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Lala R. ALIYEVA

EQUIVALENT NORMS IN MEAN OSCILLATION
SPACES

Abstract

In the paper, some properties of the functions from the space BMOk
φ,θ are

investigated in terms of Φ-oscillation. Equivalent conditions for belonging of
the function to the space BMOk

φ,θ in terms of Φ-oscillation and harmonic
oscillation are found.

1. Let Rn be an n-dimensional Euclidean space of the points x = (x1, x2, ..., xn),
B (a, r) := {x ∈ Rn : |x− a| ≤ r} be a closed bar in Rn of radius r > 0 with the
center at the point a ∈ Rn, N a set all natural numbers; v = (v1, v2, ..., vn), x

v =
xv11 · xv22 · · · xvnn , |v| = v1 + v2 + ...+ vn where v1, v2, ..., vn are non-negative integrals.
Denote by Lloc (R

n) an aggregate of all locally summable in Rn functions.
Let f ∈ Lloc (R

n), k ∈ N ∪ {0}. Consider the polynomial (see [2], [4])

Pk,B(a,r)f (x) :=
∑
|v|≤k

( 1

|B(a, r)|

∫
B(a,r)

f(t)φv

( t− a

r

)
dt
)
φv

(x− a

r

)
,

where |B (a, r)| denotes the volume of the ball B (a, r), and {φv}, |v| ≤ k is an
orthonormed system obtained from application of the orthogonalization process with
respect to the scalar product

(f, g) :=
1

|B (0, 1)|

∫
B(0,1)

f (t) g (t) dt

to the system of power functions {xv}, |v| ≤ k arranged in partially lexicographic
order (see [6]).

The modulus of the k -th order (k ∈ N) mean oscillation of the locally summable
function f is defined by the equality

Mk
f (δ) := sup {Ωk (f,B (x, r)) : 0 < r < δ, x ∈ Rn} (δ > 0) ,

where Ωk (f,B (x, r)) := 1
|B(x,r)|

∫
B(x,r)

∣∣f (t)− Pk−1,B(x,r)f (t)
∣∣ dt (x ∈ Rn, r > 0).

By Φ denote the class of all positive monotonically increasing on (0,+∞) func-
tions φ (t) such that φ (+0) = 0. By definition, we’ll consider the function φ (t) ≡ 1
an element of the class Φ. Denote by Φk the aggregate of all the functions φ ∈ Φ
such that φ(t)

tk
almost decreases.

Let φ ∈ Φk, k ∈ N , 1 ≤ θ ≤ ∞. Denote by BMOk
φ,θ an aggregate of all the

functions f ∈ Lloc (R
n) for which ∥f∥BMOk

φ,θ
+ < ∞, where

∥f∥BMOk
φ,θ

:=

∞∫
0

(
Mk

f (t)

φ (t)

)θ
dt

t

 1
θ

, for 1 ≤ θ < ∞,
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∥f∥BMOk
φ,∞

:= sup

{
Mk

f (t)

φ (t)
: t > 0

}
.

Note that the spaces BMOk
φ,θ were first introduced in [3]. These spaces are

Banach for the norm indicated above.
2. Let α > 0, r > 0, and

Ψ(α) (x) = c(α)n · 1

1 + |x|n+α , Ψ(α)
r (x) = r−nΨ(α)

(x
r

)
,

where c
(α)
n is chosen so that the condition∫

Rn

Ψ(α) (x) dx = 1.

is fulfilled.
It is easy to see that for any r > 0 it holds the equality∫

Rn

Ψ(α)
r (x) dx = 1.

For the function f ∈ Lloc (R
n) we introduce the following denotation

Ωk,α (f,B (x; r)) :=

∫
Rn

Ψ(α)
r (x− t)

∣∣f (t)− Pk−1,B(x,r)f (t)
∣∣ dt (x ∈ Rn, r > 0) ,

Hk,α
f (δ) := sup {Ωk,α (f,B (x, r)) : 0 < r ≤ δ, x ∈ Rn} (δ > 0) .

Obviously, the function Hk,α
f (δ) monotonically increases with respect to the

argument δ ∈ (0,+∞).
The following statements are proved in [7].
Proposition A. Let f ∈ Lloc (R

n), α > 0, k ∈ N , k < α+1. Then the following
inequality is true:

Hk,α
f (δ) ≤ c · δα

∞∫
δ

Mk
f (t)

tα+1
dt, δ > 0, (1)

where c > 0 is independent of f and δ.
Proposition B. Let f ∈ Lloc (R

n), α > 0, k ∈ N . Then the following inequality
is true

Mk
f (δ) ≤ c ·Hk,α

f (δ) , (δ > 0) , (2)

where c > 0 is independent of f and δ.
Let P (x) be a Poisson kernel for Rn, i.e. P (x) = cn · 1

(1+|x|2)
n+1
2

, where cn =(
n+1
2

)
· π−n+1

2 . It is easy to verify that P (x) ≈ Ψ(1) (x), x ∈ Rn. Note that for the
non-negative functions F (x) and G (x) (x ∈ X) the notation F (x) ≈ G (x) (x ∈ X)
means the following: there exist positive constants c1 and c2 such that for all x ∈ X
it holds the inequality

c1 · F (x) ≤ G (x) ≤ c2 · F (x) .
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For f ∈ Lloc (R
n) we assume

Hf (δ) := sup
0<r≤δ
x∈Rn

∫
Rn

Pr (x− t) |f (t)− Prf (x)| dt, δ > 0,

where Pr (x) := r−nP
(
x
r

)
(r > 0), Prf (x) := (Pr ∗ f) (x) =

∫
Rn

Pr (x− t) f (t) dt.

Hf (δ) is called a harmonic oscillation modulus (see. [1]). In [7] it is proved that

Hf (δ) ≈ H1,1
f (δ) (δ > 0), where the constants with respect to ”≈” are independent

of f and δ.
In the sequel, by (α) we’ll denote the greatest integer that is less than the number

α.
Let f ∈ Lloc (R

n), α > 0, k ∈ N , φ ∈ Φk, and the following integral converge

∞∫
1

φ (t)

tα+1
dt.

We’ll use the following denotation

Ak,α
φ,θ (f) :=

∞∫
0

(
Hk,α

f (t)

φ (t)

)θ
dt

t


1
θ

for 1 ≤ θ < ∞,

Ak,α
φ,∞ (f) := sup

{
Hk,α

f (t)

φ (t)
: t > 0

}
.

3. Theorem 1. Let f ∈ Lloc (R
n), α > 0, k ∈ N , φ ∈ Φk . Then, if

Ak,α
φ,∞ (f) < +∞ then f ∈ BMOk

φ,θ, and the following inequality is true

∥f∥BMOk
φ,θ

≤ c ·Ak,α
φ,θ (f) ,

where the constant c > 0 is independent of f .
Proof. Let at first θ = ∞. If Ak,α

φ,θ (f) < +∞, this means that

Hk,α
f (δ) ≤ Ak,α

φ,∞ (f) · φ (δ) , δ > 0.

Hence, by inequality (2) we get

Mk
f (δ) ≤ c ·Hk,α

f (δ) ≤ c ·Ak,α
φ,∞ (f) · φ (δ) , δ > 0.

The latter means that f ∈ BMOk
φ,∞, and furthermore

∥f∥BMOk
φ,∞

≤ c ·Ak,α
φ,∞ (f) , δ > 0, (3)

where c is a constant from inequality (2).

If 1 ≤ θ < ∞, again in the case Ak,α
φ,θ (f) < +∞ we apply inequality (2) and get

∥f∥BMOk
φ,θ

=

∞∫
0

(
Mk

f (t)

φ (t)

)θ
dt

t

 1
θ

≤ c

∞∫
0

(
Hk,α

f (t)

φ (t)

)θ
dt

t


1
θ

= cAk,α
φ,θ (f) , (4)
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i.e. in this case we get the required statement. The theorem is proved.

Theorem 2. Let f ∈ Lloc (R
n), α > 0, k = (α) + 1, φ ∈ Φk, and the following

condition be fulfilled

δα
∞∫
δ

φ (t)

tα+1
dt = O (φ (δ)) , δ > 0. (5)

Then if f ∈ BMOk
φ,θ, the following relations are true:

a)
∫
Rn

|f(x)|
1+|x|n+αdx < +∞,

b) Ak,α
φ,θ (f) < +∞.

The following inequality is true:

Ak,α
φ,θ (f) ≤ c · ∥f∥BMOk

φ,θ
, (6)

where the constant c > 0 is independent of f .

Proof. Let f ∈ BMOk
φ,θ. At first consider the case θ = ∞. Then we have

Mk
f (r) ≤ c · ∥f∥BMOk

φ,∞
· φ (r) , r > 0. (7)

In this case, the validity of the statement a) follows from theorem 1 of [5].
Further, from inequalities (1), (5) and (7) we have

Hk,α
f (δ) ≤ c · δα

∞∫
δ

Mk
f (t)

tα+1
dt ≤ c · ∥f∥BMOk

φ,∞
· δα

∞∫
δ

φ (t)

tα+1
dt ≤

≤ c1 · ∥f∥BMOk
φ,∞

· φ (δ) , δ > 0,

where c1 > 0 is independent of f and δ. Hence we get

Ak,α
φ,∞ (f) = sup

{
Hk,α

f (δ)

φ (δ)
: δ > 0

}
≤ c1 · ∥f∥BMOk

φ,∞
,

i.e. the statement b) of the theorem and inequality (6) hold in the case θ = ∞.

Let now 1 ≤ θ < ∞ and f ∈ BMOk
φ,θ. Then for any r ∈ (0,+∞) we have

∞∫
r

(
Mk

f (t)

φ (t)

)θ
dt

t

 1
θ

≥

 2r∫
r

(
Mk

f (t)

φ (t)

)θ
dt

t


1
θ

≥
Mk

f (r)

φ (2r)
· (ln 2)1/θ . (8)

Show that if condition (5) is fulfilled, the relation φ (2r) ≈ φ (r), r > 0 is true.
Really, by the monotone increase of φ we have φ (r) ≤ φ (2r), r > 0. On the other
hand, by means of inequality (5) we get

c · φ (r) ≥ δα
∞∫
δ

φ (t)

tα+1
dt ≥ δα

∞∫
2δ

φ (t)

tα+1
dt ≥
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≥ φ (2r) · δα
∞∫
2δ

t−1−αdt = φ (2r) · 1

α2α
,

i.e. φ (2r) ≤ c · α · 2α · φ (r), r > 0. Thus, φ (2r) ≈ φ (r), r > 0.

Further, from relation (8) we get

Mk
f (r) ≤ (ln 2)−

1
θ · c · φ (r) ·

∞∫
r

(
Mk

f (t)

φ (t)

)θ
dt

t

 1
θ

≤

≤ c1 · φ (r) · ∥f∥BMOk
φ,θ

, r ∈ (0,+∞) .

Hence, in particular we have

∞∫
1

Mk
f (t)

φ (t)
dt ≤ c1 · ∥f∥BMOk

φ,θ

∞∫
r

φ (t)

tα+1
dt < +∞. (9)

Therefore in this case also, by applying theorem 1 from [5], we get the validity
of the statement a).

Introduce the denotation

Gk,α
f (r) := rα

∞∫
r

Mk
f (t)

tα+1
dt

and prove that ∞∫
0

(
Ck,α
f (t)

φ (t)

)θ
dt

t


1
θ

≤ c · ∥f∥BMOk
φ,θ

, (10)

where the constant c > 0 is independent of f .

Let g ∈ Lθ1 (0,+∞), g (r) ≥ 0 (r > 0), 1
θ1

+ 1
θ = 1 . Then changing the

integration order, we get

∞∫
0

Ck,α
f (t)

t1/θφ (t)
· g (t) dt =

∞∫
0

 1

t1/θφ (t)
· tα

∞∫
t

Mk
f (y)

yα+1
dy

 g (t) dt =

=

∞∫
0

Mk
f (y)

yα+1

 y∫
0

tαg (t)

t1/θ · φ (t)

 dy. (11)

It is known that if condition (5) is fulfilled, there exists a number v ∈ (0, α) such

that φ(t)
tv -almost decreases. Let β = v − α+ 1

θ . Then by means of (11) we get

∞∫
0

Ck,α
f (t)

t1/θφ (t)
· g (t) dt =

∞∫
0

Mk
f (y)

yα+1

 y∫
0

g (t)(
φ(t)
tv

)
· tβ

dt

 dy ≤
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≤ c ·
∞∫
0

Mk
f (y)

yα+1

 yv

φ (y)

y∫
0

g (t) t−βdt

 dy =

= c ·
∞∫
0

Mk
f (y)

φ (y)

yv−α−1

y∫
0

g (t) · t−βdt

 dy =

= c

∞∫
0

Mk
f (y)

y1/θφ (y)

yβ−1

y∫
0

g (t) · t−βdt

 dy, (12)

where c > 0 is a constant depending on φ and v only.
Further, we get β = v + 1

θ − α < α+ 1
θ − α = 1

θ ≤ 1 i.e. β < 1.
Considering this, for θ1 = ∞ (i.e. θ = 1) from inequality (12) we get

∞∫
0

Gk
f (t)

t1/θφ (t)
· g (t) dt ≤ c · ∥g∥Lθ1 (0,+∞) ·

∞∫
0

Mk
f (y)

y · φ (y)

yβ−1

y∫
0

t−βdt

 dy =

= c · 1

1− β
· ∥g∥Lθ1 (0,+∞) · ∥f∥BMOk

φ,θ
. (13)

Consider now the case 1 < θ1 < ∞. Then applying the Holder inequality, from
(12) we get

∞∫
0

Gk
f (t)

t1/θφ (t)
· g (t) dt ≤ c ·

∞∫
0

(
Mk

f (y)

φ (y)

)θ
dy

y

1/θ

×

×

∞∫
0

yβ−1

y∫
0

g (t) · t−βdt

θ1

dy


1/θ1

. (14)

Introduce the denotation r = (1− β) θ1−1. Then we have r =
(
1− v − 1

θ + α
)
θ1−

1 >
(
1− v − 1

θ + v
)
θ1 − 1 =

(
1− 1

θ

)
θ1 − 1 = 1

θ1
· θ1 − 1 = 1 − 1 = 0, i.e. r > 0.

Applying the Hardy inequality (see [8])∞∫
0

 x∫
0

|h (y)| dy

θ1

x−r−1dx


1/θ1

≤ θ1
r

·

∞∫
0

(y |h (y)|)θ1 y−r−1dy

1/θ1

,

having taken h (y) = g (y) · y−β, from (14) we get

∞∫
0

Gk,α
f (t)

t1/θφ (t)
· g (t) dt ≤ c · ∥f∥BMOk

φ,θ
· θ1
r
×

·

∞∫
0

(
y · g (y) · y−β

)θ1
y(β−1)θ1dy

1/θ1

=
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= c · θ1
(1− β) θ1 − 1

∥f∥BMOk
φ,θ

∞∫
0

(g (y))θ1 dy

1/θ1

=

= c · θ1
(1− β) θ1 − 1

∥f∥BMOk
φ,θ

∥g∥Lθ1 (0,+∞) . (15)

Inequalities (13) and (15) show that for 1 ≤ θ < ∞ the following inequality is true∞∫
0

(
Gk,α

f (t)

φ (t)

)θ
dt

t

1/θ

≤ c · ∥f∥BMOk
φ,θ

,

where c > 0 is independent of f .
Hence, by means of inequality (1) we get

Ak,α
φ,θ (f) =

∞∫
0

(
Hk,α

f (t)

φ (t)

)θ
dt

t

1/θ

≤ c·

∞∫
0

(
Gk,α

f (t)

φ (t)

)θ
dt

t

1/θ

≤ c1·∥f∥BMOk
φ,θ

,

i.e. the statement b) of the theorem and inequality (6)are valid in the case
1 ≤ θ < ∞.

The theorem is proved.
Theorems 1 and 2 yield
Theorem 3. Let f ∈ Lloc (R

n), α > 0, k = (α) + 1, φ ∈ Φk and condition (5)
be fulfilled.

Then the following conditions 1) and 2) on f are equivalent:
1) f ∈ BMOk

φ,θ;

2) a)
∫
Rn

|f(x)|
1+|x|n+αdx < +∞;

b) Ak,α
φ,θ (f) < +∞.

Moreover, ∥f∥BMOk
φ,θ

≈ Ak,α
φ,θ (f), where the constants in the relation ”≈” are

independent of f .
Let BMOφ,θ := BMO1

φ,θ, BMOφ := BMOφ,∞. From the previous theorem we
get the following statement in terms of modulus of harmonic oscillation Hf (δ).

Corollary 1. Let f ∈ Lloc (R
n), φ ∈ Φ1, and the following condition be fulfilled:

δ ·
∞∫
δ

φ (t)

t2
dt = O (φ (δ)) , δ > 0. (16)

Then the following conditions 1) and 2) are equivalent:
1) f ∈ BMOφ,θ;

2) a)
∫
Rn

|f(x)|
1+|x|n+1dx < +∞;

b) Aφ,θ (f) < +∞, where

Aφ,θ (f) :=

∞∫
0

(
Hf (t)

φ (t)

)θ dt

t

1/θ

for 1 ≤ θ < ∞,
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Aφ,∞ (f) := sup

{
Hf (t)

φ (t)
: t > 0

}
.

Moreover ∥f∥BMOφ,θ
≈ Aφ,θ (f), where the constants in the relation ”≈” don’t

depend on f .
Corollary 2. Let f ∈ Lloc (R

n), φ ∈ Φ1, and condition (16) be fulfilled. Then
the following conditions 1) and 2) are equivalent:

1) f ∈ BMOφ;

2) a)
∫
Rn

|f(x)|
1+|x|n+1dx < +∞,

b) A := sup
r>0
x∈Rn

1
φ(r)

∫
Rn

Pr (x− t) |f (t)− Prf (x)| dt < +∞.

Moreover,
c1 · ∥f∥BMOφ

≤ A ≤ c2 · ∥f∥BMOφ
,

where c1 and c2 are some positive constants independent of f .
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