]}$

with $\rho = r$ or $\rho = \rho(y)$ and the Fubini theorem we get

$$\left(\overline{M}_{\alpha p_{1},r}^{P}(|f|^{p_{1}})(x)\right)^{\frac{1}{p_{1}}} \lesssim \left(\int_{r}^{\infty} \left(\int_{\mathcal{E}_{P}(x,r)} |f(y)|^{p_{1}} dy\right) \frac{d\tau}{\tau^{\gamma-\alpha p_{1}+1}}\right)^{\frac{1}{p_{1}}} + \sup_{t \geq r} \left(\int_{r}^{t} \left(\int_{\mathcal{E}_{P}(x,\tau) \setminus \mathcal{E}_{P}(x,r)} |f(y)|^{p_{1}} dy\right) \frac{d\tau}{\tau^{\gamma-\alpha p_{1}+1}}\right)^{\frac{1}{p_{1}}} \lesssim \left(\int_{r}^{\infty} \left(\int_{\mathcal{E}_{P}(x,\tau)} |f(y)|^{p_{1}} dy\right) \frac{d\tau}{\tau^{\gamma-\alpha p_{1}+1}}\right)^{\frac{1}{p_{1}}}.$$

Remark 3.8. Statement 3 of Lemma 3.6 also makes sense if $\alpha = \frac{\gamma}{p_1}$ in which case the right-hand side inequality in (21) takes the form

$$||M_{\frac{\gamma}{p_1}}^P f||_{L_p(\mathcal{E}_P(x,r))} \lesssim r^{\frac{\gamma}{p}} ||f||_{L_{p_1}(\mathbb{R}^n)}.$$

This inequality easily follows directly by the definition of $M_{\frac{\gamma}{2}}^P f$ and Hölder's in-

Remark 3.9. All statements of this section in the isotropic case P = I were proved in [3].

4. Parabolic fractional maximal operator and supremal operator

For a measurable set $E \subset \mathbb{R}^n$ and a function v non-negative and measurable on E, let $L_{p,v}(E)$ be the weighted L_p -space of all functions f measurable on E for which

$$||f||_{L_{p,v}(E)} = ||vf||_{L_p(E)} < \infty.$$

Let $\mathfrak{M}(0,\infty)$ be the set of all Lebesgue measurable functions on $(0,\infty)$ and $\mathfrak{M}^+(0,\infty)$ its subset consisting of all non-negative functions on $(0,\infty)$. We denote by $\mathfrak{M}^+(0,\infty;\uparrow)$ the cone of all functions in $\mathfrak{M}^+(0,\infty)$ which are non-decreasing on $(0,\infty)$ and we set

$$\mathbb{A} = \left\{ \varphi \in \mathfrak{M}^+(0, \infty; \uparrow) : \lim_{t \to 0+} \varphi(t) = 0 \right\}.$$

Let u be continuous and non-negative on $(0,\infty)$. We define the supremal operators \underline{S}_u and \overline{S}_u on $g \in \mathfrak{M}(0, \infty)$ by

$$(\underline{S}_{u}g)(t) := \|u\,g\|_{L_{\infty}(0,t)}, \quad t \in (0,\infty),$$
$$(\overline{S}_{u}g)(t) := \|u\,g\|_{L_{\infty}(t,\infty)}, \quad t \in (0,\infty).$$

In the case $u(r) = r^{\beta}, \beta \in \mathbb{R}$

$$(\underline{S}_{\beta}g)(t) := \|r^{\beta} g(r)\|_{L_{\infty}(0,t)}, \quad t \in (0,\infty),$$

$$(\overline{S}_{\beta}g)(t) := \|r^{\beta} g(r)\|_{L_{\infty}(t,\infty)}, \quad t \in (0,\infty).$$

Also let $\underline{S} \equiv \underline{S}_0$ and $\overline{S} \equiv \overline{S}_0$.

 $\frac{}{[Parabolic\ fractional\ maximal\ operator\ in...]}$

If in Lemma 3.6 x=0, then in the above notation it reduces to the following statement.

Lemma 4.1. Let 0 .

1. If $\gamma\left(1-\frac{1}{p}\right)_{\perp} < \alpha < \gamma$, then for any r > 0 the inequalities

$$||M_{\alpha}^{P}f||_{L_{p}(\mathcal{E}_{P}(0,r))} \approx ||M_{\alpha}^{P}f||_{WL_{p}(\mathcal{E}_{P}(0,r))} \approx r^{\frac{\gamma}{p}} \overline{S}_{\alpha-\gamma} \left(||f||_{L_{1}(\mathcal{E}_{P}(0,\cdot))}\right) (r) \tag{22}$$

holds for all $f \in L_1^{loc}$.

2. If $\alpha = \gamma \left(1 - \frac{1}{p}\right)$, then for any r > 0 the inequality

$$||M_{\alpha}^{P}f||_{WL_{p}(\mathcal{E}_{P}(0,r))} \approx r^{\frac{\gamma}{p}} \overline{S}_{\alpha-\gamma} \left(||f||_{L_{1}(\mathcal{E}_{P}(0,\cdot))}\right) (r) \tag{23}$$

holds for all $f \in L_1^{loc}$.

3. If $1 < p_1 < \infty$, $\gamma\left(\frac{1}{p_1} - \frac{1}{p}\right) \le \alpha < \frac{\gamma}{p_1}$, then for any r > 0 the inequality

$$r^{\frac{\gamma}{p}}\overline{S}_{\alpha-\gamma}\left(\|f\|_{L_{1}(\mathcal{E}_{P}(0,\cdot))}\right)(r) \lesssim \|M_{\alpha}^{P}f\|_{L_{p}(\mathcal{E}_{P}(0,r))} \lesssim$$

$$\lesssim r^{\frac{\gamma}{p}}\overline{S}_{\alpha-\frac{\gamma}{p_{1}}}\left(\|f\|_{L_{p_{1}}(\mathcal{E}_{P}(0,\cdot))}\right)(r)$$
(24)

holds for all $f \in L_1^{loc}$.

4. If $1 \le p_1 < \infty$, $\gamma\left(\frac{1}{p_1} - \frac{1}{p}\right)_{\perp} \le \alpha < \frac{\gamma}{p_1}$, then for any r > 0 the inequality

$$r^{\frac{\gamma}{p}} \overline{S}_{\alpha-\gamma} \left(\|f\|_{L_{1}(\mathcal{E}_{P}(0,\cdot))} \right) (r) \lesssim \|M_{\alpha}^{P} f\|_{WL_{p}(\mathcal{E}_{P}(0,r))} \lesssim$$

$$\lesssim r^{\frac{\gamma}{p}} \overline{S}_{\alpha-\frac{\gamma}{p_{1}}} \left(\|f\|_{L_{p_{1}}(\mathcal{E}_{P}(0,\cdot))} \right) (r)$$

$$(25)$$

holds for all $f \in L_1^{loc}$.

Lemma 4.2. Let $1 \le p_1 < \infty$, $0 < p_2 < \infty$, $\gamma \left(\frac{1}{p_1} - \frac{1}{p_2}\right)_{\perp} \le \alpha < \frac{\gamma}{p_1}$ if $p_1 > 1$, and $\gamma\left(1-\frac{1}{p_2}\right)_+<\alpha<\gamma$ if $p_1=1$. Let also $0<\theta_1,\,\theta_2\leq\infty,\,w_1\in\Omega_{\theta_1},\,$ and

Then the operator M_{α}^{P} is bounded from $LM_{p_{1}\theta_{1},w_{1},P}$ to $LM_{p_{2}\theta_{2},w_{2},P}$ if, and in the case $p_{1}=1$ only if, the operator $\overline{S}_{\alpha-\frac{\gamma}{p_{1}}}$ is bounded from $L_{\theta_{1},w_{1}(r)}(0,\infty)$ to $L_{\theta_2,w_2(r)r^{\frac{\gamma}{p_2}}}(0,\infty)$ on the cone \mathbb{A} .

Sufficiency. Since $\overline{S}_{\alpha-\frac{\gamma}{p_1}}$ is bounded from $L_{\theta_1,w_1(r)}(0,\infty)$ to $L_{\theta_2,w_2(r)r^{\frac{\gamma}{p_2}}}(0,\infty)$ on the cone A, by Lemma 4.1 we have

$$||M_{\alpha}^{P}f||_{LM_{p_{2}\theta_{2},w_{2},P}} \lesssim ||\overline{S}_{\alpha-\frac{\gamma}{p_{1}}}\left(||f||_{L_{p_{1}}(\mathcal{E}_{P}(0,\cdot))}\right)||_{L_{\theta_{2},w_{2}(r)r^{\frac{\gamma}{p_{2}}}}} \lesssim \\ \lesssim ||w_{1}(r)||f||_{L_{p_{1}}(\mathcal{E}_{P}(0,r))}||_{L_{\theta_{1}}(0,\infty)} = ||f||_{LM_{p_{1}\theta_{1},w_{1},P}}.$$
(26)

Necessity. Let $p_1 = 1$ and the inequality

$$||M_{\alpha}^{P}f||_{LM_{P2}\theta_{2},w_{2},P} \lesssim ||f||_{LM_{1}\theta_{1},w_{1},P}$$

[V.S.Guliyev,Sh.A.Muradova]

be satisfied. Then by (23)

$$\|\overline{S}_{\alpha-\gamma}\left(\|f\|_{L_{1}(\mathcal{E}_{P}(0,\cdot))}\right)\|_{L_{\theta_{2},w_{2}(r)r^{\frac{\gamma}{p_{2}}}}} \lesssim \|\|f\|_{L_{1}(\mathcal{E}_{P}(0,\cdot))}\|_{L_{\theta_{1},w_{1}}}.$$
 (27)

Let $g \in \mathbb{A}$. Then there exists a sequence of non-negative functions $f_n \in L_1^{loc}$ such that

$$g_n(r) = ||f_n||_{L_1(\mathcal{E}_P(0,r))} \nearrow g(r), \quad r \in (0,\infty).$$

By (27) and the Fatou lemma

$$\|\overline{S}_{\alpha-\gamma}g\|_{L_{\theta_2,w_2(r)r^{\frac{\gamma}{p_2}}}} \lesssim \|g\|_{L_{\theta_1,w_1}}.$$

5. Necessary and sufficient conditions

By Lemma 4.2 and Theorem 5.4 in [3] we get

Theorem 5.1. Let $1 \leq p_1 < \infty$, $0 < p_2 < \infty$, $\gamma \left(\frac{1}{p_1} - \frac{1}{p_2}\right)_+ \leq \alpha < \frac{\gamma}{p_1}$ if $p_1 > 1$, and $\gamma \left(1 - \frac{1}{p_2}\right)_+ < \alpha < \gamma$ if $p_1 = 1$. Let also $0 < \theta_1, \theta_2 \leq \infty$, $w_1 \in \Omega_{\theta_1}$, and $w_2 \in \Omega_{\theta_2}$.

Then the operator M_{α}^{P} is bounded from $LM_{p_{1}\theta_{1},w_{1},P}$ to $LM_{p_{2}\theta_{2},w_{2},P}$ if, and in the case $p_{1}=1$ only if,

(i) if
$$\theta_1 \leq \theta_2$$
 and $\theta_1 < \infty$, then

$$\sup_{t>0} \left(t^{\alpha - \frac{\gamma}{p_1}} \| w_2(r) r^{\frac{\gamma}{p_2}} \|_{L_{\theta_2}(0,t)} + \| w_2(r) r^{\alpha - \gamma \left(\frac{1}{p_1} - \frac{1}{p_2}\right)} \|_{L_{\theta_2}(t,\infty)} \right) \| w_1 \|_{L_{\theta_1}(t,\infty)}^{-1} < \infty; \quad (28)$$

(ii) if
$$\theta_2 < \theta_1 < \infty$$
, then

$$\left\| w_2(t)t^{\alpha - \gamma \left(\frac{1}{p_1} - \frac{1}{p_2}\right)} \|w_2(r)r^{\alpha - \gamma \left(\frac{1}{p_1} - \frac{1}{p_2}\right)} \|\frac{\theta_2}{L_{\theta_2}(t,\infty)} \|w_1\|_{L_{\theta_1}(t,\infty)}^{-\frac{\theta_1}{\theta_1 - \theta_2}} \right\|_{L_{\theta_2}(0,\infty)} < \infty \tag{29}$$

and

$$\left\| w_2(t)t^{\frac{\gamma}{p_2}} \|w_2(r)r^{\frac{\gamma}{p_2}}\|_{L_{\theta_2}(0,t)}^{\frac{\theta_2}{\theta_1-\theta_2}} \overline{S}\left(r^{\alpha-\frac{\gamma}{p_1}} \|w_1\|_{L_{\theta_1}(r,\infty)}^{-1}\right)(t)^{\frac{\theta_1}{\theta_1-\theta_2}} \right\|_{L_{\theta_2}(0,\infty)} < \infty; \quad (30)$$

(iii) if $\theta_1 = \infty$, then

$$\left\| w_2(t)t^{\frac{\gamma}{p_2}} \overline{S} \left(r^{\alpha - \frac{\gamma}{p_1}} \| w_1 \|_{L_{\infty}(r,\infty)}^{-1} \right) (t) \right\|_{L_{\theta_2}(0,\infty)} < \infty.$$
 (31)

Corollary 5.2. Let $1 \leq p_1 < \infty$, $0 < p_2 < \infty$, $\gamma \left(\frac{1}{p_1} - \frac{1}{p_2}\right)_+ \leq \alpha < \frac{\gamma}{p_1}$ if $p_1 > 1$, and $\gamma \left(1 - \frac{1}{p_2}\right)_+ < \alpha < \gamma$ if $p_1 = 1$. Let also w_1 , w_2 be non-negative measurable functions satisfying $w_1 \in \Omega_{p_1\infty}$, $w_2 \in \Omega_{p_2\infty}$ and

$$\operatorname{ess\,sup}_{t>0} \left(w_2(t) t^{\frac{\gamma}{p_2}} \operatorname{ess\,sup}_{t< r<\infty} \frac{r^{\alpha - \frac{\gamma}{p_1}}}{\|w_1\|_{L_{\infty}(r,\infty)}} \right) < \infty, \tag{32}$$

 $\frac{}{[Parabolic\ fractional\ maximal\ operator\ in...]}$

Then M_{α}^{P} is bounded from $\mathcal{M}_{p_{1},w_{1},P}$ to $\mathcal{M}_{p_{2},w_{2},P}$. **Proof.** It is easy to see that boundedness of M_{α}^{P} from $LM_{p_{1}\infty,w_{1},P}$ to $LM_{p_{2}\infty,w_{2},P}$

implies boundedness of M_{α}^{P} from $GM_{p_{1}\infty,w_{1},P} \equiv \mathcal{M}_{p_{1},w_{1},P}$ to $GM_{p_{2}\infty,w_{2},P} \equiv \mathcal{M}_{p_{2},w_{2},P}$. **Remark 5.3.** Note that condition (32) is weaker than condition (2) in Theorem 1.1. Indeed, if condition (2) holds, then for any r satisfying $t < r < \infty$ we get

$$\begin{split} \frac{1}{w_2(t)t^{\frac{\gamma}{p_2}}} \gtrsim \int_t^\infty \frac{ds}{w_1(s)s^{\frac{\gamma}{p_1}-\alpha+1}} \geq \int_r^\infty \frac{ds}{w_1(s)s^{\frac{\gamma}{p_1}-\alpha+1}} \geq \\ \geq \int_r^\infty \frac{ds}{\|w_1\|_{L_\infty(s,\infty)}s^{\frac{\gamma}{p_1}-\alpha+1}} \geq \frac{1}{\|w_1\|_{L_\infty(r,\infty)}} \int_r^\infty \frac{ds}{s^{\frac{\gamma}{p_1}-\alpha+1}} \approx \\ \approx \frac{1}{\|w_1\|_{L_\infty(r,\infty)}r^{\frac{\gamma}{p_1}-\alpha}}. \end{split}$$

Thus

$$\operatorname{ess\,sup}_{t < r < \infty} \frac{r^{\alpha - \frac{\gamma}{p_1}}}{\|w_1\|_{L_{\infty}(r,\infty)}} \lesssim \frac{1}{w_2(t)t^{\frac{\gamma}{p_2}}}, \quad t \in (0,\infty),$$

so condition (32) holds.

On the other hand the functions $w_1(t) = t^{\alpha - \frac{\gamma}{p_1}}$, $w_2(t) = t^{-\frac{\gamma}{p_2}}$ satisfy condition (32), but do not satisfy condition (2).

Theorem 5.1 contains necessary and sufficient conditions if $p_1 = 1$. If $p_1 > 1$ it contains sufficient conditions. However for $\theta_1 \leq \theta_2$ and the limiting case $\alpha =$ $\gamma\left(\frac{1}{p_1}-\frac{1}{p_2}\right)$ Theorem 5.1 together with the appropriate necessity condition implies necessary and sufficient conditions.

Theorem 5.4. Let $1 < p_1 \le p_2 < \infty$, $0 < \theta_1 \le \theta_2 \le \infty$, $\alpha = \gamma \left(\frac{1}{p_1} - \frac{1}{p_2} \right)$, $w_1 \in \Omega_{\theta_1}$ and $w_2 \in \Omega_{\theta_2}$, then the condition

$$\left\| w_2(r) \left(\frac{r}{t+r} \right)^{\frac{\gamma}{p_2}} \right\|_{L_{\theta_2}(0,\infty)} \le c \|w_1\|_{L_{\theta_1}(t,\infty)}$$
 (33)

for all t > 0, where c > 0 is independent of t, is necessary and sufficient for the boundedness of M_{α}^{P} from $LM_{p_{1}\theta_{1},w_{1},P}$ to $LM_{p_{2}\theta_{2},w_{2},P}$.

Proof. Sufficiently follows by Theorem 5.1 because condition (33) is equivalent to condition (28) if $\theta_1 < \infty$ and to condition (31) if $\theta_1 = \theta_2 = \infty$. To prove necessity one should act like in paper [2].

Recall that, for 0

$$||f||_{LM_{pp,w}} = ||f||_{L_{p,W}},$$

where for all $x \in \mathbb{R}^n$ $W(x) = ||w||_{L_p(\rho(x),\infty)}$. For this reason Theorem 5.4 implies necessary and sufficient conditions for boundedness of M_{α}^{P} from one weighted Lebesgue spaces L_{p_1,W_1} to another one L_{p_2,W_2} for the case of radially non-increasing weights W_1 and W_2 .

Corollary 5.5. Let $1 < p_1 \le p_2 < \infty$, $\alpha = \gamma \left(\frac{1}{p_1} - \frac{1}{p_2} \right)$, and W_1 , W_2 be nonincreasing radially symmetric functions with respect to the distance ρ . Then the 72

[V.S.Guliyev,Sh.A.Muradova]

condition

$$\left\| w_2(r) \left(\frac{r}{t+r} \right)^{\gamma/p_2} \right\|_{L_{\theta_2}(0,\infty)} \le c \|w_1\|_{L_{\theta_1}(t,\infty)}$$
 (34)

for all t > 0, where functions w_1 and w_2 are defined by the equations

$$W_1(x) = \|w_1\|_{L_{p_1}(\rho(x),\infty)}, \qquad W_2(x) = \|w_2\|_{L_{p_2}(\rho(x),\infty)}, \quad x \in \mathbb{R}^n,$$
 (35)

c>0 is independent of t, is necessary and sufficient for the boundedness of M_{α}^{P} from L_{p_1,W_1} to L_{p_2,W_2} .

In the isotropic case Corollary 5.5 was proved in [3].

Acknowledgement. The authors thank the referees for careful reading the paper and useful comments.

References

- [1]. Burenkov V.I., Guliyev H.V. Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces, Studia Mathematica, 2004, 163, No 2, pp.157-176.
- [2]. Burenkov V.I., Guliyev H.V., Guliyev V.S. Necessary and sufficient conditions for boundedness of the fractional maximal operators in the local Morrey-type spaces, J. Comput. Appl. Math., 2007, 208, No 1, pp. 280-301.
- [3]. V. Burenkov, A. Gogatishvili, V.S. Guliyev, R. Mustafayev, *Boundedness of the fractional maximal operator in local Morrey-type spaces*, Complex variables and elliptic equations, 55 (2010), no. 8-10, 739-758.
- [4]. Caldereon A.P., Torchinsky A. Parabolic maximal function associated with a distribution, I. Advances in math., 1975, 16, pp. 1-64.
- [5]. Fabes E.B., Rivère N. Singular integrals with mixed homogeneity, Studia Math., 1966, **27**, pp. 19-38.
- [6]. Fan D., Lu S., Yang D. Boundedness operators in Morrey spaces on homogeneous spaces and its applications, Acta Math. Sinica (N.S.), 1998, 14, suppl., pp.625-634.
- [7]. Guliyev V.S. Integral operators on function spaces on the homogeneous groups and on domains in \mathbb{R}^n , (Russian) Doctoral dissertation, Moscow, Mat. Inst. Steklov, 1994, pp.1-329.
- [8]. Guliyev V.S. Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications, (Russian) Baku. 1999, pp.1-332.
- [9]. Morrey C.B. On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 1938, 43, pp.126-166.
- [10]. Stein E.M. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.

Vagif S. Guliyev, Shamsiya A. Muradova

Institute of Mathematics and Mechanics of NAS of Azerbaijan.

9, F. Agayev str., 370141, Baku, Azerbaijan.

Tel.: (99412) 539 47 20 (off).

Received February 15, 2011; Revised April 20, 2011