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INVESTIGATION OF A LINEAR BOUNDARY
VALUE PROBLEM FOR A COMPOSITE TYPE

TWO-DIMENSIONAL DIFFERENTIAL EQUATION
OF THIRD ORDER WITH GENERAL BOUNDARY

CONDITIONS

Abstract
The boundary value problem is considered for the linear, two-dimensional,

integro-differential, composite type loaded third order equation with non-local
and global terms in the boundary conditions. The principal part of the equa-
tion is a derivative with respect to variable x2 from two-dimensional Laplace
equation. Taking into account ill-posedness of boundary value problems for hy-
perbolic differential equations, the principal parts of boundary conditions are
chosen in the special form dictated by the obtained necessary conditions. These
conditions are such that each solution of the considered equation determined in
the considered domain satisfies these conditions.

Introduction. As is known, in the case of ordinary differential operators for
finding the solutions of boundary value problems, the Lagrange formula is the main
tool [12]. But when the operator is generated by means of the boundary value
problem for partial equations, the Green second formula [6], [15] becomes basic. For
each concrete case [3], [11], [13], [15],some potentials (with unknown densities) that
are the solutions of the stated problems are composed proceeding from boundary
conditions.

The form of the kernel of the potential is determined by Green’s formula men-
tioned above. The study of properties of constructed potentials enables to define
an unknown density of some integral equations. Because of study of properties of
simple and double layers (a step formula) it was possible to investigate the solution
of Dirichlet and Neumann problems. In spite of the fact that the limit theorems
both for normal derivatives of double layer potentials and tangential derivatives of
simple and double layers are known, for some reason, they haven’t applied enough
to investigations of boundary value problems.

For solving the boundary value problems with oblique derivatives, a jump formula
obtained in [4], [13] for a derivative of a simple layer potential when the derivative’s
direction given on the boundary of the considered domain is not tangential to the
boundary is used.

Problem statement. Let D be a bounded, convex in the direction of x2 plane
domain with Lyapunov type Γ-line boundary [15]. when the domain D is orthogonal
projected on the axis x1 (parallel to x2), the boundary Γ is divided into the parts Γ1

and Γ2. The equations of these lines are denoted by x2 = γk (x1) , k = 1, 2; x1 ∈
[a1, b1].

Consider the following boundary value problem

lu ≡ ∂3u (x)

∂x32
+

∂3u (x)

∂x21∂x2
+

2∑
k=0

a2k (x)
∂2u (x)

∂xk1∂x
2−k
2

+
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+
2∑

k=1

a1k (x)
∂u (x)

∂xk
+ a0 (x)u (x)+

+

2∑
m=0

2∑
n=1

∫ b1

a1

K2mn (x, η1)
∂2u (η)

∂ηm1 ∂η2−m
2

∣∣∣∣
η2=γn(η1)

dη1+

+

2∑
m=1

2∑
n=1

∫ b1

a1

K1mn (x, η1)
∂u (η)

∂ηm

∣∣∣∣
η2=γn(η1)

dη1+

+
2∑

n=1

∫ b1

a1

K0n (x, η1) u (η1, γn (η1)) dη1 = f (x) , x ∈ D ⊂ R2, (1)

lku ≡ ∂2u (x)

∂x22

∣∣∣∣
x2=γk(x1)

−
2∑

p=1

2∑
j=1

αkjp (x1)
∂u (x)

∂xj

∣∣∣∣
x2=γp(x1)

−

−
2∑

p=1

αkp (x1)u
(
x1, γp (x1)

)
−

2∑
p=1

2∑
j=1

∫ b1

a1

αkjp (x1, η1)
∂u (η)

∂ηj

∣∣∣∣
η2=γp(η1)

dη1−

−
2∑

p=1

∫ b1

a1

αkp (x1, η1) u
(
η1, γp (η1)

)
dη1 = fk (x1) , k = 1, 2; x1 ∈ [a1, b1] , (2)

l3u ≡ ∂2u (x)

∂x21

∣∣∣∣
x2=γ2(x1)

−
2∑

p=1

2∑
j=1

α3jp (x1)
∂u (x)

∂xj

∣∣∣∣
x2=γp(x1)

−

−
2∑

p=1

α3p (x1)u
(
x1, γp (x1)

)
+

2∑
p=1

2∑
j=1

∫ b1

a1

α3jp (x1, η1)
∂u (η)

∂ηj

∣∣∣∣
η2=γp(η1)

dη1−

−
2∑

p=1

∫ b1

a1

α3p (x1, η1) u
(
η1, γp (η1)

)
dη1 = f3 (x1) , x1 ∈ [a1, b1] , (3)

where all the data of equation (1) and boundary conditions (2), (3) are assumed to
be continuous functions.

If we consider the data of boundary value problem (1)-(3) sufficiently smooth
functions, then this problem is reduced to the second type Fredholm integral equa-
tion with respect to the function u (x). Otherwise, we get the system of second
type Fredholm integral equations with respect to the unknown function u (x) and
its derivatives. The kernel of these equations or of the obtained system doesn’t con-
tain singularities.

Fundamental solutions and its basic properties. Applying the Fourier
transformations [6], [15], for the principal part of equation (1)(for the first two
terms) we get the fundamental solution in the form

U (x− ξ) =
1

4π2

∫
R2

ei(α,x−ξ)

α2

(
α2
1 + α2

2

)dα, (4)
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where x− ξ = (x1 − ξ1, x2 − ξ2), and (α, x− ξ) = α1 (x1 − ξ1) + α2 (x2 − ξ2), R2 is
a real plane.

Then, by means of Hormander’s bilateral ladder method [14] for the integral (4)
we obtain:

U (x− ξ) =
x2 − ξ2

2π

[
ln

√
|x1 − ξ1|

2 + (x2 − ξ2)
2 − 1

]
+

+
|x1 − ξ1|

2π
arctg

x2 − ξ2
|x1 − ξ1|

. (5)

By means of differentiation of (4) or (), one can easily get

∂3U (x− ξ)

∂x32
+

∂3U (x− ξ)

∂x21∂x2
= δ (x− ξ) , (6)

where
∂U (x− ξ)

∂x1
=

e (x1 − ξ1)

π
arctg

x2 − ξ2
|x1 − ξ1|

(7)

∂U (x− ξ)

∂x2
=

1

2π
ln

√
|x1 − ξ1|

2 + (x2 − ξ2)
2 , (8)

∂2U (x− ξ)

∂x21
= e (x2 − ξ2) δ (x1 − ξ1)−

1

2π

x2 − ξ2

|x1 − ξ1|
2 + (x2 − ξ2)

2 , (9)

∆xU (x− ξ) = e (x2 − ξ2) δ (x1 − ξ1) . (10)

e (t) is a Heaviside’s symmetric unique function, δ (x− ξ) = δ (x1 − ξ1) δ (x2 − ξ2)
is Dirac’s two-dimensional delta function [6], [15].

Basic relations. Using fundamental solution (), its property (6) and considering
equations (1), we get Green’s second formula [3], [6], [11], [13], [15]. From these
formulas we get representations for any solution of equation (1) and expressions for
the boundary values of this solution∫

Γ

∂2u (x)

∂x22
U (x− ξ) cos (ν, x2) dx+

∫
Γ

∂2u (x)

∂x21
U (x− ξ) cos (ν, x2) dx−

−
∫
Γ

∂u (x)

∂x2

∂U (x− ξ)

∂x2
cos (ν, x2) dx−

∫
Γ

∂u (x)

∂x1

∂U (x− ξ)

∂x2
cos (ν, x1) dx+

+

∫
Γ
u (x)

∂2U (x− ξ)

∂x1∂x2
cos (ν, x1) dx+

∫
Γ
u (x)

∂2U (x− ξ)

∂x22
cos (ν, x2) dx+

+

∫
D
l0u · U (x− ξ) dx−

∫
D
f (x)U (x− ξ) dx =


u (ξ) , ξ ∈ D,

1

2
u (ξ) , ξ ∈ Γ,

(11)

where

l0u ≡
2∑

k=0

a2k (x)
∂2u (x)

∂xk1∂x
2−k
2

+

2∑
k=1

a1k (x)
∂u (x)

∂xk
+ a0 (x)u (x)+
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+
2∑

m=0

2∑
n=1

∫ b1

a1

K2mn (x, η1)
∂2u (η)

∂ηm1 ∂η2−m
2

∣∣∣∣
η2=γn(η1)

dη1+

+

2∑
m=1

2∑
n=1

∫ b1

a1

K1mn (x, η1)
∂u (η)

∂ηm

∣∣∣∣
η2=γn(η1)

dη1+

+

2∑
n=1

∫ b1

a1

K0n (x, η1) u (η1, γn (η1)) dη1 . (12)

Then applying the schemes of the papers [1], [2], [5], [10], we obtain the remaining
basic relations that give representations both for the derivative of the unknown
function and boundary values of these derivatives.

−
∫
Γ

∂2u (x)

∂x22

∂U (x− ξ)

∂x2
cos (ν, x2) dx−

∫
Γ

∂2u (x)

∂x1∂x2

∂U (x− ξ)

∂x2
cos (ν, x1) dx+

+

∫
Γ

∂u (x)

∂x2

∂2U (x− ξ)

∂x22
cos (ν, x2) dx+

∫
Γ

∂u (x)

∂x2

∂2U (x− ξ)

∂x1∂x2
cos (ν, x1) dx−

−
∫
D
l0u · ∂U (x− ξ)

∂x2
dx+

∫
D
f (x)

∂U (x− ξ)

∂x2
dx =


∂u (ξ)

∂ξ2
, ξ ∈ D,

1

2

∂u (ξ)

∂ξ2
, ξ ∈ Γ,

(13)

−
∫
Γ

∂2u (x)

∂x22

∂U (x− ξ)

∂x1
cos (ν, x2) dx−

∫
Γ

∂2u (x)

∂x21

∂U (x− ξ)

∂x1
cos (ν, x2) dx+

+

∫
Γ

∂u (x)

∂x2

∂2U (x− ξ)

∂x1∂x2
cos (ν, x2) dx+

∫
Γ

∂u (x)

∂x1

∂2U (x− ξ)

∂x1∂x2
cos (ν, x1) dx−

−
∫
Γ

∂u (x)

∂x2

∂2U (x− ξ)

∂x22
cos (ν, x1) dx−

∫
Γ

∂u (x)

∂x1

∂2U (x− ξ)

∂x22
cos (ν, x1) dx−

−
∫
D
l0u · ∂U (x− ξ)

∂x1
dx+

∫
D
f (x)

∂U (x− ξ)

∂x1
dx =


∂u (ξ)

∂ξ1
, ξ ∈ D,

1

2

∂u (ξ)

∂ξ1
, ξ ∈ Γ,

(14)

∫
Γ

∂2u (x)

∂x22

∂2U (x− ξ)

∂x21
cos (ν, x2) dx+

∫
Γ

∂2u (x)

∂x21

∂2U (x− ξ)

∂x21
cos (ν, x2) dx−

−
∫
Γ

∂2u (x)

∂x22

∂2U (x− ξ)

∂x1∂x2
cos (ν, x1) dx+

∫
Γ

∂2u (x)

∂x1∂x2

∂2U (x− ξ)

∂x1∂x2
cos (ν, x2) dx−

−
∫
Γ

∂2u (x)

∂x1∂x2

∂2U (x− ξ)

∂x22
cos (ν, x1) dx+

∫
Γ

∂2u (x)

∂x21

∂2U (x− ξ)

∂x22
cos (ν, x2) dx+

+

∫
D
l0u · ∂

2U (x− ξ)

∂x21
dx−

∫
D
f (x)

∂2U (x− ξ)

∂x21
dx =


∂2u (ξ)

∂ξ21
, ξ ∈ D,

1

2

∂2u (ξ)

∂ξ21
, ξ ∈ Γ.

(15)
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Notice that both in[1], [2], [14] and in the remaining two expressions, integration
by parts is reduced so that the derivative higher than third order in domain D (both
for u (x) and for U (x− ξ)) and a derivative higher than second order on boundary
Γ don’t appear in the integrand.∫

Γ

∂2u (x)

∂x22

∂U2 (x− ξ)

∂x22
cos (ν, x2) dx+

∫
Γ

∂2u (x)

∂x1∂x2

∂2U (x− ξ)

∂x22
cos (ν, x1) dx−

−
∫
Γ

∂2u (x)

∂x1∂x2

∂2U (x− ξ)

∂x1∂x2
cos (ν, x2) dx+

∫
Γ

∂2u (x)

∂x22

∂2U (x− ξ)

∂x1∂x2
cos (ν, x1) dx+

+

∫
D
l0u · ∂

2U (x− ξ)

∂x22
dx−

∫
D
f (x)

∂2U (x− ξ)

∂x22
dx =


∂2u (ξ)

∂ξ22
, ξ ∈ D,

1

2

∂2u (ξ)

∂ξ22
, ξ ∈ Γ,

(16)

∫
Γ

∂2u (x)

∂x22

∂2U (x− ξ)

∂x1∂x2
cos (ν, x2) dx+

∫
Γ

∂2u (x)

∂x1∂x2

∂2U (x− ξ)

∂x1∂x2
cos (ν, x1) dx−

−
∫
Γ

∂2u (x)

∂x22

∂2U (x− ξ)

∂x22
cos (ν, x1) dx+

∫
Γ

∂2u (x)

∂x1∂x2

∂2U (x− ξ)

∂x22
cos (ν, x2) dx+

+

∫
D
l0u · ∂

2U (x− ξ)

∂x1∂x2
dx−

∫
D
f (x)

∂2U (x− ξ)

∂x1∂x2
dx =


∂2u (ξ)

∂ξ1∂ξ2
, ξ ∈ D,

1

2

∂2u (ξ)

∂ξ1∂ξ2
, ξ ∈ Γ.

(17)

Thus we establish the following
Theorem 1. If D ⊂ R2 is a bounded, convex domain with Lyapunov line Γ-

boundary, all the data of equation (1), a2k (x) , k = 0, 2, x ∈ D; a1k (x) , k = 1, 2,
x ∈ D; a0 (x) , x ∈ D; K2mn (x, η1) , m = 0, 2, n = 1, 2, x ∈ D, η1 ∈ (a1, b1) ;
K1mn (x, η1) , m = 1, 2, n = 1, 2, x ∈ D, η1 ∈ (a1, b1) ; Kon (x, η1) , x ∈ D,
η1 ∈ (a1, b1) and f (x) , x ∈ D are continuous functions, [a1, b1] = npxD =
npx1Γ1 = npx1Γ2 and Γ1 and Γ2 are the parts of the boundary Γ of domain D
obtained under orthogonal projection of domain D on x, then each solution of equa-
tion (1) determined in domain D satisfies the basic relations (11), (13)-(17).

Necessary conditions. Considering the second expressions of the basic rela-
tions (11), (13)-(17), passing from the integrals of the boundary Γ on the parts of
this boundary Γk (k = 1, 2) obtained under orthogonal projection of D on the axis
x1 parallel to x2, we get

u (ξ1, γk (ξ1)) = ..., k = 1, 2; ξ1 ∈ [a1, b1] , (18)

∂u (ξ)

∂ξj

∣∣∣∣
ξ2=γk(ξ1)

= ..., j, k = 1, 2; ξ1 ∈ [a1, b1] , (19)

where ξ2 = γk (ξ1) , k = 1, 2 are the equations of the parts Γk of boundary Γ and
the ”dots” denote the sums of nonsingular terms.
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As it is seen from the fundamental solution (), for the boundary values of the
second derivative we have

∂2U (x− ξ)

∂x22

∣∣∣∣x2=γp(x1)

ξ2=γp(ξ1)

=
1

2π

γ′p (σp (x1, ξ1))

(x1 − ξ1)
[
1 + γ′2p (σp)

] , p = 1, 2; (20)

∂2U (x− ξ)

∂x1∂x2

∣∣∣∣x2=γp(x1)

ξ2=γp(ξ1)

=
1

2π

1

(x1 − ξ1)
[
1 + γ′2p (σp)

] , p = 1, 2; (21)

∂2U (x− ξ)

∂x21

∣∣∣∣x2=γp(x1)

ξ2=γp(ξ1)

= − 1

2π

γ′p (σp)

(x1 − ξ1)
[
1 + γ′2p (σp)

] , p = 1, 2; (22)

∂2U (x− ξ)

∂x21

∣∣∣∣x2=γp(x1)

ξ2=γq(ξ1)

= δ (x1 − ξ1) e
(
γp (x1)− γq (ξ1)

)
, p, q = 1, 2; p ̸= q,

(23)
where σp (x1, ξ1) is located between x1 and ξ1.

Then the remaining necessary conditions will take the form

∂2u (ξ)

∂ξ21

∣∣∣∣
ξ2=γ1(ξ1)

− ∂2u (ξ)

∂ξ21

∣∣∣∣
ξ2=γ2(ξ1)

− ∂2u (ξ)

∂ξ22

∣∣∣∣
ξ2=γ2(ξ1)

=

= − 1

π

∫ b1

a1

∂2u (x)

∂x1∂x2

∣∣∣∣
x2=γ1(x1)

dx1
x1 − ξ1

+ ... (24)

∂2u (ξ)

∂ξ21

∣∣∣∣
ξ2=γ2(ξ1)

− ∂2u (ξ)

∂ξ21

∣∣∣∣
ξ2=γ1(ξ1)

− ∂2u (ξ)

∂ξ22

∣∣∣∣
ξ2=γ1(ξ1)

=

=
1

π

∫ b1

a1

∂2u (x)

∂x1∂x2

∣∣∣∣
x2=γ2(x1)

dx1
x1 − ξ1

+ ... (25)

∂2u (ξ)

∂ξ22

∣∣∣∣
ξ2=γk(ξ1)

=
(−1)k−1

π

∫ b1

a1

∂2u (x)

∂x1∂x2

∣∣∣∣
x2=γk(x1)

dx1
x1 − ξ1

+ ..., k = 1, 2; (26)

∂2u (ξ)

∂ξ1∂ξ2

∣∣∣∣
ξ2=γk(ξ1)

=
(−1)k

π

∫ b1

a1

∂2u (x)

∂x22

∣∣∣∣
x2=γk(x1)

dx1
x1 − ξ1

+ ..., k = 1, 2. (27)

By that we obtained the following statement.
Theorem 2. Under the conditions of the theorem 1 each solution of the equation

(1) satisfies to the regular necessary conditions (18),(19).
Theorem 3. Under the conditions of the theorem 1 each solution of the equation

(1) satisfies to the singular necessary conditions (24)-(27).

Fredholm property. Considering necessary singular conditions (27) and taking
into account boundary conditions (2), we get

∂2u (ξ)

∂ξ1∂ξ2

∣∣∣∣
ξ2=γk(ξ1)

=
(−1)k

π

∫ b1

a1

dx1
x1 − ξ1

fk (x1) +
2∑

p=1

2∑
j=1

αkjp (x1)
∂u (x)

∂xj

∣∣∣∣
x2=γp(x1)

+
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+
2∑

p=1

αkp (x1)u
(
x1, γp (x1)

)
+

2∑
p=1

2∑
j=1

∫ b1

a1

αkjp (x1, η1)
∂u (η)

∂ηj

∣∣∣∣
η2=γp(η1)

+

+
2∑

p=1

∫ b1

a1

αkp (x1, η1)u
(
η1, γp (η1)

)
dη1

+ .... (28)

The first term in the right hand side is easily regularized, if

fk (x) ∈ C(1) [a1, b1] , fk (a1) = fk (b1) = 0, k = 1, 2, (29)

given in [9].

Concerning the second and third terms in the right hand side of (28), they are
regularized using regular relations (18), (19).

After substitution of (18), (19), it suffices to replace regular integrals in (18) and
(19) by singular integrals contained in (28). Finally, as for the last two terms in the
right hand side of (28), it suffices to interchange the integrals contained in it.

Finally, passing to necessary condition (24), substitute in its right hand side

(where singular integrals are contained) instead of
∂2u (x)

∂x1∂x2

∣∣∣∣
x2=γ1(x1)

its regular ex-

pression obtained by means of (28), then, in the left hand side of expression (24),

instead of
∂2u (ξ)

∂ξ21

∣∣∣∣
ξ2=γ2(ξ1)

and
∂2u (ξ)

∂ξ22

∣∣∣∣
ξ2=γ2(ξ1)

substitute their expressions from

boundary conditions (2) and (3). Then we get the regular relation for
∂2u (ξ)

∂ξ21

∣∣∣∣
ξ2=γ1(ξ1)

as well.

Thus we proved

Theorem 4. Under the conditions of theorem 1, (29), if αkjp (x1) , k = 1, 3,
j = 1, 2, p = 1, 2; αkp (x1) , k = 1, 3, p = 1, 2, x1 ∈ [a1, b1] ; αkjp (x1, η1) , k = 1, 3,
j = 1, 2, p = 1, 2; x1 ∈ [a1, b1] , η1 ∈ [a1, b1] ; αkp (x1, η1) , k = 1, 3, p = 1, 2;
x1 ∈ [a1, b1] , η1 ∈ [a1, b1] and f3 (x1) , x1 ∈ [a1, b1] are continuous functions, then
for boundary values u (x) and its derivative up to second order inclusively, we get a
normal system of the second order integral equations whose Fredholm kernel formulas
don’t contain singularities (i.e. singularity in the trace formula is weak).

If all the boundary values up to second order inclusively are determined by means
of the above mentioned system of integral equations, then after substitution of these
boundary values to the left hand side of (11), (13)-(17), for the unknown function
u (x) and its derivatives up to the second order inclusively for ξ ∈ D, from the first
terms of (11), (13)-(17) we get a system of Fredholm normal type integral equations
of second order and with regular kernels.

So finally it is proved

Theorem 5. Under the conditions of theorem 4, boundary value problem (1)-(3)
is of Fredholm.

A boundary value problem for the second order composite type equation was
investigated in [7].

Various special cases of boundary value problems for composite type equations
of third order have been considered in [8].
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