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ON COMPLETENESS OF THE SYSTEM OF EIGEN
AND ADJOINT VECTORS OF QUADRATIC
OPERATOR BUNDLES

Abstract

In the paper, sufficient conditions on the coefficients of the quadratic opera-
tor bundles of elliptic type are obtained. When these conditions are fulfilled, the
system of eigen and adjoint vectors is complete in the trace space of the solutions
of appropriate operator-differential equations. The theorems on the complete-
ness of decreasing elementary solutions in the space of reqular solutions of a
homogeneous equation are also obtained.

Let H be a separable Hilbert space, A be a positive-definite self-adjoint operator
in H. Denote by H, a scale of Hilbert spaces generated by the operator A. Remined
that Hy, = D (A7) is a scalar product in H,, and is given by the equality (z, y)7 =
(A7z, AVy) for the elements z,y € H, (y>0). For v = 0 assume that Ho =
H, (z,y)0 = (2,y).

Denote by Lo (R+; H) a Hilbert space of the functions f(¢) determined almost
everywhere in Ry = (0,00), measurable, quadratically integrable in the Bochner
sense, with the values in H with the norm

1/2

s = | [ 1701 | < +o0.
0

In the sequel, L(X;Y") denotes the space of linear bounded operators acting from X
to Y. Following the monograph [1] define the space of the functions

W3(Ry;H) = {u: u" € Ly(Ry; H), A’u€ Ly(Ry; H)}
with the norm

9 2 1/2
HuHWQQ(R_HH) = (HAQuHLQ(R+;H) + H“HHL2(R+;H)) :

Here and in the sequel, the derivatives are understood in the sense of distributions
theory. Define also the following subspace in W3 (R.; H)

12/3 (Rys H) = {uwu € W3 (Ry; H), u/'(0) =0}

For R = (—o0,00) the spaces Lo(R, H) and W2(R, H) are determined in the
same way.
Consider the following quadratic operator bundle

P(\) = A2E + \(pA + Ap) + ¢A?, (1)
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where A is a spectral parameter, and the operator coefficients satisfy the following
conditions:

1) pe R=(—00,00), q<O0;

2) A is a positive-definite self-adjoint operator with a completely continuous
inverse A~1:

3) The operator By = A A~! is bounded in H.

In the present paper we’ll show sufficient conditions on the coefficients of operator
bundle (1), that provide completeness of the chain of eigen and adjoint vectors in
the space H /o responding to some boundary value problem. Note that the operator
bundle (1) was investigated by many authors for p = 0, ¢ = —1 (see [2-9], and in
the general form in [10].

Combine bundle (1) with the following boundary value problem

P (i) u(t) =0, )

W (0)=¢, pc€ Hy . (3)
Definition 1. If for any ¢ € Hy/y there exisls a wvector-function
u € W2(R4; H) that satisfies equation (2) almost everywhere in R, boundary con-
ditions (3) in the sense of the convergence

tlgffo [/ (8) = @H1/2 =0,

and it holds the estimation

lellwz(rymy < constllellys

then problem (2), (3) is said to be regularly solvable, and u(t) its reqular solution.
Definition 2. Let \; be an eigen value of the bundle P()\), and cpl(-f()) be an

appropriate eigen vector, i.e. %(’l()) # 0 and P(/\i)cpl(-f()) = 0. Then the system

<pz(.f()), gpgg, e ‘Pz(',l)nip Il =1, q; satisfying the relations

OP(\;
POl + 22000

is called a system of eigen and adjoint vectors of the bundle P (\) responding to the

2901(9672 = 07 k= Ovmilv (@Ef),la Soil),z - O)

etgen values \;.

Definition 3. Let go%, cpz(g, v Soz(,lznu’ i =1,q; be a chain of eigen and adjoint
vectors responding to the eigen value X;, moreover ReX; < 0. Then the vector
functions

. 1 l t 1 th
ui,h(t) = e)wt <(‘O£,2L + gpz('7});,_1i + ...+ ()01(,7()]h'> ) h = O7mil7 l= 17QZ

d
satisfy the equation P <dt> u(t) =0 and are called the decreasing elementary solu-

d
tions of the homogeneous equation P <dt> u(t) = 0.



Transactions of NAS of Azerbaijan 99
[On completeness of the system of eigen...]

ey _ 4

(1,1)
Let Pih %u’ h

})L(t) li—0. Obviously, the system ¢, ;" responds to boundary

value problem (2), (3). Denote

K1) = {0, h=0m;, 1=Tq, i=T}.

i?

Note that while fulfilling conditions 1)-3), the operator bundle P()) has only a
discrete spectrum with a unique limit point at infinity. Indeed,

P(\) = N2E + \N(qA + Ay) + qA% =

=g\ AT? L Apg P E + Tt ALATH)AT YA = g(E4+ LOV)AT2, (4)

where
L) = g A2 4 Mg pA™ + ¢t B1ATY).

Since A~! is a completely continuous operator, then L()) is a completely con-
tinuous operator for any A € C. E + L(0) = E is invertible, then by the Keldysh
lemma [11] the operator bundle E + L(A) and simultaneously, the bundle P()\) has
a discrete spectrum with a unique limit point at infinity. If additionally we require
At e o, (0<p<o0),then it holds

Lemma 1. Let conditions 1)-3) be fulfilled, and A~' € o,. Then the operator
function A2P~1()\) is represented in the form of the ratio of two entire functions of
order p and of minimal type for order p.

1
Proof. It is seen from equality (4) that A2P~1()\) = =

(E 4+ L(A\))™!, and the
q

coefficients of the operator bundle L(\)
g tA? e Tp/2> g lpA 4+ ¢ IBiAT e Tp.

Then by the Keldysh lemma [11], (E + L()\)) ™", consequently A2P~1()\) satisfy
the statement of the lemma.

The lemma is proved.

Lemma 2. Let conditions 1)-3) be fulfilled. Then while fulfilling the condition
| B1]| < /P> + 4]q|, the operator bundle P()\) is invertible in the sectors

Si(gie) = {)\ A= reﬂ(%ia), r>0, |af < 9}
for small 8 > 0, and in these sectors it holds the estimation
P10 + AP )| + [R2P V)| < const 5)
Proof. From conditions 1) and 2) it follows that the operator bundle Py(\) =

M E + ApA + qA? is investible on the imaginary axis, since Py()\) =
= (AEF — w1 A) (AE —w2A), where

1 1
wr==3 (b VP ) <0, w2 =3 (p = VB2 A1) >0
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Then from the equality
P(X) = Py(N) + Pi(A) = (B = PL )P (A) Po(N)

it follows that if for A = i¢ the inequality || Py(A\) Py ' (M)]| < a1 < 1 is fulfilled, then
the operator bundle P()) is also invertible. Obviously,

| P:(i&) Py (i€) || = ||(i€A1) Py (i€)|| < I|Ball ||€AP; " (i)]] - (6)

Further, using the spectral expansions of the operator A, we get

HEAPO_l(Zg)H = sup ‘f,u(—éz +i§p,u—|—q,u2)*1‘ <
pneo(A)

9 ~1/2 9 ~1/2
< sup ((52 — qu®) +p2u2) < sup |7 ((72 —q)" + quQ)‘ =
4200 >0

— (P +4ld)* (@<0). (7)

Taking into account inequality (7) in (6) we get
N o1 ~1/2
| P& By GO < 1Bl (02 + dlal) 7 = en < 1.

i.e. the operator bundle P(\) is invertible on the imaginary axis. On the other
hand, on the imaginary

APy (i6)|| = sup |[wPPyt(i€)|| <
p=o(A)

9 ~1/2
< sup ((T2 —q) +p2T> =—. (8)
>0
Similarly we have (¢ < 0)

—-1/2

¢ ((62 —qu?)’ +p2u2> <1 (9)

[€2P~1(€)]| < sup
u=>o

From inequalities (7)-(9) it follows that inequality (5) is valid on the imaginary axis.
Further, for § > 0, i€ € R and X = ie?, |a| < 0 we have

P(X\) = (E+ (i€)*P1(i&) (¥ — 1) + i&(p + A1) P~ (i€)(e"* — 1)) P(if).

Then for rather small § allowing for inequality (5) for A = i€ we get that P()\) is
invertible and inequality (5) is fulfilled in the sectors S ) for small 6.
2
The lemma is proved.
Lemma 3. The problem
d d*u du

Pu=P|—|u=— +pA— +qA%u=0 10
ou 0<dt>u dt2+p dt+q u =70, (10)

ul(o) =% (11)
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1s reqularly solvable.

d
Proof. Since the general regular equation P (dt) u(t) = 0 in W(R; H) is of

_1 /
the form wug(t) = e 2(p+ p2+4|q|)tA1/1, where ¢ € Hj/y, it follows from condition

1
(11) that ~5 (p—l— Vv p? —|—4|q|) Ap =@ or
-1/2
w:—Q(P+vp2+4|q,) A7 p € H3po

and uo(t) € W3(Ra; H), luo (0)llwa(rasm) < constllelly .
The lemma is proved.
Remark 1. Using lemma 3, we can reduce the regular solvability of problem (2),

(3) to the solution of the equation Pw = ¢ in the space I/?/;(RJ’_; H). Indeed, we’ll
look for the solution of problem (2), (3) in the form u(t) = w(t)+wuo(t), where ug(t) is
a regular solution of problem (10), (11). Then it is obvious that «'(0) = w’(0)+u(0),
i.e. W'(0) = 0 from the equality

Pu= Pyu+ Piu= Py (w+u) + P (w+u) =

=(Py+ P1)w+ Piug = Pw+ Prug =0

it follows that for w we get the equation
0
Puw=—Piuy, weWy(Ry;H), (w(0)=0).

Obviously, for g = —Piug

duo

duo
190l oy sy = HA1 o —

dt

<

<H&MM
Lo(Ry;H)

Lo(Ry;H)

< const HU0||W22(R+;H) < const ||90H1/2'

0 2
Thus, for determining w € W, (Ry; H) we get the following boundary value

problem
R ()0 =00, (12)
w'(0) = 0, (13)
It holds 0,
Theorem 1. The operator Py isomorphically maps the space Wo(R4; H) onto
Lo(Ry; H).

Proof. It follows from lemma 3 that KerPy = {0}. Prove that Im Pyu =
= Ly(R4+; H). Tt is easy to see that for any g € Lo(R4; H) the function

o0

+oo
uy(t) = \/127 / (—§2E + iépA + Az)_1 /g(s)eiﬁ(s_t)dsdf,

0
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belongs to the space W3 (Ry; H). Indeed, from the Plancherel theorem it follows
that

2 2
||u||12/V22(R,H) = HA2“HL2(R+,H) + Hu//|’L2(R+,H) -
2~ 2 9~ 2
= ¢ “(5)“L2(R+,H) +4 u(g)“Lg(R+,H) =
2p—1 [\ 2 2 5—1 /ey ~ 2
= &P (i) 3 (g)HLQ(R_‘_,H) +[|A%Fg (i) g (5)HL2(R+,H) <
2p—1/, 21—1 /-
< sup |5 GOl 191, + 50p 14 Fo " GO 19 a1

Taking into account inequalities (8) and (9), we get u(t) € W2(R,; H). Here
u(€) and g (&) are the Fourier transformations of the functions u(t) and g (&), where
g(t) = g(t) for t > 0 and g(t) = 0 for ¢ < 0. Further, it is obvious that u(t)

d
satisfies the equation P <dt> u(t) = g(t) for t € Ry almost everywhere. De-

note by £(¢) the contraction of the function u(t) on [0,00). Obviously, [1], £(t) €
W2(Ry; H) and £ (0) € Hj), €(0) € Hyjp. Now, we'll look for the solution of w(t)

1 /2
in the form w(t) = &(t) + e 2 <p+ b +4|q|)At¢, where 1) is an unknown vector from

P\ /p:+4
Hj). Then, for determining ¢ from (13), we get £'(0) = -5~ p;mAw or

-1
N/
b = <—]2’ - p;"”) A71E(0). Since £'(0) € Hy s, then ¢ € Hjp. Thus,

0
w(t) € W; (Ry; H). Consequently, Im Py =
= Ly(Ry; H). Allowing for the Banach theorem on the inverse operator, from the

d
P0<dt>u

02
operator acting from Wy (Ry; H) to La(R4; H).
The theorem is proved.

< const ||u||W22(R,H) we get that operator Py has an inverse

inequality |

From theorem 1 it follows that the norms ||Poul|, g, .p) and Hu||W22(R+;H) are

02
equivalent in the space Wy (R4; H). Therefore, from the theorem on intermediate
derivatives it follows that the number

||AUIHL2(R+,H)

Ny = sup (14)

Pyu Y
O#UGI%;(R+,H)H 0 |’L2(R+,H)

is finite.
Theorem 2. The number Ny is determined in the following way

1

§|Q‘71/27 PSO
—1/2 ’

(2 +4lg)"*, , p>0

Ny =

Proof. Following the paper [13], consider the operator bundle for s €
€ [0,p* +4]q|) in Ho

Fi (\;5;4) = N2E 4 ¢1(8)AA + ca(s) A%
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where ¢1(s) = \/p? +4|q| — s, ca(s) =|q|. Tt is easily verified that for s €

€ [0, p? +4 |q]) the operator bundle is represented in the form

Fi(\55A4) = (AE —wi(s)A)(AE — wa(s)A),

where Rews(s) < 0, Rews(s) <0 for s € [0, p?+4]q|). Further, for u €

02
€ Wy (Ry; H) we easily verify the validity of the equality [13]

d
’Fl (dt,s,A> U

where ¢ € H3 /o, and

Qs ) = (ex(s)eals) = pa) |01* = (Ial Vi7 +21al s = pa) o[-

From the results of the paper [13] it follows that Ny = (p2 +4 \q|)71/ % if and onli
if Q(s;9) >0 for s € (0,p2 +4 \q[) Hence, it is seen that

lgl V2 +4lgl —s+plgl >0

for p € (0,00). If p € (—o0, 0], the number N; 2 will be a solution of the equation

lg| vVp* +4lql — s = |p|lql,

i.e. Ni2=4]g|. Thus, Ny = 2~1|g|~"/2 for p < 0.
The theorem is proved. From theorem 2 we get:
Theorem 3. Let conditions 1)-3) be fulfilled, and

2

2
+ Q(Sv ¢) = ”POUH%Q(RJr;H) - S ‘}Aul‘}LQ(R+;H) ) (16)
La(Ry;H)

21q|"/?, p<0

B|| < Nyt =
1Bill < Ny {\/p2+4|q|, p>0

(17)

02
Then the operator P isomorphically maps the space Wo(Ry; H) onto Lo(R4; H).

0 2
Proof. By theorem 1, Py': Lo(Ry; H) — Wo(Ry; H) is an isomorphishm.
Denote v = Pyw. Then for v we get the equation v + PlPO_IU = f in the space
Ly(R4; H). Since

“Plp(;lu“Lz(R+;H) - ||P1w||L2(R+;H) < Bl HAWIHM(RHH) =

< [Bill NullPowllyry iy = NI Ball ol = allollpymy iy, a <1
the operator E+P1P(;1 is invertible in the space Lo(R; H) and v = (E + PlPofl)f1 f-
Hence u= Py  (E+ PPy ") 1.
The theorem is proved. The following theorem follows from theorem 2 and
remark 1:
Theorem 4. Let the conditions of theorem 3 be fulfilled. Then problem (2)-(3)

1s regularly solvable.
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Now prove a theorem on the completeness of the system K (II_).

Theorem 5. Let conditions 1)-3) and inequality (17) be fulfilled. Then when
one of the following conditions is fulfilled

a) Al eo, (0<p<1);

b) A7l eo, (0<p<o0), Bi €0 (H).

Then system K (II_) is complete in H .

Proof. By theorem 4, problem (2), (3)
0
) € W;(R+;H ) that satisfies equation
(2) almost everywhere in R;. Denote by () its Laplace transform. Then

is regularly solvable. Then for any

¢ € Hyp, there exists a vector function u(t

P uA) =QM), Q) = ¢+ u(0) + (pA + A1) u(0).

Hence we have
+i00
1
211

- t - 1 100 »
u(t) = u(N) et d)\—zm_/P (A)Q(N)dA.

—100 —100
From estimations (5) it follows that on the sectors S +(z+0) for small 6 > 0 it holds
2
the estimation HP‘l W] <e IA|72, for large |A|. Therefore,

ut) = 5 [ PTOQ )N,
Lt

where ' g = {)\  NeTUT/2H0) 0} .
Suppose that the system K (II-) is not a complete system in the space Hj ;.

Then there exists a vector ¢ € Hy /s, ¢ # 0 and (<p, SDz(lkl))l/Q =0i=1,00, [ =

= 1,¢; . Then from the Keldysh lemma [11] on the expansion of the resolvent in the
vicinity of the eigen values, it follows that the vector-function is

R(\) = (42P1 (3)) a2

holomorphic in the left half-plane. Since u(\) is a Laplace transform of the functions
from the space W2 (R, ; H), it is holomorphic in the right half-plane as well, and has
boundary value almost everywhere on the imaginary axis. Thus, for £ > 0

(u/(t)7gp)1/2 = L / <A1/2P*1 ()\) AQ ()\) ’A1/2<,0> eMd\ =

211
I'ig

_ b T A41/2 p—1 * 20 M) = —— AN

= (Q (), (ZAY2P (A)) A dX SMdN,  (18)
Lo

where S(A) = (Q (\),R (X)), and S (A) is an entire function. And it follows from

lemma 1 that S (\) is an entire function of order p and of minimal type for order

p. Then from the Fragmen-Lindeloff theorem, allowing for the condition a) or b) it
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follows that S (A\) = by + Ab1, bp,b1 € H. (Here we take into account estimation (5)
as well). Then from equality (18) it follows that for ¢ > 0

1
(u'(t), 80)1/2 = o / (bo + Aby) Md =0,

| )

i.e. (u/'(t),¢)1/2 = 0. Passing to limit ¢t — 0, we get ||<,0||?/2 =0ie ¢=0.

The theorem is proved.

The following theorem on the completenesss of decreasing elementary solutions
is valid.

Theorem 6. Let the conditions of theorem 5 be fulfilled. Then the system of
elementary solutions is complete in the space of regular solutions of problem (2),

Proof. Let p be a space of regular solutions of problem (2), (3). Obviously, p
is a closed space in W3 (Ry; H). Let ¢ € Hy/5. By theorem 4, for any € > 0 one

O]

can find the number N(g) and the numbers a; ), 5 such that

ZZZ @; h.N.P zlhl) <e.

e i o wy _ 4
Then taking into account ¢ = u'(0), and ¢, ; dtu”’( ) lt=0, from the regular
solvability of problem (1), (2) it follows that

ZZZ tha‘ch < const € < €1.

=1 (1) (h)

The theorem is proved.
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