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INVESTIGATION OF THE CLASSICAL SOLUTION
OF A BOUNDARY VALUE PROBLEM FOR A
SECOND ORDER PARABOLIC EQUATION WITH
NON-CLASSICAL BOUNDARY CONDITIONS

Abstract

The existence and uniqueness of the classic solution is proved for a second
order parabolic equation with non-classical boundary conditions.

In the domain Dp = {(z,t) : 0 <2 < 1,0 <t < T} consider the equation
ay (t) ue (x,t) +ao (t) u(z,t) = Ugg (z, 1) + f (2,1) (1)
with boundary conditions:
u(z,0)+du(x,T)=p(x) (0<z<1), (2)

ug (0,1) =0, ug (1,1) +dug, (1,1) =0 (0<t<T), (3)

where d > 0, § > 0 are given numbers, ag (t), a1 (t) > 0, ¢ (x), f (x,t) are given
functions, u (x,t) is a desired function, and under the classic solution of problem (1)-
(3) we understand the function u (x,t) continuous in the closed domain D together
with all its derivatives contained in equation (1) and satisfying all the conditions
(1)-(3) in the ordinary sense. The following lemma is valid.

Lemma 1. Let § > 0, 0 < a; (t), ao (t) € C'[0,1]

1
o (x) e Clo,1], dso<1>+/go<x>dw

I
p
—~~
=~
N—

f(x.t) € C20 (Dy), df(l,t)+/f(x,t)d:nzo 0<t<T). (5

Then

du(l,t)—l—/u(m,t)dxzo 0<t<T). (6)
0

is fulfilled for the classical solution of problem (1)-(3).
Proof. Allowing for (3) and (5), from equation (1) we have:

1
aq (t) % [du(l,t) + /u (z,t) dm] +

0
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Accept the denotation
1
y(t)zdu(l,t)+/u(x,t)da::0 0<t<T), (7)
0

and rewrite the last relation in the form:
a1 (t)y' (t) +ao(t)y(t) =0 (0<t<T). (8)

Allowing for (2) and (4), from (7) it is easy to see that

1
y(0)+y(T)—d¢(1)+/90($)d&“—0- (9)
0

Obviously, the general solution of (8) is of the form:

7}“0(7) dr
y(t) =ce 0™ 0<t<T). (10)
Hence, allowing for (9), we get:
T
,fzo(:) dr
c|1+6e 0 =0. (11)

By 6 > 0, from (11) we get ¢ = 0 and substituting it into (10), we deduce
y(t) =0 (0<t<T). Consequently, from (7) it is clear that condition (6) is also
fulfilled. The lemma is proved.

Now, for investigating the classical solution of problem (1)-(3), give some known
facts and establish some new auxiliary facts.

Consider the spectral problem [3]

Y (@) + Ay () =0 (0<2<1), (12)

y (0)=0, ¥ (1)=dXy(1) (d>0), (13)
that has only eigen functions y (z) = v/2cos (\/)\kx), k = 0,1,..., with positive
eigen-values )\, from the equation tgv/A = —dvA. We assign zero index to any
eigen function, and enumerate the remaining ones in the order of increasing of eigen
values.

It is known [3] that beginning with some number N, the following estimations

hold: 1
‘m—w/z—w—m <G

Compare the system {y (z)} without the function yo (z) with the known system
{og (2)}, vk (2) = V2cos /liga, where /iy = 5 + 7 (k—1), k = 1,2, ..., that is an
orthonormalized basis in Ly (0,1). Similarly [1], for & > N allowing for (14) the
following relations are true:

(14)

2

2
— NPYITIRVE
o (@) = v (@)z,0) < 32
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Thus,

> 1
Z lyx () — vy (x)H%Q(O,l) < 9a2 (15)
k=1

hence the convergence of the series from the left hand side of this inequality holds.
The following lemma is proved similar to [1].
Lemma 2. The biorthogonally conjugated system {zy (z)}, k = 1,2, ..., is deter-
mined by the formula

2 () = V2 (cos <\/ka) — Cos (@)) / (1 + d cos? <\/)\>k)) .

The following theorem is valid.

Theorem 1 [3]. The system {yx (z)}, k = 1,2,... forms a Riesz basis in the
space Lo (0,1).

Let now 7 (z) = v2sin (VAgz), & (z) = V2sin (\/igz), k = 1,2,.... Then

similar to (15), the following inequalities are true

1

2
— <—, k>N,
I (2) = € @) < 575
S e (@) = & @0 < 5 (16)
k=1

Assume that g (z) € Lo (0,1). Then, allowing for (15), (16), similar to [4] we get

1 o\ 1/2
S| [s@n@dr) | <Mlg@0m. (1
. o\ 1/2
/ 9 (2) mp () da < Mlg @)l (18)
k=1 \"g
where
1/2
= — 1
M {N(1+N)+2+9d2} (19)

Since the system of functions {y ()}, k = 1,2, ... is a Riesz basis in the space
L5 (0,1), then for any function g (z) € Lo (0,1) it is valid

9(@) = gk (), (20)
k=1

where
1

gk = (9 (), 2 (z)) = /g (z) 2 (z) dax.

0
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Multiply (20) scalarly by g (x), use (17) and Cauchy-Bunyakovsky inequalities.
Then we have:

1/2
g (z HL2(01 <ng> M”g(x)”LQ(OJ)

or »
M~ lg (« N a00.1) (ZQk) : (21)

Further, it is easy to see that

1 1
d
ol <| 9@ T / (2) dz].

0
hence we find:

oo 1/2

(229%) < My lg (x)HLQ(o,l) ) (22)

k=1
where

L[ 1/2
My=2|M+ - — . 23

From inequalities (21) and (22) we deduce:

1/2
Mg (x M za00,1) <ng> < Mollg (@)l 1,01 » (24)

where M and M are determined by relations (19) and (23), respectively.
Assume g (z) € W4 (0,1) and I (g) =dg (1) + fg dz = 0. Then we have:

893

gk = ﬂ/g (x) (cos (@x) — cos (\/ﬁ)) dr =

1

— _Z;\lﬁ (z) sin <\/El‘) dx, (25)

where
ap =1+ dcos® / M\, > 1.

Hence, allowing for (18) we find:

- 1/2
(Z (\/A»k|gk)2> <M|g (95)HL2(0,1) ' (26)
k=1
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Let g (z) € W2 (0,1), I (g) =0, ¢’ (0) = 0. Then, from (25) we find:

1
b= V2L <g'<1>cos (V) + / g (w) cos (VAxe) dx) S

ap Ak /

Hence, allowing for (17), we find:

s 1/2
(Zwigw?) <omolg O]+ VM|l @0 (29)

k=1

where 1/2
1 (1

Assume now that g (z) € W5 (0,1), I(g) = 0, ¢’ (0) = 0, ¢’ (1) +dg” (1) = 0.
Then from (27) we have:

1

2 1
gk = —;{;m{g”' (z) cos (@x) dz. (30)
Allowing for (18), hence we get:
. o\ 12
(Z (M Ne o] ) ) < Mg @) 1,0 (31)
k=1

Further, let g (z) € W (0,1), I (g) =0, ¢’ (0) =0, ¢ (1)+dg” (1) = 0, g (0) = 0.
Then from (30) we find:

ap 22\ ayag?

1
o V2L ( g ()sin (/) +/g<4> () cos (V/xr dw) L (32
0

Allowing for (27), hence we have:

00 1/2
(Z (A} rgk|>2> < 2mo |g” (1)] + V2M ||g¥ (@) (33)

k=1

Ls(0,1)

Now, let g (z) € W$(0,1), I (g) =0, ¢’ (0) = 0. Then it holds the expansion

9" (x) =) (9" (x), 2 () g (), (34)

k=1

where

1
(6" (), 2 (x)) = / ¢ () 2 () d. (35)
0



126 Transactions of NAS of Azerbaijan
[Y.T.Mehraliyev]

It is easy to see that

1

/g” () z () dx = —)\kﬂ g (z) (cos (\/Ex) — cos (\/E)) dx

Qg
0 0
(9" (@), 2k (@) = =M (9 (), 2 (@) - (36)
Substituting (36) into (34), we find:
9" (@) = =D A lg(2), 2 (2)) i (). (37)
k=1
Similar to (21) we find:
o 1/2
" (x)HLg(O,l) < M< (/\kgk)2> : (38)
k=1

Since by theorem 1 [3] the system {yx (z)} (k = 1,2, ...) forms a Riesz basis, it is
obvious that each classical solution of problem (1)-(3) is of the form:

w(z,t) =Y up(t)ye (z), (39)
k=1
where
1
ug (t) = (u(z,t), 2z () = /u (z,t) 2z (z) dz,
0

yk () = V2 cos (@x) o (2) =
= V2 (COS (m$) — cos (&)) / (1 + d cos? (@)) .

Assume that (4) and (5) are fulfilled. Then, allowing for lemma 1, from (37) we
have:

Uge (2,8) = =Nty (£) yi () - (40)
k=1

Applying the method of separation of variables for determining the desired
ug (t) (k=1,2,...), allowing for (35) and (40) we find:

ay () uy, (8) + Aewe () = fi () —ao () ur () (0<t<T), (41)

ug (0) + oug (T) = ¢, (k=1,2,...), (42)

where
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By solving problem (41), (42), we have:

t
f:f(d:) t toapds
0 F 7faks
ug () = A T +/ k(Z’;L)e e
Apds a7
1+66 {af(s) 0
T
_f:k(ds”; T ta.ds
Se 0% Fy (73 e
e _ K (T U)e 71 g (k=1,2,..), (43)
ka(d:e) ay (1)
1+ 6e 017

where
Fy (6u) = fr (1) — ao () u (1) -
Further, allowing for (43), from (41) we have:

*}:fés) t b A ds
u/ (t) _ _)‘k + ag (t) Pre 0 + /Fk (T,U) 67{a1(5> dr—
g ar (1) [ 2uds ar (7)
14 6e 0t
T
-J Ak<d5; T g
Je 0 F — [ 2h t
_ € k(T’u)e e 1<)d7_ +fk() (k:1727 ) (44)
kads ay (1) a (t)
1+ de )
Substituting (43) into (39), we find
t
*f:f(d:) t b Ads
pre ° Fi (15u) ~Ja®
t pr— T d p—
w =3 ot LA
1+6€ 0‘11<5> 0
Txkds T F })\kds
T / 21 ~dr Y (@) - (45)
- [ 255
14 de 0 “1() 0

Proceeding from definition of the classical solution of problem, (1)-(3), we prove
the following lemma.

Lemma 3. Let all the conditions of lemma 1 be fulfilled. If wu(x,t) is any
classical solution of problem (1)-(3), the functions

1
/uwtzk de  (k=1,2,...)
0

satisfy on [0,T] the system (43).
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Proof. Let u(z,t) be any classical solution of problem (1)-(3). Then, it is
obvious that

1 1
/ut (z,t) 2z (z) dz = % /u(az,t) 2 (@)dz | =up (t) (k=1,2,..), (46)
0 0

moreover ug (t) € C1[0,T] (k=1,2,...).
Further, by lemma 1 and allowing for (36), we have:

1 1

/um x,t) z ( )\k/u x,t) zg (x)de (E=1,2,..). (47)
0 0

Now, having multiplied the both hand sides of equation (1) by the function
2 (x), integrating with respect to x the obtained equality from 0 to 1, and using
relations (46), (47), we get:

ay () )y (£) + ao () wp, (8) = — Mgy () + fu (8) (k=1,2,.,0<t<T). (41)

Further, multiply the both hand sides of (2) by zj (z) and integrate the obtained
equality with respect to z from 0 to 1. Then we have:

we (0) + dup (T) = ¢, (k=1,2,...). (42)

Thus, ug (t) (k=1,2,...) is the solution of problem (41), (42). Hence, as
it was said before obtaining system (43), it directly follows that the functions
up (t) (k=1,2,...) satisfy on [0, 7] the system (43). The lemma is proved.

By B / denote the aggregate of all the functions of the form

= un () gk ()
k=1

considered in D, where each of the functions uy (t) (k= 1,2,...) is continuous on
[0,7] and

J () (Z(Akf oo ¢ ||COT])2>1/2<+oo-

k=1

Define the norm in this set as follows:

a2 = J (u) .
Jul 2 = I (w)

It is known [5] that BS/I% is a Banach space.
Consider in the space B, / the operator ®:

@ (u(z,1) = zuk (48)

where ug (t) (k= 1,2,...) equals the right hand side of (43).
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It is easy to see that

T
7fakégs)ds
1+de 0"

<|1-1|e

Then from (43) and (44) we have

1/2

(1416 p(T (/Fkud) ,
clo.1)

us (5] < (T) el + Hl(t)

/ 1+ ag (t)
|Uk (t)} < Hal(t) cior Mg X
T 1/2
x ¢ p(T) !«pk!+Hall(t) o (1+5p(T))ﬁ</Fk(T;u)2dT) N i:,;g;‘

0

Hence we find:

00 1/2 00 1/2
il 372 = <Z (M v/l <t>rc[o,ﬂ)2) < V2p(T) (Z (v mr)Q) +
' k=1

T 1/2
1 > 2
+v2 a1 (1) cior (L+10]p(T)) VT ({1; (/\k\/E‘Fk (1; u)]) dT) . (49)
o) 1/
(Z (VA [ <t>uc[0,ﬂ)2) e
k=1 Clo,T)
(9] 9 1/2
x {pm (Z (v el ) +
k=1
T 1/2
1 > 2
o o] (1+101p(T) VT ([; )\k\/rku:‘k (T;U)|) dT) +
N\ 12
3 a1 () |l cpo,y (Z <\/>ka HCOT]) ) ' (50)

Let the data of problem (1)-(3) satisfy the following conditions:
D) ¢(z) e W23 (0,1),

d (1 +f<p ydx =0, ¢'(0)=0,¢ (1) +de" (1) = 0;
2) f (H?,t) € C:c:t (DT) 7fza:a: (:L',t) S L2 (DT)a
1
df (1,t) + [ f (z,t)dz =0, f,(0,t) =0,
0
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f:v(Lt)_'_dfx:v(l?t) =0 (OStST)§

T

—faMS ds
3) ag(t), 0<ay(t)eC[0,T],6 >0, 1—|s]e o™ 0.
Then allowing for (26) and (27), from (49) and (50) we have

1/2
2
(Z ()\k:\/>Huk ||C[0T]>> < V2o (T) M [|¢" (2 )| Ly0m) +

k=1

42 (1+ 161 p (D) VT [|| faza (2. )|y ) +

1
ay (t)

clo,7)

1/2
+VT lag ®)llego,1y (Z (Ak\/>‘|uk HC’[OT])2> ] ) (51)

k=1

[0 @) @) 0 +

(i (\//\7”“2 (t)HC[O,T]>2> < \le—HLO

k=1

co,7)

(t) (14101 p (T) VT ||z (2Dl Ly ) +

clo,1)

1/2
+VT ||ag (t)||C[O,T] (Z ()\k\FHUk ”C[OT>2> ] }+

k=1

@) HHﬁAxiﬂhﬂQUHCMTT (52)

co,1]
Accept the denotation

A(T) = V2p(T)M ||¢" (x -

HL2(0,1)

(1 + ‘5’ P (T)) \/T Hf:va:ac (x7t)HL2(DT) )

Clo,1]
1
ay ()
Then it is clear from (50) that

(L+ 101 p (1)) llao ()l cpo,r7 -
co,7)

HﬂHB;/Tz <AT)+B(T)T ||lu (937'5)\\33/7% : (53)

So, we can prove the following theorem.
Theorem 2. Let 1-3 be fulfilled, and

(A(T)+2)B(T)T < 1. (54)

Then problem (1)-(3) has a unique classical solution in the ball

K =Kp <HuHB3/2 <R=A(T)+ > from By'y.
2,T
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Proof. Write equation (45) in the form
u = du, (55)

where the operator ® is determined from relation (48). Consider the operator ¢ in
the ball K = Kp (||U||Bg/2 <R=A(T)+ 2) from the space BS/Z,% It is seen from
2,T )

estimation (53) that under the conditions of theorem 2, for any u € K it holds the
inequality
|ul 7z < A(T)+ B (L) lul e (56)

and for any u1,us € Kr we have:

[Pu1 — Pua|| yare < B (1) T [lur — uzl| gs/2 - (57)
2,T 2,T

From inequalities (56) and (57) it follows that under the conditions of theorem
2, the operator ® acts in the ball K = Kg and is contractive. Therefore in the ball
K = Kp the operator ® has a unique fixed point {u} that is the solution of (55).

As an element of the space, Bg/ﬁ the function u (z,t) has continuous derivatives
Uy (T,1), Ugy (T, ).

It is obvious that

00 1/2 /o 1/2
|ug (2, )] < (Z)‘lj) (Z (‘/EH“Z (t)Ho[O,T}>2> ’ (58)
k=1

k=1

Allowing for (52) from (56) it follows that the function u; (x,t) is continuous in
Dr.

It is easily verified that equation (1) and conditions (2), (3) are easily satisfied
in the ordinary sense. So, u (z,t) is the classical solution of problem (1)-(3) and by
lemma 3 it is unique. The theorem is proved.
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