Vladimir Sh. YUSUFOV

SEMIGROUPS OF LOCAL HOMEOMORPHIC MAPPINGS

Abstract

In this paper semigroups of local homeomorphic mappings of topological spaces are studied.

1.1. Let x be a local compact Hausdorf space under the condition that for every two points $\xi, \eta \in X$ and for every neighbourhood V_{ξ} of ξ there exists an open homeomorphic mapping $a: X \stackrel{into}{\to} X$ under the condition that $aX \subseteq V_{\xi}$, $a\eta = \xi$. We'll denote the class of all such spaces \widetilde{L} . In particular, the finite dimensional Euclidean spaces and the cube $D^{\tau}, \tau \geq \aleph_0$ [2] belong to the class \widetilde{L} . It is clear that if Ω is an open subset of the space $X \in \widetilde{L}$, then $\Omega \in \widetilde{L}$. We'll denote $OH(X), X \in \widetilde{L}$ the semigroup of all open homeomorphic mappings $X \stackrel{into}{\to} X$ and $LH(X), X \in \widetilde{L}$ the semigroup of all local homeomorphic mappings $X \stackrel{into}{\to} X$. Let $X \in \widetilde{L}$ and $\{K_i\}_{i \in I}$ be a system of compacts of X under the condition that $\bigcup IntK_i = X$. We'll denote

 $OH_{\{K_i\}}(X)$ the set of all such open homeomorphic mappings $a: X \xrightarrow{into} X$ that $aX \subseteq K_{i_a}, i_a \in I$. Let D_X be an arbitrary subsemigroup of the semigroup LH(X) such that $OH_{\{K_i\}}(X) \subseteq D_X \subseteq LH(X)$ and D_X^0 be the set of all such elements a of D_X that \overline{aX} is a compact. Obviously, D_X^0 is an ideal [1] of D_X .

Theorem 1.2. Let $X, Y \in \widetilde{L}$. If the semigroups D_X and D_Y are isomorphic, then X and Y are homeomorphic.

Lemma 1.3. Let x_0 be a solution of the equation $ax = b, a, b \in D_X$. If $x_0 \in D_X^0$ then $b \in D_X^0$. Besides $\overline{bX} \subseteq aX$.

Lemma 1.4. Let $\xi \in X$ and V_{ξ} be an arbitrary neighbourhood of the point ξ . There exists such an element $h \in D_X^0$ that $\xi \in hX, hX \subseteq V_{\xi}$ and $\varphi h \in D_Y^0$.

Lemma 1.5. Let be an arbitrary point of X and a be an element D_X^0 of under the condition $\xi \in aX$, $\varphi a \in D_Y^0$. We'll denote $\{a_\gamma\}_{\gamma \in \Gamma}$ the system of all elements of D_X^0 under the conditions:

- 1) $\xi \in a_{\gamma}X, \gamma \in \Gamma$
- 2) for each $\gamma \in \Gamma$ there exists an element $c_{\gamma} \in D_X^0$ such that $ac_{\gamma} = a_{\gamma}$ and $\varphi(c_{\gamma}) \in D_Y^0$.

Lemma 1.6. Let $\xi \in \Omega_X$ and V_{ξ} be an arbitrary neighbourhood of ξ . There exists $\gamma_0 \in \Gamma$ such that $a_{\gamma_0}X \subseteq V_{\xi}$.

Let b an element of D_X^0 such that $\xi \in bX$, $\varphi b \in D_Y^0$ and $\{b_s\}_{s \in S}$ be a system of all elements of D_X^0 under the conditions 1), 2).

Lemma 1.7. Let $\{a_{\gamma_m}\}_{m=1}^n$ be a finite subsystem of the system $\{a_{\gamma}\}_{\gamma\in\Gamma}$ and $\{b_{s_k}\}_{k=1}^l$ be a finite subsystem of the system arbitrary neighbourhood of ξ . There exists an element $c \in \{b_s\}_{s \in S}$, V_{ξ} be an D_X^0 under the conditions:

$$a)\xi \in cX \subseteq V_{\xi},$$

b) for each γ_m and s_k there exist d_{γ_m} , $l_{s_k} \in D_X^0$ such that

$$a_{\gamma_m}d_{\gamma_m} = c, b_{s_k}l_{s_k} = c, \varphi\left(d_{\gamma_m}\right), \varphi\left(l_{s_k}\right) \in D^0_{\gamma}, \ m = 1, 2, ..., n, \ k = 1, 2, ..., l.$$

It is clear that $c \in \{a_{\gamma}\}_{{\gamma} \in \Gamma}$ and $c \in \{b_s\}_{s \in S}$.

Lemma 1.8. The set $\bigcap_{\gamma \in \Gamma} \overline{a_{\gamma}X} = \bigcap_{\gamma \in \Gamma} a_{\gamma}X$ consists of a unique point ξ .

Lemma 1.9. The system of sets $\left\{\overline{(\varphi a_{\gamma})Y}: \gamma \in \Gamma\right\}$ is a centered system of closed sets of the compact $\overline{(\varphi a)Y}$ and $\bigcap_{\gamma \in \Gamma} \overline{(\varphi a_{\gamma})Y} = \bigcap_{\gamma \in \Gamma} (\varphi a_{\gamma})Y$. **Lemma 1.10.** The set $\bigcap_{\gamma \in \Gamma} \overline{(\varphi a_{\gamma})Y} = \bigcap_{\gamma \in \Gamma} (\varphi a_{\gamma})Y$ consists of a unique point

 $\xi' \in Y$. The point ξ' doesn't depend on an element $b \in D_X^0$ such that $\xi \in bX$, $\varphi b \in D_V^0$.

We'll denote the mapping $f\xi = \xi'$. The analogous mapping for the isomorphism φ^{-1} we'll denote q.

Lemma 1.11. The mappings f and g are bijective and $g = f^{-1}$.

Proof. Let ξ' be an arbitrary point of Y and $a' \in D_Y^0$ such that $\xi' \in a'Y, \varphi^{-1}a' \in \mathcal{C}$ $D_X^0, \{a_s'\}_{s \in S}$ be a system of all elements of D_Y^0 under the conditions 1), 2) for the element a' and the point ξ' . By virtue of lemma 1.10 the set $\bigcap_{s \in S} (\varphi^{-1}a'_{\gamma}) X$ consists of a unique point ξ and $g\xi' = \underline{\xi} = X$. It follows from $\varphi^1 a'$. $\varphi^{-1}c'_s = \varphi^{-1}a'_s$, the condition 2, lemma 1.3 that $\overline{(\varphi^{-1}a'_s)X} \subseteq (\varphi^{-1}a')X$ and $\xi \in (\varphi^{-1}a')X$. Let $\{a_{\gamma}\}_{{\gamma}\in\Gamma}$ be the system of all elements of D_X^0 under the conditions 1), 2) for the element $\varphi^{-1}a'$ and the point ξ . For each $\gamma \in \Gamma$ the equations $(\varphi^{-1}a') x_{\gamma} = a_{\gamma}$ are

solvable. It's clear that $\{\varphi^{-1}a_s'\}_{s\in S}\subseteq \{a_\gamma\}_{\gamma\in\Gamma}$ and $\bigcap_{\gamma\in\Gamma}(\varphi a_\gamma)Y\subseteq\bigcap_{s\in S}a_\gamma'Y=\xi'.$ Since $\bigcap_{\gamma\in\Gamma}(\varphi a_\gamma)Y$ consists of a unique point, then $\bigcap_{\gamma\in\Gamma}(\varphi a_\gamma)Y=\xi'.$ Hence $f\xi = \xi'$. As $g\xi' = \xi$, then $gf\xi = \xi, \xi \in X$ and $fg\xi' = \xi', \xi \in Y$.

Lemma 1.12. If $a \in D_X^0$, $\varphi a \in D_Y^0$, then

$$faX = (\varphi aY)$$
.

Proof. Let $\{a_{\gamma}\}_{{\gamma}\in\Gamma}$ be a system consisting of all elements of D_X^0 under the conditions 1), 2) for the element $a \in D_X^0$ and the point $\xi \in aX$, then $\bigcap_{\gamma \in \Gamma} (\varphi a_{\gamma}) Y =$ $f\xi$. From the condition 2 and lemma 1.3 it follows that $\varphi a \cdot \varphi c_{\gamma} = \varphi a_{\gamma}$, $f\xi \in$ $\overline{(\varphi a_{\gamma})Y} \subseteq (\varphi a)Y$. Thus $faX \subseteq \varphi aY$. Analogously if $\xi' \in (\varphi a)Y$, then $g\xi' = \varphi aY$. $f^{-1}\xi' \in aX$. It follows $f^{-1}(\varphi a)Y \subseteq aX$ and so $(\varphi a)Y \subseteq faX$.

Lemma 1.13. The mappings f and f^{-1} are continuous.

Proof. Let V' be an arbitrary neighbourhood of the point $f\xi$. By virtue of lemma 1.4 there exists an element $a' \in D_V^0$ such that $f\xi \in a'Y \subseteq V'$ and $\varphi^{-1}a' \in D_X^0$. From lemma 1.12 it follows that $f^{-1}(a'Y) = (\varphi^{-1}a')X$ and $a'Y = (\varphi^{-1}a')X$ $f(\varphi^{-1}a')X$. The set $(\varphi^{-1}a')X$ is a neighbourhood of the point ξ and $f(\varphi^{-1}a')X =$ $a'Y \subseteq V'$. One can prove that the mapping f^{-1} is continuous in the same way.

Theorem 1.14. Let $X, Y \in L$. If the semigroups D_X and D_Y are isomorphic, then it holds:

$$\varphi c = fcf^{-1}, c \in D_X,$$

where f is a homeomorphism X onto Y induced by the isomorphism φ of the semigroups D_X and D_Y .

Corollary 1.15. Let $X \in L$. For every automorphism ψ of the semigroup D_X it holds:

$$\psi c = gcg^{-1}, c \in D_X,$$

where g is a homeomorphism X onto itself induced by the automorphism of the semigroup D_X .

Proof. Let ξ be an arbitrary point of X, a be an element of D_X^0 such that $\xi \in aX, \ \varphi a \in D_Y^0 \ \text{and} \ \{a_\gamma\}_{\gamma \in \Gamma}$ be a system of all elements of D_X^0 under the conditions 1), 2).

The following equalities take place:

$$\bigcap_{\gamma \in \Gamma} a_{\gamma} X = \xi, \quad \bigcap_{\gamma \in \Gamma} (\varphi a_{\gamma}) Y = f \xi,$$

$$\bigcap_{\gamma \in \Gamma} c a_{\gamma} X = c \xi, \quad \bigcap_{\gamma \in \Gamma} \varphi \left(c a_{\gamma} \right) Y = (\varphi c) f \xi,$$

$$a c_{\gamma} = a_{\gamma}, \gamma \in \Gamma, \varphi a \cdot \varphi c_{\gamma} = \varphi a_{\gamma}, \gamma \in \Gamma,$$

$$c a c_{\gamma} = c a_{\gamma}, \gamma \in \Gamma, \varphi \left(c a \right) \cdot \varphi c_{\gamma} = \varphi \left(c a_{\gamma} \right), \gamma \in \Gamma,$$

$$c_{\gamma} \in D_{X}^{0}, \quad \varphi \left(c_{\gamma} \right) \in D_{Y}^{0}.$$

Since D_X^0 is an ideal of D_X and D_Y^0 is an ideal of D_Y , then $ca \in D_X^0$, $\varphi(ca) =$ $\varphi c \cdot \varphi a \in D_Y^0$.

Let us denote $\{b_s\}_{s\in S}$ the system of all elements of D_X^0 under the conditions 1), 2) for the point $c\xi$ and the element ca. The system $\{ca_{\gamma}\}_{{\gamma}\in\Gamma}$ is a subsystem of the system $\{b_s\}_{s\in S}$. Since $\bigcap_{{\gamma}\in\Gamma}\varphi\left(ca_{\gamma}\right)Y=(\varphi c)\,f\xi$, so $fc\xi=\bigcap_{s\in S}(\varphi b_s)\,Y=\bigcap_{{\gamma}\in\Gamma}\varphi\left(ca_{\gamma}\right)Y=(\varphi c)\,f\xi$ $(\varphi c) f \xi, \xi \in X$. By virtue $f^{-1}Y = X$ for every point $\xi \in X$ there exists a unique point $\xi' \in Y$, such that $f^{-1}\xi' = \xi$. We obtain the equality

$$(\varphi c) \xi' = f c f^{-1} \xi', \quad \xi' \in Y.$$

Corollary 1.16. Let $X, Y \in \widetilde{L}$. If semigroups LH(X) and LH(Y) are isomorphic, then every isomorphism of the semigroups LH(X) and LH(Y) maps OH(X)onto OH(Y).

Corollary 1.17. Let $X \in \widetilde{L}$. The semigroups LH(X) and OH(X) are not isomorphic.

References

- [1] Clifford A.H., Preston G.B. The algebraic theory of semigroups. M., Mir, 1972 (Russian).
- [2] Alexandrov P.S. Introduction in set theory and general topology. M., Nauka, 1977 (Russian).

 $\frac{146}{[V.Sh.\,Yusufov]}$

Vladimir Sh. Yusufov

Institute Mathematics and Mechanics of NAS of Azerbaijan 9, F. Agayev str., AZ1141, Baku, Azerbaijan Tel.: (99412) 539 47 20 (off.).

Received March 03, 2011; Revised April 05, 2011