Lala R. ALIYEVA

EQUIVALENT NORMS IN MEAN OSCILLATION **SPACES**

Abstract

In the paper, some properties of the functions from the space $BMO_{\varphi,\theta}^k$ are investigated in terms of Φ -oscillation. Equivalent conditions for belonging of the function to the space $BMO_{\varphi,\theta}^k$ in terms of Φ -oscillation and harmonic

1. Let \mathbb{R}^n be an n-dimensional Euclidean space of the points $x=(x_1,x_2,...,x_n)$, $B(a,r) := \{x \in \mathbb{R}^n : |x-a| \le r\}$ be a closed bar in \mathbb{R}^n of radius r > 0 with the center at the point $a \in \mathbb{R}^n$, N a set all natural numbers; $v = (v_1, v_2, ..., v_n), x^v =$ $x_1^{v_1} \cdot x_2^{v_2} \cdot \cdots \cdot x_n^{v_n}, |v| = v_1 + v_2 + \dots + v_n$ where v_1, v_2, \dots, v_n are non-negative integrals. Denote by $L_{loc}(\mathbb{R}^n)$ an aggregate of all locally summable in \mathbb{R}^n functions.

Let $f \in L_{loc}(\mathbb{R}^n)$, $k \in \mathbb{N} \cup \{0\}$. Consider the polynomial (see [2], [4])

$$P_{k,B(a,r)}f\left(x\right):=\sum_{|v|\leq k}\Bigl(\frac{1}{|B(a,r)|}\int\limits_{B(a,r)}f(t)\varphi_v\Bigl(\frac{t-a}{r}\Bigr)dt\Bigr)\varphi_v\Bigl(\frac{x-a}{r}\Bigr),$$

where |B(a,r)| denotes the volume of the ball B(a,r), and $\{\varphi_v\}$, $|v| \leq k$ is an orthonormed system obtained from application of the orthogonalization process with respect to the scalar product

$$(f,g) := \frac{1}{|B(0,1)|} \int_{B(0,1)} f(t) g(t) dt$$

to the system of power functions $\{x^v\}$, $|v| \leq k$ arranged in partially lexicographic order (see [6]).

The modulus of the k-th order $(k \in N)$ mean oscillation of the locally summable function f is defined by the equality

$$M_{f}^{k}\left(\delta\right) := \sup \left\{ \Omega_{k}\left(f, B\left(x, r\right)\right) : 0 < r < \delta, \quad x \in \mathbb{R}^{n} \right\} \quad \left(\delta > 0\right),$$

where
$$\Omega_{k}(f, B(x, r)) := \frac{1}{|B(x, r)|} \int_{B(x, r)} |f(t) - P_{k-1, B(x, r)} f(t)| dt \quad (x \in \mathbb{R}^{n}, r > 0).$$

By Φ denote the class of all positive monotonically increasing on $(0, +\infty)$ functions $\varphi(t)$ such that $\varphi(+0) = 0$. By definition, we'll consider the function $\varphi(t) \equiv 1$ an element of the class Φ . Denote by Φ_k the aggregate of all the functions $\varphi \in \Phi$

such that $\frac{\varphi(t)}{t^k}$ almost decreases. Let $\varphi \in \Phi_k$, $k \in N$, $1 \le \theta \le \infty$. Denote by $BMO_{\varphi,\theta}^k$ an aggregate of all the functions $f \in L_{loc}(\mathbb{R}^n)$ for which $\|f\|_{BMO_{\varphi,\theta}^k} + < \infty$, where

$$\|f\|_{BMO_{\varphi,\theta}^{k}}:=\left(\int\limits_{0}^{\infty}\left(\frac{M_{f}^{k}\left(t\right)}{\varphi\left(t\right)}\right)^{\theta}\frac{dt}{t}\right)^{\frac{1}{\theta}},\quad for\quad 1\leq\theta<\infty,$$

[L.R.Aliyeva]

$$\|f\|_{BMO_{\varphi,\infty}^{k}}:=\sup\left\{ \frac{M_{f}^{k}\left(t\right)}{\varphi\left(t\right)}:t>0\right\} .$$

Note that the spaces $BMO_{\varphi,\theta}^k$ were first introduced in [3]. These spaces are Banach for the norm indicated above.

2. Let $\alpha > 0$, r > 0, and

$$\Psi^{(\alpha)}\left(x\right) = c_{n}^{(\alpha)} \cdot \frac{1}{1 + \left|x\right|^{n + \alpha}}, \quad \Psi_{r}^{(\alpha)}\left(x\right) = r^{-n} \Psi^{(\alpha)}\left(\frac{x}{r}\right),$$

where $c_n^{(\alpha)}$ is chosen so that the condition

$$\int_{R^n} \Psi^{(\alpha)}(x) \, dx = 1.$$

is fulfilled.

It is easy to see that for any r > 0 it holds the equality

$$\int_{R^n} \Psi_r^{(\alpha)}(x) \, dx = 1.$$

For the function $f \in L_{loc}(\mathbb{R}^n)$ we introduce the following denotation

$$\Omega_{k,\alpha}\left(f,B\left(x;r\right)\right):=\int\limits_{R^{n}}\Psi_{r}^{(\alpha)}\left(x-t\right)\left|f\left(t\right)-P_{k-1,B\left(x,r\right)}f\left(t\right)\right|dt\quad\left(x\in R^{n},r>0\right),$$

$$H_{f}^{k,\alpha}\left(\delta\right) := \sup \left\{ \Omega_{k,\alpha}\left(f,B\left(x,r\right)\right) : 0 < r \leq \delta, \quad x \in \mathbb{R}^{n} \right\} \quad \left(\delta > 0\right).$$

Obviously, the function $H_f^{k,\alpha}(\delta)$ monotonically increases with respect to the argument $\delta \in (0, +\infty)$.

The following statements are proved in [7].

Proposition A. Let $f \in L_{loc}(\mathbb{R}^n)$, $\alpha > 0$, $k \in \mathbb{N}$, $k < \alpha + 1$. Then the following inequality is true:

$$H_f^{k,\alpha}(\delta) \le c \cdot \delta^{\alpha} \int_{\delta}^{\infty} \frac{M_f^k(t)}{t^{\alpha+1}} dt, \quad \delta > 0,$$
 (1)

where c > 0 is independent of f and δ .

Proposition B. Let $f \in L_{loc}(\mathbb{R}^n)$, $\alpha > 0$, $k \in \mathbb{N}$. Then the following inequality is true

$$M_f^k(\delta) \le c \cdot H_f^{k,\alpha}(\delta), \ (\delta > 0),$$
 (2)

where c > 0 is independent of f and δ .

Let P(x) be a Poisson kernel for \mathbb{R}^n , i.e. $P(x) = c_n \cdot \frac{1}{\left(1+|x|^2\right)^{\frac{n+1}{2}}}$, where $c_n = c_n$

 $\left(\frac{n+1}{2}\right)\cdot\pi^{-\frac{n+1}{2}}$. It is easy to verify that $P\left(x\right)\approx\Psi^{(1)}\left(x\right),\ x\in R^{n}$. Note that for the non-negative functions $F\left(x\right)$ and $G\left(x\right)\ \left(x\in X\right)$ the notation $F\left(x\right)\approx G\left(x\right)\ \left(x\in X\right)$ means the following: there exist positive constants c_{1} and c_{2} such that for all $x\in X$ it holds the inequality

$$c_1 \cdot F(x) < G(x) < c_2 \cdot F(x)$$
.

 $\frac{}{[Equivalent\ norms\ in\ mean\ oscillation\ spaces]}$

For $f \in L_{loc}(\mathbb{R}^n)$ we assume

$$H_{f}\left(\delta\right):=\sup_{\substack{0< r\leq \delta \\ x\in R^{n}}}\int_{R^{n}}P_{r}\left(x-t\right)\left|f\left(t\right)-P_{r}f\left(x\right)\right|dt,\quad\delta>0,$$

where
$$P_r(x) := r^{-n}P(\frac{x}{r})$$
 $(r > 0)$, $P_rf(x) := (P_r * f)(x) = \int_{\mathbb{R}^n} P_r(x - t) f(t) dt$.

 $H_f(\delta)$ is called a harmonic oscillation modulus (see. [1]). In [7] it is proved that $H_f(\delta) \approx H_f^{1,1}(\delta)$ ($\delta > 0$), where the constants with respect to " \approx " are independent

In the sequel, by (α) we'll denote the greatest integer that is less than the number α .

Let $f \in L_{loc}(\mathbb{R}^n)$, $\alpha > 0$, $k \in \mathbb{N}$, $\varphi \in \Phi_k$, and the following integral converge

$$\int_{1}^{\infty} \frac{\varphi\left(t\right)}{t^{\alpha+1}} dt.$$

We'll use the following denotation

$$A_{\varphi,\theta}^{k,\alpha}\left(f\right):=\left(\int\limits_{0}^{\infty}\left(\frac{H_{f}^{k,\alpha}\left(t\right)}{\varphi\left(t\right)}\right)^{\theta}\frac{dt}{t}\right)^{\frac{1}{\theta}}\quad for\quad 1\leq\theta<\infty,$$

$$A_{\varphi,\infty}^{k,\alpha}\left(f\right):=\sup\left\{ \frac{H_{f}^{k,\alpha}\left(t\right)}{\varphi\left(t\right)}:t>0\right\} .$$

3. Theorem 1. Let $f \in L_{loc}(\mathbb{R}^n)$, $\alpha > 0$, $k \in \mathbb{N}$, $\varphi \in \Phi_k$. $A_{\varphi,\infty}^{k,\alpha}(f) < +\infty$ then $f \in BMO_{\varphi,\theta}^k$, and the following inequality is true

$$||f||_{BMO_{\varphi,\theta}^{k}} \le c \cdot A_{\varphi,\theta}^{k,\alpha}(f),$$

where the constant c > 0 is independent of f. **Proof.** Let at first $\theta = \infty$. If $A_{\varphi,\theta}^{k,\alpha}(f) < +\infty$, this means that

$$H_{f}^{k,\alpha}\left(\delta\right)\leq A_{\varphi,\infty}^{k,\alpha}\left(f\right)\cdot\varphi\left(\delta\right),\ \ \delta>0.$$

Hence, by inequality (2) we get

$$M_f^k(\delta) \le c \cdot H_f^{k,\alpha}(\delta) \le c \cdot A_{\omega,\infty}^{k,\alpha}(f) \cdot \varphi(\delta), \quad \delta > 0.$$

The latter means that $f \in BMO_{\varphi,\infty}^k$, and furthermore

$$||f||_{BMO_{\alpha}^{k}} \le c \cdot A_{\varphi,\infty}^{k,\alpha}(f), \quad \delta > 0,$$
 (3)

where c is a constant from inequality (2).

If $1 \le \theta < \infty$, again in the case $A_{\varphi,\theta}^{k,\alpha}(f) < +\infty$ we apply inequality (2) and get

$$||f||_{BMO_{\varphi,\theta}^{k}} = \left(\int_{0}^{\infty} \left(\frac{M_{f}^{k}(t)}{\varphi(t)}\right)^{\theta} \frac{dt}{t}\right)^{\frac{1}{\theta}} \leq c \left(\int_{0}^{\infty} \left(\frac{H_{f}^{k,\alpha}(t)}{\varphi(t)}\right)^{\theta} \frac{dt}{t}\right)^{\frac{1}{\theta}} = cA_{\varphi,\theta}^{k,\alpha}(f), \quad (4)$$

[L.R.Aliyeva]

i.e. in this case we get the required statement. The theorem is proved.

Theorem 2. Let $f \in L_{loc}(\mathbb{R}^n)$, $\alpha > 0$, $k = (\alpha) + 1$, $\varphi \in \Phi_k$, and the following condition be fulfilled

$$\delta^{\alpha} \int_{\delta}^{\infty} \frac{\varphi(t)}{t^{\alpha+1}} dt = O(\varphi(\delta)), \quad \delta > 0.$$
 (5)

Then if $f \in BMO_{\varphi,\theta}^k$, the following relations are true:

a)
$$\int_{R^n} \frac{|f(x)|}{1+|x|^{n+\alpha}} dx < +\infty,$$

b)
$$A_{\varphi,\theta}^{k,\alpha}\left(f\right)<+\infty$$
.

The following inequality is true:

$$A_{\varphi,\theta}^{k,\alpha}(f) \le c \cdot \|f\|_{BMO_{\varphi,\theta}^k}, \tag{6}$$

where the constant c > 0 is independent of f.

Proof. Let $f \in BMO_{\omega,\theta}^k$. At first consider the case $\theta = \infty$. Then we have

$$M_f^k(r) \le c \cdot \|f\|_{BMO_{\alpha}^k} \cdot \varphi(r), \quad r > 0.$$
 (7)

In this case, the validity of the statement a) follows from theorem 1 of [5]. Further, from inequalities (1), (5) and (7) we have

$$H_{f}^{k,\alpha}\left(\delta\right)\leq c\cdot\delta^{\alpha}\int\limits_{\delta}^{\infty}\frac{M_{f}^{k}\left(t\right)}{t^{\alpha+1}}dt\leq c\cdot\|f\|_{BMO_{\varphi,\infty}^{k}}\cdot\delta^{\alpha}\int\limits_{\delta}^{\infty}\frac{\varphi\left(t\right)}{t^{\alpha+1}}dt\leq$$

$$\leq c_1 \cdot ||f||_{BMO_{loc}^k} \cdot \varphi(\delta), \quad \delta > 0,$$

where $c_1 > 0$ is independent of f and δ . Hence we get

$$A_{\varphi,\infty}^{k,\alpha}(f) = \sup \left\{ \frac{H_f^{k,\alpha}(\delta)}{\varphi(\delta)} : \delta > 0 \right\} \le c_1 \cdot ||f||_{BMO_{\varphi,\infty}^k},$$

i.e. the statement b) of the theorem and inequality (6) hold in the case $\theta = \infty$. Let now $1 \le \theta < \infty$ and $f \in BMO_{\varphi,\theta}^k$. Then for any $r \in (0,+\infty)$ we have

$$\left(\int_{r}^{\infty} \left(\frac{M_{f}^{k}(t)}{\varphi(t)}\right)^{\theta} \frac{dt}{t}\right)^{\frac{1}{\theta}} \ge \left(\int_{r}^{2r} \left(\frac{M_{f}^{k}(t)}{\varphi(t)}\right)^{\theta} \frac{dt}{t}\right)^{\frac{1}{\theta}} \ge \frac{M_{f}^{k}(r)}{\varphi(2r)} \cdot (\ln 2)^{1/\theta}. \tag{8}$$

Show that if condition (5) is fulfilled, the relation $\varphi(2r) \approx \varphi(r)$, r > 0 is true. Really, by the monotone increase of φ we have $\varphi(r) \leq \varphi(2r)$, r > 0. On the other hand, by means of inequality (5) we get

$$c \cdot \varphi\left(r\right) \ge \delta^{\alpha} \int_{\delta}^{\infty} \frac{\varphi\left(t\right)}{t^{\alpha+1}} dt \ge \delta^{\alpha} \int_{2\delta}^{\infty} \frac{\varphi\left(t\right)}{t^{\alpha+1}} dt \ge$$

 $\frac{}{[\textit{Equivalent norms in mean oscillation spaces}]}$

$$\geq \varphi\left(2r\right)\cdot\delta^{\alpha}\int\limits_{2\delta}^{\infty}t^{-1-\alpha}dt = \varphi\left(2r\right)\cdot\frac{1}{\alpha2^{\alpha}},$$

i.e. $\varphi(2r) \leq c \cdot \alpha \cdot 2^{\alpha} \cdot \varphi(r), r > 0$. Thus, $\varphi(2r) \approx \varphi(r), r > 0$. Further, from relation (8) we get

$$M_{f}^{k}\left(r\right) \leq \left(\ln 2\right)^{-\frac{1}{\theta}} \cdot c \cdot \varphi\left(r\right) \cdot \left(\int_{r}^{\infty} \left(\frac{M_{f}^{k}\left(t\right)}{\varphi\left(t\right)}\right)^{\theta} \frac{dt}{t}\right)^{\frac{1}{\theta}} \leq$$

$$\leq c_{1} \cdot \varphi\left(r\right) \cdot \|f\|_{BMO_{\alpha}^{k}}, r \in (0, +\infty).$$

Hence, in particular we have

$$\int_{1}^{\infty} \frac{M_f^k(t)}{\varphi(t)} dt \le c_1 \cdot \|f\|_{BMO_{\varphi,\theta}^k} \int_{r}^{\infty} \frac{\varphi(t)}{t^{\alpha+1}} dt < +\infty.$$

$$\tag{9}$$

Therefore in this case also, by applying theorem 1 from [5], we get the validity of the statement a).

Introduce the denotation

$$G_f^{k,\alpha}\left(r\right) := r^{\alpha} \int\limits_r^{\infty} \frac{M_f^k\left(t\right)}{t^{\alpha+1}} dt$$

and prove that

$$\left(\int_{0}^{\infty} \left(\frac{C_f^{k,\alpha}(t)}{\varphi(t)}\right)^{\theta} \frac{dt}{t}\right)^{\frac{1}{\theta}} \le c \cdot \|f\|_{BMO_{\varphi,\theta}^k}, \tag{10}$$

where the constant c>0 is independent of f. Let $g\in L^{\theta_1}(0,+\infty),\ g\left(r\right)\geq 0\quad (r>0),\ \frac{1}{\theta_1}+\frac{1}{\theta}=1$. Then changing the integration order, we get

$$\int_{0}^{\infty} \frac{C_{f}^{k,\alpha}(t)}{t^{1/\theta}\varphi(t)} \cdot g(t) dt = \int_{0}^{\infty} \left(\frac{1}{t^{1/\theta}\varphi(t)} \cdot t^{\alpha} \int_{t}^{\infty} \frac{M_{f}^{k}(y)}{y^{\alpha+1}} dy \right) g(t) dt =$$

$$= \int_{0}^{\infty} \frac{M_{f}^{k}(y)}{y^{\alpha+1}} \left(\int_{0}^{y} \frac{t^{\alpha}g(t)}{t^{1/\theta} \cdot \varphi(t)} \right) dy. \tag{11}$$

It is known that if condition (5) is fulfilled, there exists a number $v \in (0, \alpha)$ such that $\frac{\varphi(t)}{t^v}$ -almost decreases. Let $\beta = v - \alpha + \frac{1}{\theta}$. Then by means of (11) we get

$$\int\limits_{0}^{\infty} \frac{C_{f}^{k,\alpha}\left(t\right)}{t^{1/\theta}\varphi\left(t\right)} \cdot g\left(t\right) dt = \int\limits_{0}^{\infty} \frac{M_{f}^{k}\left(y\right)}{y^{\alpha+1}} \left(\int\limits_{0}^{y} \frac{g\left(t\right)}{\left(\frac{\varphi\left(t\right)}{t^{v}}\right) \cdot t^{\beta}} dt\right) dy \leq$$

$$\leq c \cdot \int_{0}^{\infty} \frac{M_{f}^{k}(y)}{y^{\alpha+1}} \left(\frac{y^{v}}{\varphi(y)} \int_{0}^{y} g(t) t^{-\beta} dt \right) dy =
= c \cdot \int_{0}^{\infty} \frac{M_{f}^{k}(y)}{\varphi(y)} \left(y^{v-\alpha-1} \int_{0}^{y} g(t) \cdot t^{-\beta} dt \right) dy =
= c \int_{0}^{\infty} \frac{M_{f}^{k}(y)}{y^{1/\theta} \varphi(y)} \left(y^{\beta-1} \int_{0}^{y} g(t) \cdot t^{-\beta} dt \right) dy,$$
(12)

where c > 0 is a constant depending on φ and v only.

Further, we get $\beta = v + \frac{1}{\theta} - \alpha < \alpha + \frac{1}{\theta} - \alpha = \frac{1}{\theta} \le 1$ i.e. $\beta < 1$. Considering this, for $\theta_1 = \infty$ (i.e. $\theta = 1$) from inequality (12) we get

$$\int_{0}^{\infty} \frac{G_{f}^{k}(t)}{t^{1/\theta} \varphi(t)} \cdot g(t) dt \leq c \cdot \|g\|_{L^{\theta_{1}}(0,+\infty)} \cdot \int_{0}^{\infty} \frac{M_{f}^{k}(y)}{y \cdot \varphi(y)} \left(y^{\beta-1} \int_{0}^{y} t^{-\beta} dt \right) dy =$$

$$= c \cdot \frac{1}{1-\beta} \cdot \|g\|_{L^{\theta_{1}}(0,+\infty)} \cdot \|f\|_{BMO_{\varphi,\theta}^{k}}. \tag{13}$$

Consider now the case $1 < \theta_1 < \infty$. Then applying the Holder inequality, from (12) we get

$$\int_{0}^{\infty} \frac{G_{f}^{k}(t)}{t^{1/\theta} \varphi(t)} \cdot g(t) dt \leq c \cdot \left(\int_{0}^{\infty} \left(\frac{M_{f}^{k}(y)}{\varphi(y)} \right)^{\theta} \frac{dy}{y} \right)^{1/\theta} \times \left(\int_{0}^{\infty} \left(y^{\beta - 1} \int_{0}^{y} g(t) \cdot t^{-\beta} dt \right)^{\theta_{1}} dy \right)^{1/\theta_{1}}.$$
(14)

Introduce the denotation $r = (1 - \beta) \theta_1 - 1$. Then we have $r = (1 - v - \frac{1}{\theta} + \alpha) \theta_1 - 1 > (1 - v - \frac{1}{\theta} + v) \theta_1 - 1 = (1 - \frac{1}{\theta}) \theta_1 - 1 = \frac{1}{\theta_1} \cdot \theta_1 - 1 = 1 - 1 = 0$, i.e. r > 0. Applying the Hardy inequality (see [8])

$$\left(\int_{0}^{\infty} \left(\int_{0}^{x} \left|h\left(y\right)\right| dy\right)^{\theta_{1}} x^{-r-1} dx\right)^{1/\theta_{1}} \leq \frac{\theta_{1}}{r} \cdot \left(\int_{0}^{\infty} \left(y \left|h\left(y\right)\right|\right)^{\theta_{1}} y^{-r-1} dy\right)^{1/\theta_{1}},$$

having taken $h(y) = g(y) \cdot y^{-\beta}$, from (14) we get

$$\int\limits_{0}^{\infty} \frac{G_{f}^{k,\alpha}\left(t\right)}{t^{1/\theta}\varphi\left(t\right)} \cdot g\left(t\right) dt \leq c \cdot \|f\|_{BMO_{\varphi,\theta}^{k}} \cdot \frac{\theta_{1}}{r} \times$$

$$\cdot \left(\int_{0}^{\infty} \left(y \cdot g \left(y \right) \cdot y^{-\beta} \right)^{\theta_{1}} y^{(\beta-1)\theta_{1}} dy \right)^{1/\theta_{1}} =$$

 $\frac{}{[Equivalent\ norms\ in\ mean\ oscillation\ spaces]}$

$$= c \cdot \frac{\theta_{1}}{(1-\beta)\theta_{1}-1} \|f\|_{BMO_{\varphi,\theta}^{k}} \left(\int_{0}^{\infty} (g(y))^{\theta_{1}} dy \right)^{1/\theta_{1}} =$$

$$= c \cdot \frac{\theta_{1}}{(1-\beta)\theta_{1}-1} \|f\|_{BMO_{\varphi,\theta}^{k}} \|g\|_{L^{\theta_{1}}(0,+\infty)}. \tag{15}$$

Inequalities (13) and (15) show that for $1 \le \theta < \infty$ the following inequality is true

$$\left(\int\limits_{0}^{\infty}\left(\frac{G_{f}^{k,\alpha}\left(t\right)}{\varphi\left(t\right)}\right)^{\theta}\frac{dt}{t}\right)^{1/\theta}\leq c\cdot\left\Vert f\right\Vert _{BMO_{\varphi,\theta}^{k}},$$

where c > 0 is independent of f.

Hence, by means of inequality (1) we get

$$A_{\varphi,\theta}^{k,\alpha}\left(f\right) = \left(\int\limits_{0}^{\infty} \left(\frac{H_{f}^{k,\alpha}\left(t\right)}{\varphi\left(t\right)}\right)^{\theta} \frac{dt}{t}\right)^{1/\theta} \leq c \cdot \left(\int\limits_{0}^{\infty} \left(\frac{G_{f}^{k,\alpha}\left(t\right)}{\varphi\left(t\right)}\right)^{\theta} \frac{dt}{t}\right)^{1/\theta} \leq c_{1} \cdot \|f\|_{BMO_{\varphi,\theta}^{k}}\,,$$

the statement b) of the theorem and inequality (6) are valid in the case $1 \le \theta < \infty$.

The theorem is proved.

Theorems 1 and 2 yield

Theorem 3. Let $f \in L_{loc}(\mathbb{R}^n)$, $\alpha > 0$, $k = (\alpha) + 1$, $\varphi \in \Phi_k$ and condition (5) be fulfilled.

Then the following conditions 1) and 2) on f are equivalent:

- 1) $f \in BMO_{\varphi,\theta}^{k}$; 2) $a) \int_{R^{n}} \frac{|f(x)|}{1+|x|^{n+\alpha}} dx < +\infty$;

Moreover, $\|f\|_{BMO_{\omega,\theta}^k} \approx A_{\varphi,\theta}^{k,\alpha}(f)$, where the constants in the relation "\approx" are independent of f.

Let $BMO_{\varphi,\theta} := BMO_{\varphi,\theta}^1$, $BMO_{\varphi} := BMO_{\varphi,\infty}$. From the previous theorem we get the following statement in terms of modulus of harmonic oscillation $H_{f}(\delta)$.

Corollary 1. Let $f \in L_{loc}(\mathbb{R}^n)$, $\varphi \in \Phi_1$, and the following condition be fulfilled:

$$\delta \cdot \int_{\delta}^{\infty} \frac{\varphi(t)}{t^2} dt = O(\varphi(\delta)), \quad \delta > 0.$$
 (16)

Then the following conditions 1) and 2) are equivalent:

- 1) $f \in BMO_{\varphi,\theta};$ 2) a) $\int_{R^n} \frac{|f(x)|}{1+|x|^{n+1}} dx < +\infty;$
- b) $A_{\varphi,\theta}(f) < +\infty$, where

$$A_{\varphi,\theta}\left(f\right):=\left(\int\limits_{0}^{\infty}\left(\frac{H_{f}\left(t\right)}{\varphi\left(t\right)}\right)^{\theta}\frac{dt}{t}\right)^{1/\theta}\qquad for\ \ 1\leq\theta<\infty,$$

 $\frac{26}{\text{[L.R.Aliyeva]}}$

$$A_{\varphi,\infty}\left(f\right):=\sup\left\{ rac{H_{f}\left(t
ight)}{arphi\left(t
ight)}:t>0
ight\} .$$

Moreover $\|f\|_{BMO_{\varphi,\theta}} \approx A_{\varphi,\theta}(f)$, where the constants in the relation " \approx " don't depend on f.

Corollary 2. Let $f \in L_{loc}(\mathbb{R}^n)$, $\varphi \in \Phi_1$, and condition (16) be fulfilled. Then the following conditions 1) and 2) are equivalent:

1)
$$f \in BMO_{\varphi};$$

2) a) $\int_{\mathbb{R}^n} \frac{|f(x)|}{1+|x|^{n+1}} dx < +\infty,$

b)
$$A := \sup_{\substack{r>0 \ x \in R^n}} \frac{1}{\varphi(r)} \int_{R^n} P_r(x-t) |f(t) - P_r f(x)| dt < +\infty.$$

Moreover,

$$c_1 \cdot ||f||_{BMO_{\varphi}} \le A \le c_2 \cdot ||f||_{BMO_{\varphi}},$$

where c_1 and c_2 are some positive constants independent of f.

References

- [1]. Blasco O., Perez M.A. On functions of integrable mean oscillation. Rev. Mat. Complut., 2005, v. 18, No 2, pp. 465-477.
- [2]. DeVore R., Sharpley R. Maximal functions measuring smoothness. Memoir. Amer. Math. Soc., 1984, v. 47, No 293, pp. 1-115.
- [3]. Rzaev R.M. On boundedness of multidimensional singular integral operator in spaces $BMO_{\omega,\theta}^k$ and $H_{\omega,\theta}^k$. Proc. Azerb., Math. Soc., 1996, v. 2, pp. 164-175
- [4]. Rzaev R.M. A multidimensional singular integral operator in spaces defined by conditions on the k-th order mean oscillation. Dokl. Akad. Nauk (Russia), 1997, v. 356, No 5, pp. 602-605 (Russian).
- [5]. Rzaev R.M. Some growth conditions for locally summable functions. Abstracts of International conference on mathematics and mechanics. Baku, 2006,
- [6]. Rzaev R.M., Aliyeva L.R. On local properties of functions and singular integrals in terms of the mean oscillation. Cent. Eur. J. Math., 2008, v. 6, No 4, pp. 595-609.
- [7]. Rzaev R.M., Aliyeva L.R. Mean oscillation, Φ- oscillation and harmonic oscillation. Trans. NAS Azerb., 2010, v. 30, No 1, pp. 167-176.
- [8]. Stein E.M. Singular integrals and differentiability properties of functions. Princeton, New Jersey, 1970.

Lala R. Aliyeva

Institute of Mathematics and Mechanics of NAS of Azerbaijan.

9, F. Agayev str., AZ 1141, Baku, Azerbaijan.

Tel.: (99412) 539 47 20 (off.).

Received January 14, 2011; Revised March 18, 2011