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Yashar T. MEHRALIYEV

INVESTIGATION OF THE CLASSICAL SOLUTION
OF A BOUNDARY VALUE PROBLEM FOR A

SECOND ORDER PARABOLIC EQUATION WITH
NON-CLASSICAL BOUNDARY CONDITIONS

Abstract

The existence and uniqueness of the classic solution is proved for a second
order parabolic equation with non-classical boundary conditions.

In the domain DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T} consider the equation

a1 (t)ut (x, t) + a0 (t)u (x, t) = uxx (x, t) + f (x, t) (1)

with boundary conditions:

u (x, 0) + δu (x, T ) = ϕ (x) (0 ≤ x ≤ 1) , (2)

ux (0, t) = 0, ux (1, t) + duxx (1, t) = 0 (0 ≤ t ≤ T ) , (3)

where d > 0, δ ≥ 0 are given numbers, a0 (t), a1 (t) > 0, ϕ (x), f (x, t) are given
functions, u (x, t) is a desired function, and under the classic solution of problem (1)-
(3) we understand the function u (x, t) continuous in the closed domain DT together
with all its derivatives contained in equation (1) and satisfying all the conditions
(1)-(3) in the ordinary sense. The following lemma is valid.

Lemma 1. Let δ ≥ 0, 0 < a1 (t), a0 (t) ∈ C [0, 1]

ϕ (x) ∈ C [0, 1] , dϕ (1) +

1∫
0

ϕ (x) dx = 0, (4)

f (x, t) ∈ C1,0
x,t (DT ) , df (1, t) +

1∫
0

f (x, t) dx = 0 (0 ≤ t ≤ T ) . (5)

Then

du (1, t) +

1∫
0

u (x, t) dx = 0 (0 ≤ t ≤ T ) . (6)

is fulfilled for the classical solution of problem (1)-(3).
Proof. Allowing for (3) and (5), from equation (1) we have:

a1 (t)
d

dt

du (1, t) +

1∫
0

u (x, t) dx

+

+a0 (t)

du (1, t) +

1∫
0

u (x, t) dx

 = 0 (0 ≤ t ≤ T ) .
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Accept the denotation

y (t) ≡ du (1, t) +

1∫
0

u (x, t) dx = 0 (0 ≤ t ≤ T ) , (7)

and rewrite the last relation in the form:

a1 (t) y′ (t) + a0 (t) y (t) = 0 (0 ≤ t ≤ T ) . (8)

Allowing for (2) and (4), from (7) it is easy to see that

y (0) + y (T ) = dϕ (1) +

1∫
0

ϕ (x) dx = 0. (9)

Obviously, the general solution of (8) is of the form:

y (t) = ce
−
t∫
0

a0(τ)
a1(τ)

dτ
(0 ≤ t ≤ T ) . (10)

Hence, allowing for (9), we get:

c

1 + δe
−
T∫
0

a0(τ)
a1(τ)

dτ

 = 0. (11)

By δ ≥ 0, from (11) we get c = 0 and substituting it into (10), we deduce
y (t) = 0 (0 ≤ t ≤ T ). Consequently, from (7) it is clear that condition (6) is also
fulfilled. The lemma is proved.

Now, for investigating the classical solution of problem (1)-(3), give some known
facts and establish some new auxiliary facts.

Consider the spectral problem [3]

y′′ (x) + λy (x) = 0 (0 ≤ x ≤ 1) , (12)

y′ (0) = 0, y′ (1) = dλy (1) (d > 0) , (13)

that has only eigen functions yk (x) =
√

2 cos
(√
λkx

)
, k = 0, 1, ..., with positive

eigen-values λk from the equation tg
√
λ = −d

√
λ. We assign zero index to any

eigen function, and enumerate the remaining ones in the order of increasing of eigen
values.

It is known [3] that beginning with some number N , the following estimations
hold: ∣∣∣√λk − π/2− (k − 1)π

∣∣∣ < 1

(dπk)
. (14)

Compare the system {yk (x)} without the function y0 (x) with the known system
{vk (x)}, vk (x) =

√
2 cos

√
µkx, where

√
µk = π

2 + π (k − 1), k = 1, 2, ..., that is an
orthonormalized basis in L2 (0, 1). Similarly [1], for k ≥ N allowing for (14) the
following relations are true:

‖yk (x)− vk (x)‖2L2(0,1)
<

2

3 (dkπ)2
.
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Thus,
∞∑
k=1

‖yk (x)− vk (x)‖2L2(0,1)
<

1

9d2
, (15)

hence the convergence of the series from the left hand side of this inequality holds.

The following lemma is proved similar to [1].

Lemma 2. The biorthogonally conjugated system {zk (x)}, k = 1, 2, ..., is deter-
mined by the formula

zk (x) =
√

2
(

cos
(√

λkx
)
− cos

(√
λk

))
/
(

1 + d cos2
(√

λk

))
.

The following theorem is valid.

Theorem 1 [3]. The system {yk (x)}, k = 1, 2, ... forms a Riesz basis in the
space L2 (0, 1).

Let now ηk (x) =
√

2 sin
(√
λkx

)
, ξk (x) =

√
2 sin

(√
µkx

)
, k = 1, 2, .... Then

similar to (15), the following inequalities are true

‖ηk (x)− ξk (x)‖2L2(0,1)
<

1

3 (dkπ)2
, k ≥ N,

∞∑
k=1

‖ηk (x)− ξk (x)‖2L2(0,1)
≤ 1

9d2
. (16)

Assume that g (x) ∈ L2 (0, 1). Then, allowing for (15), (16), similar to [4] we get ∞∑
k=1

 1∫
0

g (x) yk (x) dx

2


1/2

≤M ‖g (x)‖L2(0,1)
, (17)

 ∞∑
k=1

 1∫
0

g (x) ηk (x) dx

2


1/2

≤M ‖g (x)‖L2(0,1)
, (18)

where

M =

{
N (1 +N) + 2 +

1

9d2

}1/2

. (19)

Since the system of functions {yk (x)}, k = 1, 2, ... is a Riesz basis in the space
L2 (0, 1), then for any function g (x) ∈ L2 (0, 1) it is valid

g (x) =

∞∑
k=1

gkyk (x) , (20)

where

gk = (g (x) , zk (x)) =

1∫
0

g (x) zk (x) dx.
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Multiply (20) scalarly by g (x) , use (17) and Cauchy-Bunyakovsky inequalities.
Then we have:

‖g (x)‖2L2(0,1)
≤

( ∞∑
k=1

g2k

)1/2

M ‖g (x)‖L2(0,1)

or

M−1 ‖g (x)‖L2(0,1)
≤

( ∞∑
k=1

g2k

)1/2

. (21)

Further, it is easy to see that

|gk| ≤

∣∣∣∣∣∣
1∫
0

g (x) yk (x) dx

∣∣∣∣∣∣+
1

d
√
λk

∣∣∣∣∣∣
1∫
0

g (x) dx

∣∣∣∣∣∣ ,
hence we find: ( ∞∑

k=1

g2k

)1/2

≤M0 ‖g (x)‖L2(0,1)
, (22)

where

M0 = 2

M +
1

d

( ∞∑
k=1

1

λk

)1/2
 . (23)

From inequalities (21) and (22) we deduce:

M−1 ‖g (x)‖L2(0,1)
≤

( ∞∑
k=1

g2k

)1/2

≤M0 ‖g (x)‖L2(0,1)
, (24)

where M and M0 are determined by relations (19) and (23), respectively.

Assume g (x) ∈W 1
2 (0, 1) and I (g) ≡ dg (1) +

1∫
0

g (x) dx = 0. Then we have:

gk =

√
2

αk

1∫
0

g (x)
(

cos
(√

λkx
)
− cos

(√
λk

))
dx =

= −
√

2

αk

1√
λk

1∫
0

g′ (x) sin
(√

λkx
)
dx, (25)

where

αk = 1 + d cos2
√
λk > 1.

Hence, allowing for (18) we find:( ∞∑
k=1

(√
λk |gk|

)2)1/2

≤M
∥∥g′ (x)

∥∥
L2(0,1)

. (26)
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Let g (x) ∈W 2
2 (0, 1), I (g) = 0, g′ (0) = 0. Then, from (25) we find:

gk =
−
√

2

αk

1

λk

g′ (1) cos
(√

λk

)
+

1∫
0

g′′ (x) cos
(√

λkx
)
dx

 . (27)

Hence, allowing for (17), we find:( ∞∑
k=1

(λk |gk|)2
)1/2

≤ 2m0

∣∣g′ (1)
∣∣+
√

2M
∥∥g′′ (x)

∥∥
L2(0,1)

, (28)

where

m0 =
1

d

( ∞∑
k=1

1

λk

)1/2

. (29)

Assume now that g (x) ∈ W 3
2 (0, 1), I (g) = 0, g′ (0) = 0, g′ (1) + dg′′ (1) = 0.

Then from (27) we have:

gk = −
√

2

αk

1√
λk

1∫
0

g′′′ (x) cos
(√

λkx
)
dx. (30)

Allowing for (18), hence we get:( ∞∑
k=1

(
λk
√
λk |gk|

)2)1/2

≤M
∥∥g′′′ (x)

∥∥
L2(0,1)

. (31)

Further, let g (x) ∈W 4
2 (0, 1), I (g) = 0, g′ (0) = 0, g′ (1)+dg′′ (1) = 0, g′′′ (0) = 0.

Then from (30) we find:

gk =

√
2

αk

1

λ2k

 1

d
√
λk
g′′′ (1) sin

(√
λk

)
+

1∫
0

g(4) (x) cos
(√

λkx
)
dx

 . (32)

Allowing for (27), hence we have:( ∞∑
k=1

(
λ2k |gk|

)2)1/2

≤ 2m0

∣∣g′′′ (1)
∣∣+
√

2M
∥∥∥g(4) (x)

∥∥∥
L2(0,1)

. (33)

Now, let g (x) ∈W 2
2 (0, 1), I (g) = 0, g′ (0) = 0. Then it holds the expansion

g′′ (x) =
∞∑
k=1

(
g′′ (x) , zk (x)

)
yk (x) , (34)

where (
g′′ (x) , zk (x)

)
=

1∫
0

g′′ (x) zk (x) dx. (35)
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It is easy to see that

1∫
0

g′′ (x) zk (x) dx = −λk
√

2

αk

1∫
0

g (x)
(

cos
(√

λkx
)
− cos

(√
λk

))
dx

or (
g′′ (x) , zk (x)

)
= −λk (g (x) , zk (x)) . (36)

Substituting (36) into (34), we find:

g′′ (x) = −
∞∑
k=1

λk (g (x) , zk (x)) yk (x) . (37)

Similar to (21) we find:

∥∥g′′ (x)
∥∥
L2(0,1)

≤M

( ∞∑
k=1

(λkgk)
2

)1/2

. (38)

Since by theorem 1 [3] the system {yk (x)} (k = 1, 2, ...) forms a Riesz basis, it is
obvious that each classical solution of problem (1)-(3) is of the form:

u (x, t) =
∞∑
k=1

uk (t) yk (x) , (39)

where

uk (t) = (u (x, t) , zk (x)) =

1∫
0

u (x, t) zk (x) dx,

moreover,

yk (x) =
√

2 cos
(√

λkx
)
, zk (x) =

=
√

2
(

cos
(√

λkx
)
− cos

(√
λk

))
/
(

1 + d cos2
(√

λk

))
.

Assume that (4) and (5) are fulfilled. Then, allowing for lemma 1, from (37) we
have:

uxx (x, t) = −
∞∑
k=1

λkuk (t) yk (x) . (40)

Applying the method of separation of variables for determining the desired
uk (t) (k = 1, 2, ...), allowing for (35) and (40) we find:

a1 (t)u′k (t) + λkuk (t) = fk (t)− a0 (t)uk (t) (0 ≤ t ≤ T ) , (41)

uk (0) + δuk (T ) = ϕk (k = 1, 2, ...) , (42)

where

fk (t) =

1∫
0

f (x, t) zk (x) dx, ϕk =

1∫
0

ϕ (x) zk (x) dx (k = 1, 2, ...) .
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By solving problem (41), (42), we have:

uk (t) =
ϕke

−
t∫
0

λkds

a1(s)

1 + δe
−
T∫
0

λkds

a1(s)

+

t∫
0

Fk (τ ;u)

a1 (τ)
e
−
t∫
τ

λkds

a1(s)dτ−

− δe
−
T∫
0

λkds

a1(s)

1 + δe
−
T∫
0

λkds

a1(s)

T∫
0

Fk (τ ;u)

a1 (τ)
e
−
t∫
τ

λkds

a1(s)dτ (k = 1, 2, ...) , (43)

where

Fk (t;u) = fk (t)− a0 (t)uk (t) .

Further, allowing for (43), from (41) we have:

u′k (t) = −λk + a0 (t)

a1 (t)


ϕke

−
t∫
0

λkds

a1(s)

1 + δe
−
T∫
0

λkds

a1(s)

+

t∫
0

Fk (τ ;u)

a1 (τ)
e
−
t∫
τ

λkds

a1(s)dτ−

− δe
−
T∫
0

λkds

a1(s)

1 + δe
−
T∫
0

λkds

a1(s)

T∫
0

Fk (τ ;u)

a1 (τ)
e
−
t∫
τ

λkds

a1(s)dτ

+
fk (t)

a1 (t)
(k = 1, 2, ...) . (44)

Substituting (43) into (39), we find:

u (x, t) =
∞∑
k=1


ϕke

−
t∫
0

λkds

a1(s)

1 + δe
−
T∫
0

λkds

a1(s)

+

t∫
0

Fk (τ ;u)

a1 (τ)
e
−
t∫
τ

λkds

a1(s)dτ−

− δe
−
T∫
0

λkds

a1(s)

1 + δe
−
T∫
0

λkds

a1(s)

T∫
0

Fk (τ ;u)

a1 (τ)
e
−
t∫
τ

λkds

a1(s)dτ

 yk (x) . (45)

Proceeding from definition of the classical solution of problem, (1)-(3), we prove
the following lemma.

Lemma 3. Let all the conditions of lemma 1 be fulfilled. If u (x, t) is any
classical solution of problem (1)-(3), the functions

uk (t) =

1∫
0

u (x, t) zk (x) dx (k = 1, 2, ...)

satisfy on [0, T ] the system (43).
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Proof. Let u (x, t) be any classical solution of problem (1)-(3). Then, it is
obvious that

1∫
0

ut (x, t) zk (x) dx =
d

dt

 1∫
0

u (x, t) zk (x) dx

 = u′k (t) (k = 1, 2, ...) , (46)

moreover uk (t) ∈ C1 [0, T ] (k = 1, 2, ...).
Further, by lemma 1 and allowing for (36), we have:

1∫
0

uxx (x, t) zk (x) dx = −λk

1∫
0

u (x, t) zk (x) dx (k = 1, 2, ...) . (47)

Now, having multiplied the both hand sides of equation (1) by the function
zk (x), integrating with respect to x the obtained equality from 0 to 1, and using
relations (46), (47), we get:

a1 (t)u′k (t) + a0 (t)uk (t) = −λkuk (t) + fk (t) (k = 1, 2, ..., 0 ≤ t ≤ T ) . (41)

Further, multiply the both hand sides of (2) by zk (x) and integrate the obtained
equality with respect to x from 0 to 1. Then we have:

uk (0) + δuk (T ) = ϕk (k = 1, 2, ...) . (42)

Thus, uk (t) (k = 1, 2, ...) is the solution of problem (41), (42). Hence, as
it was said before obtaining system (43), it directly follows that the functions
uk (t) (k = 1, 2, ...) satisfy on [0, T ] the system (43). The lemma is proved.

By B
3/2
2,T denote the aggregate of all the functions of the form

u (x, t) =

∞∑
k=1

uk (t) yk (x) ,

considered in DT , where each of the functions uk (t) (k = 1, 2, ...) is continuous on
[0, T ] and

J (u) ≡

( ∞∑
k=1

(
λk
√
λk ‖uk (t)‖C[0,T ]

)2)1/2

< +∞.

Define the norm in this set as follows:

‖u‖
B

3/2
2,T

= J (u) .

It is known [5] that B
3/2
2,T is a Banach space.

Consider in the space B
3/2
2,T the operator Φ:

Φ (u (x, t)) = ũ (x, t) =

∞∑
k=1

uk (t) yk (x) , (48)

where uk (t) (k = 1, 2, ...) equals the right hand side of (43).
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It is easy to see that∣∣∣∣∣∣1 + δe
−
T∫
0

λk
a1(s)

ds

∣∣∣∣∣∣
−1

≤

∣∣∣∣∣∣1− |δ| e−
1∫
0

λ1
a1(s)

ds

∣∣∣∣∣∣
−1

≡ ρ (T ) .

Then from (43) and (44) we have

|uk (t)| ≤ ρ (T ) |ϕk|+
∥∥∥∥ 1

a1 (t)

∥∥∥∥
C[0,T ]

(1 + |δ| ρ (T ))
√
T

 T∫
0

|Fk (τ ;u)|2 dτ

1/2

,

∣∣u′k (t)
∣∣ ≤ ∥∥∥∥1 + a0 (t)

a1 (t)

∥∥∥∥
C[0,T ]

λk×

×

ρ (T ) |ϕk|+
∥∥∥∥ 1

a1 (t)

∥∥∥∥
C[0,T ]

(1 + |δ| ρ (T ))
√
T

 T∫
0

|Fk (τ ;u)|2 dτ

1/2
+

∣∣∣∣fk (t)

a1 (t)

∣∣∣∣ .
Hence we find:

‖ũ‖
B

3/2
2,T

=

( ∞∑
k=1

(
λk
√
λk ‖uk (t)‖C[0,T ]

)2)1/2

≤
√

2ρ (T )

( ∞∑
k=1

(
λk
√
λk |ϕk|

)2)1/2

+

+
√

2

∥∥∥∥ 1

a1 (t)

∥∥∥∥
C[0,T ]

(1 + |δ| ρ (T ))
√
T

 T∫
0

∞∑
k=1

(
λk
√
λk |Fk (τ ;u)|

)2
dτ

1/2

, (49)

( ∞∑
k=1

(√
λk
∥∥u′k (t)

∥∥
C[0,T ]

)2)1/2

≤
√

3

∥∥∥∥1 + a0 (t)

a1 (t)

∥∥∥∥
C[0,T ]

×

×

ρ (T )

( ∞∑
k=1

(
λk
√
λk |ϕk|

)2)1/2

+

+

∥∥∥∥ 1

a1 (t)

∥∥∥∥
C[0,T ]

(1 + |δ| ρ (T ))
√
T

 T∫
0

∞∑
k=1

(
λk
√
λk |Fk (τ ;u)|

)2
dτ

1/2
+

+
√

3

∥∥∥∥ 1

a1 (t)

∥∥∥∥
C[0,T ]

( ∞∑
k=1

(√
λk ‖fk (t)‖C[0,T ]

)2)1/2

. (50)

Let the data of problem (1)-(3) satisfy the following conditions:
1) ϕ (x) ∈W 3

2 (0, 1) ,

dϕ (1) +
1∫
0

ϕ (x) dx = 0, ϕ′ (0) = 0, ϕ′ (1) + dϕ′′ (1) = 0;

2) f (x, t) ∈ C2,0
x,t (DT ) , fxxx (x, t) ∈ L2 (DT ) ,

df (1, t) +
1∫
0

f (x, t) dx = 0, fx (0, t) = 0,
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fx (1, t) + dfxx (1, t) = 0 (0 ≤ t ≤ T ) ;

3) a0 (t) , 0 < a1 (t) ∈ C [0, T ] , δ ≥ 0, 1− |δ| e
−
T∫
0

λ1
a1(s)

ds
6= 0.

Then allowing for (26) and (27), from (49) and (50) we have( ∞∑
k=1

(
λk
√
λk ‖uk (t)‖C[0,T ]

)2)1/2

≤
√

2ρ (T )M
∥∥ϕ′′′ (x)

∥∥
L2(0,1)

+

+2

∥∥∥∥ 1

a1 (t)

∥∥∥∥
C[0,T ]

(1 + |δ| ρ (T ))
√
T
[
‖fxxx (x, t)‖L2(DT )

+

+
√
T ‖a0 (t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk ‖uk (t)‖C[0,T ]

)2)1/2
 , (51)

( ∞∑
k=1

(√
λk
∥∥u′k (t)

∥∥
C[0,T ]

)2)1/2

≤
√

3

∥∥∥∥1 + a0 (t)

a1 (t)

∥∥∥∥
C[0,T ]

{
Mρ (T )

∥∥ϕ′′′ (x)
∥∥
L2(0,1)

+

+
√

2

∥∥∥∥ 1

a1 (t)

∥∥∥∥
C[0,T ]

(1 + |δ| ρ (T ))
√
T
[
‖fxxx (x, t)‖L2(DT )

+

+
√
T ‖a0 (t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk ‖uk (t)‖C[0,T ]

)2)1/2
+

+
√

3

∥∥∥∥ 1

a1 (t)

∥∥∥∥
C[0,T ]

∥∥∥‖fx (x, t)‖L2(0,1)

∥∥∥
C[0,T ]

. (52)

Accept the denotation

A (T ) =
√

2ρ (T )M
∥∥ϕ′′′ (x)

∥∥
L2(0,1)

+

+2

∥∥∥∥ 1

a1 (t)

∥∥∥∥
C[0,T ]

(1 + |δ| ρ (T ))
√
T ‖fxxx (x, t)‖L2(DT )

,

B (T ) = 2

∥∥∥∥ 1

a1 (t)

∥∥∥∥
C[0,T ]

(1 + |δ| ρ (T )) ‖a0 (t)‖C[0,T ] .

Then it is clear from (50) that

‖ũ‖
B

3/2
2,T

≤ A (T ) +B (T )T ‖u (x, t)‖
B

3/2
2,T

. (53)

So, we can prove the following theorem.
Theorem 2. Let 1-3 be fulfilled, and

(A (T ) + 2)B (T )T < 1. (54)

Then problem (1)-(3) has a unique classical solution in the ball

K = KR

(
‖u‖

B
3/2
2,T

≤ R = A (T ) + 2

)
from B

3/2
2,T .
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Proof. Write equation (45) in the form

u = Φu, (55)

where the operator Φ is determined from relation (48). Consider the operator Φ in

the ball K = KR

(
‖u‖

B
3/2
2,T

≤ R = A (T ) + 2

)
from the space B

3/2
2,T . It is seen from

estimation (53) that under the conditions of theorem 2, for any u ∈ KR it holds the
inequality

‖Φu‖
B

3/2
2,T

≤ A (T ) +B (T )T ‖u‖
B

3/2
2,T

(56)

and for any u1, u2 ∈ KR we have:

‖Φu1 − Φu2‖B3/2
2,T

≤ B (T )T ‖u1 − u2‖B3/2
2,T

. (57)

From inequalities (56) and (57) it follows that under the conditions of theorem
2, the operator Φ acts in the ball K = KR and is contractive. Therefore in the ball
K = KR the operator Φ has a unique fixed point {u} that is the solution of (55).

As an element of the space, B
3/2
2,T the function u (x, t) has continuous derivatives

ux (x, t), uxx (x, t).
It is obvious that

|ut (x, t)| ≤

( ∞∑
k=1

λ−1k

)1/2( ∞∑
k=1

(√
λk
∥∥u′k (t)

∥∥
C[0,T ]

)2)1/2

. (58)

Allowing for (52) from (56) it follows that the function ut (x, t) is continuous in
DT .

It is easily verified that equation (1) and conditions (2), (3) are easily satisfied
in the ordinary sense. So, u (x, t) is the classical solution of problem (1)-(3) and by
lemma 3 it is unique. The theorem is proved.
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