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ON DEPENDENCE OF ENERGY EIGEN VALUE ON
THE ENDS OF THE INTERVAL

Abstract

Differentiability of the eigenvalue of energy with respect to the ends of the
interval is investigated by the motion of the particle in the neutral field and the
formula is obtained for its derivative. Using this, some important properties of
the eigenvalue of the energy are revealed and a formula is obtained for it.

1. Introduction. The problem on the motion of a particle in the central
field was one of the important ones in the course of the history of development of
quantum mechanics since in the special Coulomb field this problem is about the
hydrogen atom.

The central force field is characterized by the fact that potential energy of a
particle in such a field depends only on its distance r from some center (force center).
Behavior in the central force field forms foundation of atomic mechanics: the solution
of the general problem on the motion of electrons in the atom is based in this or
other degree on the results relating to the motion of one particle in the central force
field.

There are a lot of papers devoted to the calculation of the spectrum for different
fields within the bounds of non-relativistic quantum mechanics. This problem is of
practical interest in the semiconductor physics in discussing quantum systems with
single and multiple potential well.

In the relativistic quantum mechanics, the motion of the election in spheri-
cally symmetric fields was investigated to the end only for the case of free particle,
Coulomb fields, for the field of magnetic monopole, and combination of these fields
[1-4]. Other fields allowing exact solutions in the explicit form have not been found
get [5-7].

Recently, different properties of the quantum point situated in the external po-
tential field are under the great attention [8, 9].

From this point of view it would be very interesting to study the properties and
behavior of energy values with respect to some parameter [10, 11]. In the present
paper, change of the eigen values of energy with respect to the ends of the interval
is studied. The expression for its derivative is found and using this, the formula for
these eigen values is obtained.

2. Problem statement. It is known that the motion of a particle in the central
field is described by the equation

− a

r2
d

dr

(
r2

dR

dr

)
+

bR

r2
+ q (r)R = ER,

where a and b are constants, q (r) is interaction energy.
Multiplying this equation by r, we get

−a
d
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)
+Q (r)R = Er2R. (2.1)
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Here
Q (r) = b+ q (r) r2.

If we consider equation (2.1) on the bounded interval [s1, s2], 0 < s1 < s2 with
the boundary condition

R (s1) = 0, R (s2) = 0, (2.2)

we get a spectral problem. In this case the eigen values of energy will depend on
s = (s1, s2) i.e. E = E (s) = E (s1, s2). Study of this dependence and investigation
of extremal properties with respect to change of the interval [s1, s2] is of great in-
terest from the practical point of view.

3. Calculation of the derivative of energy eigen-values. It is known that
[13, p. 20] the energy eigen-values are calculated as follows:

E (s) = inf
R

J1 (s)

J2 (s)
, (3.1)

where

J1 (s) =

s2∫
s1

[
ar2

(
dR

dr

)2

+Q (r)R2

]
dr, (3.2)

J2 (s) =

s2∫
s1

r2R2 (r) dr. (3.3)

Here inf is taken over all the functions R ∈ C2 (s1, s2), satisfying boundary condition
(2.2). Relation (3.1) determines E (s) as a function dependent on s = (s1, s2).
Denote S =

{
s = (s1, s2) ∈ R2 : 0 < s1 < s2 < +∞

}
.

Theorem 1. The function E = E (s1, s2) is differentiable with respect to s1 and
s2 on S, and the following formula is valid

∂E
∂s1

= as21

(
∂R(s1)

∂r

)2
,

∂E
∂s2

= −as22

(
∂R(s2)

∂r

)2
.

(3.4)

Here R = R (r) is a normalized eigen-function, i.e.

s2∫
s1

r2R2 (r) dr = 1.

Proof. Take any couples s = (s1, s2) ∈ S, s = (s1, s2) ∈ S. Denote

s̃1 = max {s1, s1} , s̃2 = min {s2, s2} .

Calculate the increment of the functional (3.1). For that at first we calculate the
increment of the functional J1 ([12, p. 182]).

∆J1 ≡ J1 (s)− J1 (s) =

s2∫
s1

[
ar2

(
dR

dr

)2

+Q (r)R
2

]
dr−
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−
s2∫
s1

[
ar2

(
dR

dr

)2

+Q (r)R2

]
dr.

For simplicity of the statement we denote

A (R) = ar2
(
dR

dr

)2

+Q (r)R2. (3.5)

Then

∆J1 ≡

 s̃2∫
s̃1

A
(
R
)
dr −

s̃2∫
s̃1

A
(
R
)
dr

+

 s2∫
s1

A
(
R
)
dr −

s̃2∫
s̃1

A
(
R
)
dr

+

+

 s̃2∫
s̃1

A (R) dr −
s2∫
s1

A (R) dr

 .

It is clear that

s2∫
s1

A
(
R
)
dr −

s̃2∫
s̃1

A
(
R
)
dr = A

(
R (s̃2)

)
(s2 − s̃2)−A

(
R (s̃1)

)
(s1 − s̃1) + o (∥∆s∥) ,

where

∥∆s∥ =

√
|∆s1|2 + |∆s2|2.

Taking this into account, we have

∆J1 =

s̃2∫
s̃1

A (R) dr +A
(
R (s̃2)

)
(s2 − s̃2)−A

(
R (s̃1)

)
(s1 − s̃1)+

+A (R (s̃2)) (s̃2 − s2)−A (R (s̃1)) (s1 − s1) + o (∥∆s∥) .

Here
∆A (R) = A

(
R
)
−A (R) .

Taking into attention expression (3.5), we get

∆A (R) = 2ar2
dR

dr

d∆R

dr
+ 2Q (r)R∆R+ 2ar2

(
d∆R

dr

)2

+ 2Q (r) (∆R)2 .

Here ∆R = R−R.
Then

∆J1 = 2

s̃2∫
s̃1

[
ar2

dR

dr

d∆R

dr
+ 2Q (r)R∆R

]
dr+

+A (R (s̃2)) (s̃2 − s2)−A (R (s̃1)) (s1 − s̃1)+

+A (R (s̃2)) (s̃2 − s2)−A (R (s̃1)) (s̃1 − s1) + δ1 (∆s,∆R) . (3.6)
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Here
δ (∆s,∆u)

[
A
(
R (s̃2)

)
−A (R (s̃2))

]
(s1 − s̃1)−

−
[
A
(
R (s̃1)

)
−A (R (s̃1))

]
(s1 − s̃1) + 2ar2

(
d∆R

dr

)2

+ 2Q (r) (∆R)2 .

It is clear from (3.6) that

∆J1 = 2

s̃2∫
s̃1

[
a
d

dr

(
r2

dR

dr

)
−Q (r)R

]
∆Rdr + 2ar2

dR

dr
∆R

∣∣∣∣s̃1
s̃1

+

+A (R (s̃2)) (s2 − s2)−A (R (s̃1)) (s1 − s1) + δ1 (∆s,∆R) . (3.7)

Considering that R = R (r) satisfies equation (2.1), we have

∆J1 = 2

s̃2∫
s̃1

Er2R∆Rdr + J11 + J12 +A (R (s̃2)) (s2 − s2)−

−A (R (s̃1)) (s1 − s1) + δ1 (∆s,∆R) , (3.8)

where

J11 = −2as̃21
dR (s̃1)

dr
∆R (s̃1) ,

J12 = 2as̃22
dR (s̃2)

dr
∆R (s̃2) .

Taking into account boundary conditions (2.2), we calculate ∆R (s̃1) and ∆R (s̃2).

∆R (s̃1) = R (s̃1)−R (s̃1) =
[
R (s̃1)−R (s1)

]
+ [R (s1)−R (s̃1)] =

=
dR (s̃1)

dr
(s1 − s̃1) =

dR (s̃1)

dr
(s1 − s̃1) +

dR (s̃1)

dr
(s1 − s̃1)−

−d∆R (s̃1)

dr
(s1 − s̃1) =

dR (s̃1)

dr
(s1 − s1)−

d∆R (s̃1)

dr
(s1 − s̃1) .

Similarly,

∆R (s̃2) = −dR (s̃2)

dr
(s1 − s1)−

d∆R (s̃2)

dr
(s1 − s̃1) .

Taking this into account in the expression of the functions J11 and J12 we get

J11 = 2as̃21

(
dR (s̃1)

dr

)2

(s1 − s1) + 2as̃21
dR (s̃1)

dr
(s1 − s̃1) .

J12 = −2as̃22

(
dR (s̃2)

dr

)
(s2 − s2)− 2as̃22

d∆R (s̃2)

dr
(s2 − s̃2) .

Substituting the obtained expressions J11, J12 in (38), we have

∆J1 = 2

s̃2∫
s̃1

Er2R∆Rdr + 2as̃21

(
dR (s̃1)

dr

)2

(s1 − s1)−
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−2as̃22

(
dR (s̃2)

dr

)2

(s2 − s2)+

+A (R (s̃2)) (s2 − s2)−A (R (s̃1)) (s1 − s1) + δ2 (∆s,∆R) , (3.9)

where

δ2 (∆s,∆R) = δ1 (∆s,∆R)− 2as21
d∆R (s̃1)

dr
(s1 − s̃1)− 2as̃22

d∆R (s̃2)

dr
(s2 − s̃2) .

Passing from the point s̃1, s̃2 to s1, s2, we have

∆J1 = 2

s2∫
s1

Er2R∆Rdr + 2as21

(
dR (s1)

dr

)
(s1 − s1)−

−2as22

(
dR (s2)

dr

)2

(s2 − s2)+

+A (R (s2)) (s2 − s2)−A (R (s1)) (s1 − s1) + δ3 (∆s,∆R) , (3.10)

Here

δ3 (∆s,∆R) = δ2 (∆s,∆R) +

s̃2∫
s̃1

Er2R∆Rdr −
s2∫
s1

Er2R∆Rdr+

+2

[
as̃21

(
dR (s̃1)

dr

)2

− as21

(
dR (s1)

dr

)2
]
(s1 − s1)−

−2

[
as̃22

(
dR (s̃2)

dr

)2

− as22

(
dR (s2)

dr

)2
]
(s2 − s2)+

+ [A (R (s̃2))−A (R (s2))] (s2 − s2)− [A (R (s̃1))−A (R (s1))] (s1 − s1) .

Now calculate the increment of the function J2 (s):

∆J2 ≡ J2 (s)− J2 (s) =

s2∫
s1

r2R
2
dr −

s2∫
s1

r2R2dr =

s2∫
s1

r2R∆Rdr−

−s22R
2 (s2) (s2 − s2) + s21R

2 (s1) (s1 − s1) + o (∥∆s∥) . (3.11)

Denote

I (s) =
J1 (s)

J2 (s)
.

Then

δI (s) =
δJ1J2 − J1δJ2

J2
2

=
δJ1
J2

− J1
J2

δJ2.

Taking into account (3.1), hence we get

δI (s) =
1

J2
δJ1 − E (s) · δJ2 (3.12)
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If we show
δ3 (∆s,∆R) = o (∥∆s∥) ,

from (3.10) we find δJ1 (s).
To prove this, by the substitution of ξ = r−s1

s2−s1
we reduce equation (2.1) to the

equation given on the interval [0, 1]. The coefficients of this equation depend on s1,
s2. Using the results of the work [14] and the form of the function δ3 (∆s,∆R), we
see

δ3 (∆s,∆R) = o (∥∆s∥) .

Let R = R (r) be a normalized eigen-function in the domain [s1, s2], i.e.

J2 (s) =

s2∫
s1

r2R2 (r) dr = 1. (3.13)

Then from (3.12) we have

δI (s) = 2

s2∫
s1

Er2R∆Rdr − 2as21

(
dR (s1)

dr

)2

(s1 − s1)−

+2as22

(
dR (s2)

dr

)2

(s2 − s2) +A (R (s2)) (s1 − s1)−A (R (s1)) (s1 − s1)−

−
s2∫
s1

Er2R∆Rdr + E · s22R2 (s2) (s2 − s2) + E · s21R2 (s1) (s1 − s1) .

Here, taking into account expression (3.5) for A (R), under boundary conditions
(2.2) and get the equality

δI (s) = as21

(
dR (s1)

dr

)2

(s1 − s1)− as22

(
dR (s2)

dr

)2

(s2 − s2) .

Taking into attention (3.1), hence we get

δE = as21

(
dR (s1)

dr

)2

(s1 − s1)− as22

(
dR (s2)

dr

)2

(s2 − s2) ,

i.e.
∂E

∂s1
= as21

(
dR (s1)

dr

)2

,

∂E

∂s1
= −as22

(
dR (s2)

dr

)2

.

The theorem is proved.
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4. Formula for energy eigen-values
From the obtained expressions (3.4) it follows that the energy eigen-values don’t

decrease with respect to S1 and don’t increase with respect to S2. This is directly
obtained from the condition

∂E

∂s1
= as21

(
dR (s1)

dr

)2

≥ 0,
∂E

∂s2
= −as22

(
dR (s2)

dr

)2

≤ 0

Note this known fact was reflected in [13, p. 28].
Theorem 2. If Q (r) = b + r2q (r) = const, i.e. q (r) = c

r2
, then for the

first energy eigen-value of problem (2.1), (2.1) on the interval, [s1, s2] the following
formula is true

E (s1, s2) =
a

2

[
s22

(
dR (s2)

dr

)2

− s21

(
dR (s1)

dr

)2
]
. (4.1)

Proof. Let Q (r) = Q = const. We write equation (2.1) in the equivalent form

− a

t2
d

dr

(
r2

dR
(
r
t

)
dr

)
+Q = E

r2

t2
R
(r
t

)
,

r

t
∈ (s1, s2) .

Denote
R (r) = R

(r
t

)
.

Then
dR

dr
=

1

t

dR (y)

dy
,

where y = z
t . Taking this into account, we see that R̃ (r) is an eigen-function, E

t2
is

an eigen-value of problem (2.1) (2.2) on the interval [ts1, ts2]. Then by the results
of theorem 1, we have

− 2

t3E
= as21

(
dR
(
r
t

)
dr

)2

− as22

(
dR
(
r
t

)
dr

)2

.

Having accepted t = 1, we get (4.1).
The theorem is proved.
This shows that the quantities dR(s1)

dr and dR(s2)
dr uniquely determine the energy

eigen-values.

5. Conclusions. The properties of energy eigen-values with respect to the ends
of the interval is studied by the motion of the particle in the neutral field, and the
formula is obtained for its derivative. These formulae enable to investigate different
extremal properties of the energy eigen-values.
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