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ON COMPLETENESS OF THE SYSTEM OF EIGEN

AND ADJOINT VECTORS OF QUADRATIC

OPERATOR BUNDLES

Abstract

In the paper, sufficient conditions on the coefficients of the quadratic opera-

tor bundles of elliptic type are obtained. When these conditions are fulfilled, the

system of eigen and adjoint vectors is complete in the trace space of the solutions

of appropriate operator-differential equations. The theorems on the complete-

ness of decreasing elementary solutions in the space of regular solutions of a

homogeneous equation are also obtained.

Let H be a separable Hilbert space, A be a positive-definite self-adjoint operator

in H. Denote by Hr a scale of Hilbert spaces generated by the operator A. Remined

that Hγ = D (Aγ) is a scalar product in Hγ , and is given by the equality (x, y)γ =

(Aγx, Aγy) for the elements x, y ∈ Hγ (γ ≥ 0). For γ = 0 assume that H0 =

H, (x, y)0 = (x, y).

Denote by L2 (R+;H) a Hilbert space of the functions f(t) determined almost

everywhere in R+ = (0,∞), measurable, quadratically integrable in the Bochner

sense, with the values in H with the norm

∥f∥L2(R+;H) =

 ∞∫
0

∥f(t)∥2 dt

1/2

< +∞.

In the sequel, L(X;Y ) denotes the space of linear bounded operators acting from X

to Y . Following the monograph [1] define the space of the functions

W 2
2 (R+;H) =

{
u: u′′ ∈ L2(R+;H), A2u ∈ L2(R+;H)

}
with the norm

∥u∥W 2
2 (R+;H) =

(∥∥A2u
∥∥2
L2(R+;H)

+
∥∥u′′∥∥2

L2(R+;H)

)1/2
.

Here and in the sequel, the derivatives are understood in the sense of distributions

theory. Define also the following subspace in W 2
2 (R+;H)

0
W

2

2 (R+;H) =
{
u:u ∈W 2

2 (R+;H), u′(0) = 0
}

For R = (−∞,∞) the spaces L2(R,H) and W 2
2 (R,H) are determined in the

same way.

Consider the following quadratic operator bundle

P (λ) = λ2E + λ(pA+A1) + qA2, (1)
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where λ is a spectral parameter, and the operator coefficients satisfy the following

conditions:

1) p ∈ R = (−∞,∞) , q < 0;

2) A is a positive-definite self-adjoint operator with a completely continuous

inverse A−1;

3) The operator B1 = A1A
−1 is bounded in H.

In the present paper we’ll show sufficient conditions on the coefficients of operator

bundle (1), that provide completeness of the chain of eigen and adjoint vectors in

the space H1/2 responding to some boundary value problem. Note that the operator

bundle (1) was investigated by many authors for p = 0, q = −1 (see [2-9], and in

the general form in [10].

Combine bundle (1) with the following boundary value problem

P

(
d

dt

)
u(t) = 0, (2)

u′(0) = φ, φ ∈ H1/2. (3)

Definition 1. If for any φ ∈ H1/2 there exists a vector-function

u ∈W 2
2 (R+;H) that satisfies equation (2) almost everywhere in R+, boundary con-

ditions (3) in the sense of the convergence

lim
t→+0

∥∥u′(t)− φ
∥∥
1/2

= 0,

and it holds the estimation

∥u∥W 2
2 (R+;H) ≤ const ∥φ∥1/2 ,

then problem (2), (3) is said to be regularly solvable, and u(t) its regular solution.

Definition 2. Let λi be an eigen value of the bundle P (λ), and φ
(l)
i,0 be an

appropriate eigen vector, i.e. φ
(l)
i,0 ̸= 0 and P (λi)φ

(l)
i,0 = 0. Then the system

φ
(l)
i,0, φ

(l)
i,1, ..., φ

(l)
i,mil

, l = 1, qi satisfying the relations

P (λi)φ
(l)
i,k +

∂P (λi)

∂λ
φ
(l)
i,k−1 + 2φ

(l)
i,k−2 = 0, k = 0,mil,

(
φ
(l)
i,−1, φ

(l)
i,−2 = 0

)
is called a system of eigen and adjoint vectors of the bundle P (λ) responding to the

eigen values λi.

Definition 3. Let φ
(l)
i,0, φ

(l)
i,1, ..., φ

(l)
i,mil

, i = 1, qi be a chain of eigen and adjoint

vectors responding to the eigen value λi, moreover Reλi < 0. Then the vector

functions

uli,h(t) = eλit

(
φ
(l)
i,h + φ

(l)
i,h−1

t

1!
+ ...+ φ

(l)
i,0

th

h!

)
, h = 0,mil, l = 1, qi

satisfy the equation P

(
d

dt

)
u(t) = 0 and are called the decreasing elementary solu-

tions of the homogeneous equation P

(
d

dt

)
u(t) = 0.
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Let φ
(l,1)
i,h =

d

dt
u
(l)
i,h(t) |t=0 . Obviously, the system φ

(l,1)
i,h responds to boundary

value problem (2), (3). Denote

K(Π−) =
{
φ
(l,1)
i,h , h = 0,mi, l = 1, qi, i = 1,∞

}
.

Note that while fulfilling conditions 1)-3), the operator bundle P (λ) has only a

discrete spectrum with a unique limit point at infinity. Indeed,

P (λ) = λ2E + λ(qA+A1) + qA2 =

= q(λ2q−1A−2 + λ(pq−1E + q−1A1A
−1)A−1 + E)A2 = q(E + L(λ))A−2, (4)

where

L(λ) = λ2q−1A−2 + λ(q−1pA−1 + q−1B1A
−1).

Since A−1 is a completely continuous operator, then L(λ) is a completely con-

tinuous operator for any λ ∈ C. E + L(0) = E is invertible, then by the Keldysh

lemma [11] the operator bundle E + L(λ) and simultaneously, the bundle P (λ) has

a discrete spectrum with a unique limit point at infinity. If additionally we require

A−1 ∈ σρ, (0 < ρ <∞), then it holds

Lemma 1. Let conditions 1)-3) be fulfilled, and A−1 ∈ σρ. Then the operator

function A2P−1(λ) is represented in the form of the ratio of two entire functions of

order ρ and of minimal type for order ρ.

Proof. It is seen from equality (4) that A2P−1 (λ) =
1

q
(E + L(λ))−1, and the

coefficients of the operator bundle L(λ)

q−1A−2 ∈ σρ/2, q
−1pA−1 + q−1B1A

−1 ∈ σρ.

Then by the Keldysh lemma [11], (E + L(λ))−1, consequently A2P−1(λ) satisfy

the statement of the lemma.

The lemma is proved.

Lemma 2. Let conditions 1)-3) be fulfilled. Then while fulfilling the condition

∥B1∥ <
√
p2 + 4 |q|, the operator bundle P (λ) is invertible in the sectors

S±(π
2
±θ) =

{
λ : λ = re±i(π

2
±α), r > 0, |α| ≤ θ

}
for small θ > 0, and in these sectors it holds the estimation∥∥λ2P−1(λ)

∥∥+ ∥∥λAP−1(λ)
∥∥+ ∥∥λ2P−1(λ)

∥∥ ≤ const (5)

Proof. From conditions 1) and 2) it follows that the operator bundle P0(λ) =

λ2E + λpA+ qA2 is investible on the imaginary axis, since P0(λ) =

= (λE − ω1A) (λE − ω2A), where

ω1 = −1

2

(
p+

√
p2 + 4 |q|

)
< 0, ω2 = −1

2

(
p−

√
p2 + 4 |q|

)
> 0.
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Then from the equality

P (λ) ≡ P0(λ) + P1(λ) = (E − P1(λ)P
−1(λ))P0(λ)

it follows that if for λ = iξ the inequality
∥∥P1(λ)P

−1
0 (λ)

∥∥ ≤ α1 < 1 is fulfilled, then

the operator bundle P (λ) is also invertible. Obviously,∥∥Pi(iξ)P
−1
0 (iξ)

∥∥ =
∥∥(iξA1)P

−1
0 (iξ)

∥∥ ≤ ∥B1∥
∥∥ξAP−1

0 (iξ)
∥∥ . (6)

Further, using the spectral expansions of the operator A, we get∥∥ξAP−1
0 (iξ)

∥∥ = sup
µ∈σ(A)

∣∣ξµ(−ξ2 + iξpµ+ qµ2)−1
∣∣ ≤

≤ sup
µ≥σ0

((
ξ2 − qµ2

)2
+ p2µ2

)−1/2
≤ sup

τ≥0

∣∣∣τ ((τ2 − q
)2

+ q2τ2
)∣∣∣−1/2

=

=
(
p2 + 4 |q|

)−1/2
(q < 0). (7)

Taking into account inequality (7) in (6) we get∥∥P1(iξ)P
−1
0 (iξ)

∥∥ ≤ ∥B1∥
(
p2 + 4 |q|

)−1/2
= α1 < 1,

i.e. the operator bundle P (λ) is invertible on the imaginary axis. On the other

hand, on the imaginary∥∥A2P−1
0 (iξ)

∥∥ = sup
µ≥σ(A)

∥∥µ2P−1
0 (iξ)

∥∥ ≤

≤ sup
τ≥0

((
τ2 − q

)2
+ p2τ

)−1/2
=

1

|q|
. (8)

Similarly we have (q < 0)

∥∥ξ2P−1(ξ)
∥∥ ≤ sup

µ≥σ

∥∥∥∥ξ2 ((ξ2 − qµ2
)2

+ p2µ2
)−1/2

∥∥∥∥ ≤ 1. (9)

From inequalities (7)-(9) it follows that inequality (5) is valid on the imaginary axis.

Further, for θ > 0, iξ ∈ R and λ = iξeiθ, |α| ≤ θ we have

P (λ) = (E + (iξ)2P−1(iξ)(e2iα − 1) + iξ(p+A1)P
−1(iξ)(eiα − 1))P (iξ).

Then for rather small θ allowing for inequality (5) for λ = iξ we get that P (λ) is

invertible and inequality (5) is fulfilled in the sectors S±(π
2
±θ) for small θ.

The lemma is proved.

Lemma 3. The problem

P0u ≡ P0

(
d

dt

)
u =

d2u

dt2
+ pA

du

dt
+ qA2u = 0, (10)

u′(0) = φ, (11)
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is regularly solvable.

Proof. Since the general regular equation P

(
d

dt

)
u(t) = 0 in W 2

2 (R;H) is of

the form u0(t) = e
− 1

2

(
p+
√

p2+4|q|
)
tA
ψ, where ψ ∈ H3/2, it follows from condition

(11) that −1

2

(
p+

√
p2 + 4 |q|

)
Aψ = φ or

ψ = −2
(
p+

√
p2 + 4 |q|

)−1/2
A−1φ ∈ H3/2

and u0(t) ∈W 2
2 (R+;H), ∥u0 (t)∥W 2

2 (R+;H) ≤ const ∥φ∥1/2.
The lemma is proved.

Remark 1. Using lemma 3, we can reduce the regular solvability of problem (2),

(3) to the solution of the equation Pω = g in the space
0
W

2

2 (R+;H). Indeed, we’ll

look for the solution of problem (2), (3) in the form u(t) = ω(t)+u0(t), where u0(t) is

a regular solution of problem (10), (11). Then it is obvious that u′(0) = ω′(0)+u′0(0),

i.e. ω′(0) = 0 from the equality

Pu = P0u+ P1u = P0 (ω + u0) + P1 (ω + u0) =

= (P0 + P1)ω + P1u0 = Pω + P1u0 = 0

it follows that for ω we get the equation

Pω = −P1u0, ω ∈
0
W

2

2 (R+;H),
(
ω′(0) = 0

)
.

Obviously, for g = −P1u0

∥g∥L2(R+;H) =

∥∥∥∥A1
du0
dt

∥∥∥∥
L2(R+;H)

≤ ∥B1∥
∥∥∥∥Adu0dt

∥∥∥∥
L2(R+;H)

≤

≤ const ∥u0∥W 2
2 (R+;H) ≤ const ∥φ∥1/2 .

Thus, for determining ω ∈
0
W

2

2 (R+;H) we get the following boundary value

problem

P0

(
d

dt

)
ω(t) = g(t), (12)

ω′(0) = 0, (13)

It holds

Theorem 1. The operator P0 isomorphically maps the space
0
W

2

2 (R+;H) onto

L2(R+;H).

Proof. It follows from lemma 3 that KerP0 = {0}. Prove that ImP0u =

= L2(R+;H). It is easy to see that for any g ∈ L2(R+;H) the function

u1(t) =
1√
2π

+∞∫
−∞

(
−ξ2E + iξpA+A2

)−1

∞∫
0

g(s)eiξ(s−t)dsdξ,
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belongs to the space W 2
2 (R+;H). Indeed, from the Plancherel theorem it follows

that

∥u∥2W 2
2 (R,H) =

∥∥A2u
∥∥2
L2(R+,H)

+
∥∥u′′∥∥2

L2(R+,H)
=

=
∥∥ξ2û (ξ)∥∥2

L2(R+,H)
+
∥∥A2û (ξ)

∥∥2
L2(R+,H)

=

=
∥∥ξ2P−1

0 (iξ) ĝ (ξ)
∥∥2
L2(R+,H)

+
∥∥A2P−1

0 (iξ) ĝ (ξ)
∥∥2
L2(R+,H)

≤

≤ sup
ξ∈R

∥∥ξ2P−1
0 (iξ)

∥∥ ∥g∥L2(R+,H) + sup
ξ∈R

∥∥A2P−1
0 (iξ)

∥∥ ∥g∥L2(R+,H)

Taking into account inequalities (8) and (9), we get u(t) ∈ W 2
2 (R+;H). Here

û(ξ) and ĝ (ξ) are the Fourier transformations of the functions u(t) and ĝ (ξ), where

ĝ (t) = g(t) for t > 0 and ĝ(t) = 0 for t < 0. Further, it is obvious that u(t)

satisfies the equation P

(
d

dt

)
u(t) = g(t) for t ∈ R+ almost everywhere. De-

note by ξ(t) the contraction of the function u(t) on [0,∞). Obviously, [1], ξ(t) ∈
W 2

2 (R+;H) and ξ (0) ∈ H3/2, ξ′(0) ∈ H1/2. Now, we’ll look for the solution of ω(t)

in the form ω(t) = ξ(t) + e
− 1

2

(
p+
√

p2+4|q|
)
At
ψ, where ψ is an unknown vector from

H3/2. Then, for determining ψ from (13), we get ξ′(0) = −P
2
−
√
p2 + 4 |q|

2
Aψ or

ψ =

(
−p
2
−
√
p2 + 4 |q|

2

)−1

A−1ξ′(0). Since ξ′(0) ∈ H1/2, then ψ ∈ H3/2. Thus,

ω(t) ∈
0
W

2

2 (R+;H). Consequently, ImP0 =

= L2(R+;H). Allowing for the Banach theorem on the inverse operator, from the

inequality

∥∥∥∥P0

(
d

dt

)
u

∥∥∥∥ ≤ const ∥u∥W 2
2 (R;H) we get that operator P0 has an inverse

operator acting from
0
W

2

2 (R+;H) to L2(R+;H).

The theorem is proved.

From theorem 1 it follows that the norms ∥P0u∥L2(R+;H) and ∥u∥W 2
2 (R+;H) are

equivalent in the space
0
W

2

2 (R+;H). Therefore, from the theorem on intermediate

derivatives it follows that the number

N1 = sup

0 ̸=u∈
0
W

2

2 (R+;H)

∥Au′∥L2(R+;H)

∥P0u∥L2(R+;H)

. (14)

is finite.

Theorem 2. The number N1 is determined in the following way

N1 =


1

2
|q|−1/2 , p ≤ 0(
p2 + 4 |q|

)−1/2
, , p ≥ 0

.

Proof. Following the paper [13], consider the operator bundle for s ∈
∈
[
0, p2 + 4 |q|

)
in H2

F1 (λ; s;A) = λ2E + c1(s)λA+ c2(s)A
2,



Transactions of NAS of Azerbaijan
[On completeness of the system of eigen...]

103

where c1(s) =
√
p2 + 4 |q| − s, c2(s) = |q|. It is easily verified that for s ∈

∈
[
0, p2 + 4 |q|

)
the operator bundle is represented in the form

F1 (λ; s;A) = (λE − ω1(s)A)(λE − ω2(s)A),

where Reω1(s) < 0, Reω2(s) < 0 for s ∈
[
0, p2 + 4 |q|

)
. Further, for u ∈

∈
0
W

2

2 (R+;H) we easily verify the validity of the equality [13]∥∥∥∥F1

(
d

dt
; s;A

)
u

∥∥∥∥2
L2(R+;H)

+Q(s;ψ) = ∥P0u∥2L2(R+;H) − s
∥∥Au′∥∥2

L2(R+;H)
, (16)

where ψ ∈ H3/2, and

Q(s;ψ) = (c1(s)c2(s)− pq) ∥ψ∥2 =
(
|q|
√
p2 + 4 |q| − s− pq

)
∥ψ∥2 .

From the results of the paper [13] it follows that N1 =
(
p2 + 4 |q|

)−1/2
if and onli

if Q (s;ψ) > 0 for s ∈
(
0, p2 + 4 |q|

)
. Hence, it is seen that

|q|
√
p2 + 4 |q| − s+ p |q| > 0

for p ∈ (0,∞). If p ∈ (−∞, 0], the number N−2
1 will be a solution of the equation

|q|
√
p2 + 4 |q| − s = |p| |q| ,

i.e. N−2
1 = 4 |q|. Thus, N1 = 2−1 |q|−1/2 for p ≤ 0.

The theorem is proved. From theorem 2 we get:

Theorem 3. Let conditions 1)-3) be fulfilled, and

∥B1∥ < N−1
1 =

{
2 |q|1/2 , p ≤ 0√
p2 + 4 |q|, p ≥ 0

(17)

Then the operator P isomorphically maps the space
0
W

2

2 (R+;H) onto L2(R+;H).

Proof. By theorem 1, P−1
0 : L2(R+;H) →

0
W

2

2 (R+;H) is an isomorphishm.

Denote υ = P0ω. Then for υ we get the equation υ + P1P
−1
0 υ = f in the space

L2(R+;H). Since∥∥P1P
−1
0 υ

∥∥
L2(R+;H)

= ∥P1ω∥L2(R+;H) ≤ ∥B1∥
∥∥Aω′∥∥

L2(R+;H)
≤

≤ ∥B1∥N1 ∥P0ω∥L2(R+;H) = N1 ∥B1∥ ∥υ∥ = α ∥υ∥L2(R+;H) , α < 1,

the operator E+P1P
−1
0 is invertible in the space L2(R+;H) and υ =

(
E + P1P

−1
0

)−1
f .

Hence u = P−1
0

(
E + P1P

−1
0

)−1
f .

The theorem is proved. The following theorem follows from theorem 2 and

remark 1:

Theorem 4. Let the conditions of theorem 3 be fulfilled. Then problem (2)-(3)

is regularly solvable.
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Now prove a theorem on the completeness of the system K (Π−).

Theorem 5. Let conditions 1)-3) and inequality (17) be fulfilled. Then when

one of the following conditions is fulfilled

a) A−1 ∈ σρ (0 < ρ ≤ 1) ;

b) A−1 ∈ σρ (0 < ρ <∞) , B1 ∈ σ∞ (H) .

Then system K (Π−) is complete in H1/2.

Proof. By theorem 4, problem (2), (3) is regularly solvable. Then for any

φ ∈ H1/2, there exists a vector function u(t) ∈
0
W

2

2 (R+;H) that satisfies equation

(2) almost everywhere in R+. Denote by ũ (λ) its Laplace transform. Then

P (λ) ũ (λ) = Q(λ), Q(λ) = φ+ λu(0) + (pA+A1)u(0).

Hence we have

u(t) =
1

2πi

+i∞∫
−i∞

ũ (λ) eλtdλ =
1

2πi

i∞∫
−i∞

P−1(λ)Q(λ)dλ.

From estimations (5) it follows that on the sectors S±(π
2
+θ) for small θ > 0 it holds

the estimation
∥∥P−1 (λ)

∥∥ ≤ c |λ|−2, for large |λ|. Therefore,

u(t) =
1

2πi

∫
Γ±θ

P−1 (λ)Q1 (λ) e
λtdλ,

where Γ±θ =
{
λ : λe±i(π/2+θ), r > 0

}
.

Suppose that the system K (Π−) is not a complete system in the space H1/2.

Then there exists a vector φ ∈ H1/2, φ ̸= 0 and
(
φ,φ

(l,1)
i,h

)
1/2

= 0 i = 1,∞, l =

= 1, qi . Then from the Keldysh lemma [11] on the expansion of the resolvent in the

vicinity of the eigen values, it follows that the vector-function is

R(λ) =
(
A1/2P−1

(
λ
))∗

λA1/2φ

holomorphic in the left half-plane. Since ũ(λ) is a Laplace transform of the functions

from the space W 2
2 (R+;H), it is holomorphic in the right half-plane as well, and has

boundary value almost everywhere on the imaginary axis. Thus, for t > 0(
u′(t), φ

)
1/2

=
1

2πi

∫
Γ±θ

(
A1/2P−1 (λ)λQ (λ) , A1/2φ

)
eλtdλ =

=
1

2πi

∫
Γ±θ

(
Q (λ) , (λA1/2P−1 (λ)

)∗
A1/2φ)eλtdλ =

1

2πi

∫
Γ±θ

S(λ)eλtdλ, (18)

where S(λ) = (Q (λ) , R
(
λ
)
), and S (λ) is an entire function. And it follows from

lemma 1 that S (λ) is an entire function of order ρ and of minimal type for order

ρ. Then from the Fragmen-Lindeloff theorem, allowing for the condition a) or b) it
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follows that S (λ) = b0 + λb1, b0, b1 ∈ H. (Here we take into account estimation (5)

as well). Then from equality (18) it follows that for t > 0

(u′(t), φ)1/2 =
1

2πi

∫
Γ±θ

(b0 + λb1) e
λtdλ ≡ 0,

i.e. (u′(t), φ)1/2 = 0. Passing to limit t→ 0, we get ∥φ∥21/2 = 0 i.e. φ = 0.

The theorem is proved.

The following theorem on the completenesss of decreasing elementary solutions

is valid.

Theorem 6. Let the conditions of theorem 5 be fulfilled. Then the system of

elementary solutions is complete in the space of regular solutions of problem (2),

(3).

Proof. Let ℘ be a space of regular solutions of problem (2), (3). Obviously, ℘

is a closed space in W 2
2 (R+;H). Let φ ∈ H1/2. By theorem 4, for any ε > 0 one

can find the number N(ε) and the numbers a
(l)
i,h,Nε

such that∥∥∥∥∥∥φ−
Nε∑
i=1

∑
(l)

∑
(h)

a
(l)
i,h,Nε

φ
(l,1)
i,h

∥∥∥∥∥∥
1/2

< ε.

Then taking into account φ = u′(0), and φ
(l,1)
i,h =

d

dt
u
(l)
i,h(t) |t=0 , from the regular

solvability of problem (1), (2) it follows that∥∥∥∥∥∥u(t)−
∑
i=1

∑
(l)

∑
(h)

a
(l)
i,h,Nε

φ
(l)
i,h

∥∥∥∥∥∥ ≤ const ε < ε1.

The theorem is proved.
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