Eldar Sh. MAMEDOV

RENEWAL OF A MULTI-PARAMETRIC SPECTRAL PROBLEM WITH GIVEN EIGEN VALUES AND EIGEN ELEMENTS

Abstract

In the paper, the inverse multi-parametric problem is investigated in the following form: for the given sequence of eigen values $\{(\lambda_{1,n},\lambda_{2,n},...,\lambda_{m,n})\}_{n=1,2,...}\subset R_m$ with real coordinates and the sequences of appropriate given eigen elements

$$\left\{\Phi_{n}\right\}_{n=1,2,\dots}=\left\{\varphi_{1,n}\otimes\varphi_{2,n}\otimes\dots\otimes\varphi_{m,n}\right\}_{n=1,2,\dots}\subset H=H_{1}\otimes H_{2}\otimes\dots\otimes H_{m}$$

(where \otimes is a tensor product sign) we look for a family of compact self-adjoint permutation operators $K_{i,1}, K_{i,2}, ..., K_{i,m}$ in the Hilbert space $H_i, i = 1; 2; ...; m$ for which the given sequences $\{(\lambda_{1,n}, \lambda_{2,n}, ..., \lambda_{m,n})\}_{n=1,2,...}$ and $\{\Phi_n\}_{n=1,2,...}$ are the complete sequences of eigen values and appropriate eigen elements of the problem

$$\begin{cases} \sum_{j=1}^{m} \lambda_j K_{i,j} \varphi_i = \varphi_i, & \varphi_i \in H \\ i = 1; 2; ...; m \end{cases}.$$

In the paper, the inverse multi-parametric problem is investigated in the following form: for the given sequence of eigen values $\{(\lambda_{1,n}, \lambda_{2,n}, ..., \lambda_{m,n})\}_{n=1,2,...} \subset R_m$ with real coordinates and the sequences of appropriate given eigen elements

$$\{\Phi_n\}_{n=1,2,\dots} = \{\varphi_{1,n} \otimes \varphi_{2,n} \otimes \dots \otimes \varphi_{m,n}\}_{n=1,2,\dots} \subset H = H_1 \otimes H_2 \otimes \dots \otimes H_m \quad (1)$$

(where \otimes is a tensor product sign) we look for a family of compact self-adjoint permutation operators $K_{i,1}, K_{i,2}, ..., K_{i,m}$ in the Hilbert space $H_i, i = 1; 2; ...; m$ for which the given sequences $\{(\lambda_{1,n}, \lambda_{2,n}, ..., \lambda_{m,n})\}_{n=1,2,...}$ and (1) are the complete sequences of eigen values and appropriate eigen elements of the problem

$$\begin{cases}
\sum_{j=1}^{m} \lambda_j K_{i,j} \varphi_i = \varphi_i, & \varphi_i \in H \\
i = 1; 2; ...; m
\end{cases}$$
(2)

Denote the linear span of the set of the first n elements of the sequence $\varphi_{i,1}, \varphi_{i,2}, ..., \varphi_{i,n}, ...$, i.e. of the set $\{\varphi_{i,1}, \varphi_{i,2}, ..., \varphi_{i,n}\} \subset H_i, i = 1; 2; ...; n$ by $L(\varphi_{i,1}, \varphi_{i,2}, ..., \varphi_{i,n})$, the closure of the linear sub space $L(\varphi_{i,1}, \varphi_{i,2}, ..., \varphi_{i,n}, ...)$ by $\overline{L}(\varphi_{i,1}, \varphi_{i,2}, ..., \varphi_{i,n}, ...), i = 1; 2; ...; m$. Introduce the denotation

$$(\Delta_0 \Phi, \Phi) = \det \left((Ker_{i,j} \varphi_i, \varphi_i) \right)_{\substack{i=1,2,\ldots,m\\j=1,2,\ldots,m}}^{\otimes},$$

$$(\Delta_i \Phi, \Phi) =$$

$$=\det\left(\begin{array}{ccccc} (K_{1,1}\varphi_1\varphi_1) & \dots & (K_{1,i-1}\varphi_1\varphi_1) & (\varphi_1\varphi_1) & (K_{1,i+1}\varphi_1\varphi_1) & \dots & (K_{1,m}\varphi_1\varphi_1) \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ (K_{m,1}\varphi_m\varphi_m) & \dots & (K_{m,i-1}\varphi_m\varphi_m) & (\varphi_m\varphi_m) & (K_{m,i+1}\varphi_m\varphi_m) & \dots & (K_{m,m}\varphi_m\varphi_m) \end{array}\right)^{\otimes},$$

[E.Sh.Mamedov

where $\Phi = \varphi_1 \otimes \varphi_2 \otimes ... \otimes \varphi_m \in H = H_1 \otimes H_2 \otimes ... \otimes H_m$. $\Delta_0, \Delta_1, ..., \Delta_m$ are the linear operators determined on the Hilbert space $H = H_1 \otimes H_2 \otimes ... \otimes H_n$.

Let $\varphi_i(\lambda_1, \lambda_2, ..., \lambda_m) \in H_i, i = 1; 2; ...; m$ be a solution of the *i*-th equation of system (2), that analytically depends on the variables $(\lambda_1, \lambda_2, ..., \lambda_m)$. The following theorem is known (see [2]).

Theorem 1. In order all the eigen elements $\varphi_i(\lambda_1, \lambda_2, ..., \lambda_m) \in H_i, i = 1; 2; ...; m$ analytically dependent on the parameters $(\lambda_1, \lambda_2, ..., \lambda_m)$ were constants with respect to the variables $(\lambda_1, \lambda_2, ..., \lambda_m)$ it is necessary and sufficient that in problem (2) the operators $K_{i,1}, K_{i,2}, ..., K_{i,m}, i = 1; 2; ...; m$ be permutational. Therewith, the spectral set consists of the totality of hyperplanes.

Theorem 2. If the operators $K_{i,1}, K_{i,2}, ..., K_{i,m}$ are compact self-adjoint, permutational operators in the Hilbert space $H_i, i = 1; 2; ...; m$, and elements $\varphi_i(\lambda_1, \lambda_2, ..., \lambda_m) \in H_i, i = 1; 2; ...; m$ analytically dependent on the paremeters $(\lambda_1, \lambda_2, ..., \lambda_m)$ are the eigen elements of the i-th equation of system (2), then $\varphi_i(\lambda_1, \lambda_2, ..., \lambda_m) \in H_i, i = 1; 2; ...; m$ (a constant with respect to $(\lambda_1, \lambda_2, ..., \lambda_m)$ is a joint eigen element of each of the operators $K_{i1}, K_{i2}, ..., K_{im}$, and the spectral hypersurface of the i-th equation of system (2), that corresponds to the eigen element $\varphi_i \in H_i$ is of the form $\sum_{j=1}^m \lambda_j \alpha_{i,j} = 1$, i = 1; 2; ...; m, where the nonzero values of the numbers $\alpha_{i,1}, \alpha_{i,2}, ..., \alpha_{i,m}$ are the eigen values of the operators $K_{i,1}, K_{i,2}, ..., K_{i,m}, i = 1; 2; ...; m$ respectively, and the zero values of the numbers $\alpha_{i,j}; i, j = 1; 2; ...; m$, means that for the appropriate operator $K_{i,j}\varphi_i = 0$.

Proof. Let for the fixed values of the index i = 1; 2; ...; m the element $\varphi_i \in H_i$ is an eigen element of the *i*-th equation of system (2), and according to theorem 2 some spectral hypersurface in the form

$$\sum_{r=1}^{m} \lambda_r c_{i,r} = 1, \quad i = 1; 2; ...; m.$$
(3)

corresponds to this eigen element.

Taking into account equalities (3) in the system of equation (2), i. e. excluding parameter λ_i we get

$$c_{ij}\varphi_i - K_{i,j}\varphi_i = \sum_{\substack{r=1\\r\neq i}}^m \lambda_r \left(c_{ij}K_{i,r}\varphi_i - c_{ir}K_{i,j}\varphi_i \right), \quad \varphi_i \in H_i \quad i = 1; 2; ...; m. \tag{4}$$

For each fixed value of the index i, the appropriate equality in system (4) is true for any value of the parameters $\lambda_r, r=1,...,m; r\neq j$. Here the elements φ_j are independent on the parameters $\lambda_r, r=1,...,m$, consequently, for any collection of parameters $\lambda_r, r=1,...,m$, equalities (4) are true iff the following equalities are fulfilled simultaneously:

$$c_{i,j}\varphi_i - K_{i,j}\varphi_i = 0, \sum_{\substack{r=1\\r \neq i}}^m \lambda_r \left(c_{i,j} K_{i,r} \varphi_i - c_{i,r} K_{i,j} \varphi_i \right) = 0, \quad i = 1; 2; ...; m.$$

Hence we get the equalities $K_{i,j}\varphi_i=c_{i,j}\varphi_i,\ i=1;2;...;m$. Thus, it is proved that the coefficients $c_{i,1},c_{i,2},...,c_{i,m}$ i=1;2;...;m in equation (3) are the eigen

 $\overline{[Renewal\ of\ a\ multi-parametric\ spectral...]}$

values of the operators $K_{i,1}, K_{i,2}, ..., K_{i,m}$ corresponding to the joint eigen element φ_i , i = 1; 2; ...; m or $K_{i,j}\varphi_i = 0$, (in the case $c_{i,j} = 0$), respectively. The theorem is proved.

Theorem 3. Let set (1) consist of all the eigen elements of problem (2) where $K_{i,1}, K_{i,2}, ..., K_{i,m}$, i = 1; 2; ...; m are the compact, self-adjoint, permutational operators in the Hilbert space H_i , i = 1; 2; ...; m, and in problem (2) the right determinacy condition be fulfilled in the form

$$(\Delta_0 \Phi, \Phi) = \det \left((K_{i,j} \varphi_i, \varphi_i) \right)_{\substack{i=1,2,\dots,m\\j=1,2,\dots,m}}^{\otimes} > 0, \tag{5}$$

then the closure of the linear subspaces $L\left(\varphi_{i,1},\varphi_{i,2},...,\varphi_{i,n},...\right)$, i=1;2;...;m coincide with the spaces $H_i, i=1;2;...;m$, respertively, i.e. $L\left(\varphi_{i1},\varphi_{i2},...,\varphi_{in},...\right)=H_i,$ i=1;2;...;m.

Proof. Let, vice versa, even if for one value of the index i the equality $L\left(\varphi_{i,1},\varphi_{i,2},...,\varphi_{i,n},...\right)=H_{i}$ be not fulfilled, i.e. for this value of the index i there exists a subspace $E_{i}\neq\varnothing$ for which the following equality holds:

$$L\left(\varphi_{i,1},\varphi_{i,2},...,\varphi_{i,n},...\right)\otimes E_{i}=H_{i}.$$

The elements of the sequence $\varphi_{i,1}, \varphi_{i,2}, ..., \varphi_{i,n}, ...$ are the eigen elements of the *i*-th equation of problem (1). It is known that the Hilbert space H_i may be represented in the form $H_i = \operatorname{Im} K_{i,j} \oplus Ker K_{i,j}, i, j = 1; 2; ...; m$. Taking into account this

relation, we can write $\varphi_{i,n} \perp \bigcap_{j=1} Ker K_{i,j}$. The last relation means

$$L\left(\varphi_{i,1},\varphi_{i,2},...,\varphi_{i,n},...\right)\perp\bigcap_{j=1}^{m}KerK_{i,j}.$$

Consequently, $E_i \supset \bigcap_{j=1}^m Ker K_{i,j}$. By theorem 2, each element of the sequence

 $\varphi_{i,1}, \varphi_{i,2}, ..., \varphi_{i,n}...$ is a joint eigen element of the operators $K_{i,1}, K_{i,2}, ..., K_{i,m}, i=1;2;...;m$ (consequently, is an element of all the subspaces $\operatorname{Im} K_{i,j} \subset H_i$) or $K_{i,j}\varphi_{i,n}=0$ in some values of the index j (in the cases when $c_{i,j}=0$ in equality (3)) (consequently, in the cases when $c_{i,j}=0$ is an element of the appropriate subspace $KerK_{i,j} \subset H_i$, and in the cases when $c_{i,j}\neq 0$ it is an element of the appropriate subspace $\operatorname{Im} K_{i,j} \subset H_i$). From relation (3) It follows that the equalities $c_{i,1}=0$, $c_{i,2}=0,...,c_{i,m}=0$ may not be true simultaneously. Consequently, the equalities $K_{i,1}\varphi_{in}=0$, $K_{i,2}\varphi_{in}=0$, ..., $K_{i,m}\varphi_{in}=0$ may not be true simultaneously. There-

fore, $\bigcap_{j=1} Ker K_{i,j} = 0$, i = 1; 2; ..., m. By the permutation property of the operators

 $K_{i,1}, K_{i,2}, ..., K_{i,m}$ the subspace E_i is an invariant subspace for all the operators $K_{i,1}, K_{i,2}, ..., K_{i,m}$. Therefore, the equality i is fulfilled for the appropriate value of the index $K_{i,1}E_i = K_{i,2}E_i = ... = K_{i,m}E_i = E_i$. Consequently, there exists an element $\varphi_0 \in E_i$ for which the equalities $K_{i,j}\varphi_0 \in \eta_j\varphi_0$ are fulfilled, where even if one of the numbers $\eta_1, \eta_2, ..., \eta_m$ doesn't equal zero, i.e. $\eta_1^2 + \eta_2^2 + ... + \eta_m^2 \neq 0$.

According to theorem 1, the spectral hypersurface in the form $\sum_{r=1}^{m} \lambda_r c_{i,r}$, where

[E.Sh.Mamedov]

 $c_{i,r} = (K_{i,r}\varphi_0, \varphi_0) = \eta_r(\varphi_0, \varphi_0)$, corresponds to the element $\varphi_0 \in E_i$. Consider the weakly connected (i.e. connected only with the parameters $\lambda_r, r = 1, ..., m$) system of equations

$$\begin{cases}
\sum_{r=1}^{m} \lambda_r K_{i,r} \varphi_{i,n} = \varphi_{i,n}, \\
i = 1; 2; ...; j - 1; j + 1j...jm \\
\sum_{r=1}^{m} \lambda_r K_{j,r} \varphi_0 = \varphi_0.
\end{cases}$$
(6)

This system of equations may not have a solution, since otherwise the element $\Phi_{n,0} = \varphi_{1,n} \otimes \varphi_{2,n} \otimes ... \otimes \varphi_{j-1,n} \otimes \varphi_0 \otimes \varphi_{j+1,n} \otimes ... \otimes \varphi_{m,n} \subset H = H_1 \otimes H_2 \otimes ... \otimes H_m$ is an eigen element of problem (2). This means that $\varphi_0 \in L(\varphi_{i1}, \varphi_{i2}, ..., \varphi_{in}, ...)$ since the set (1) consists of all the eigen elements of problem (2). This contradicts the condition $\varphi_0 \in E_i$. Therefore, system of equations (6), and consequently the system of equations

$$\begin{cases} \sum_{r=1}^{m} \lambda_r \left(K_{i,r} \varphi_{i,n}, \varphi_{i,n} \right) = \left(\varphi_{i,n}, \varphi_{i,n} \right), \\ i = 1; 2; ...; j - 1; j + 1; ...; m \\ \sum_{r=1}^{m} \lambda_r \left(K_{j,r} \varphi_0, \varphi_0 \right) = \left(\varphi_0, \varphi_0 \right) \end{cases}$$

has no solution. Then the principal determinant of the last system of equations equals zero, i.e. $(\Delta_0 \Phi_{n,0}, \Phi_{n,0}) = 0$. This contradicts condition (5). The obtained contradiction shows that the subspace E_i , may not contain a non-zero element, consequently, $L(\varphi_{i,1}, \varphi_{i,2}, ..., \varphi_{i,n}, ...) = H_i$. The theorem is proved.

Corollary. If in problem (2) the right determinacy condition in the form (5) is fulfilled, then the closure of the linear subspace $L(\Phi_1, \Phi_2, ..., \Phi_n, ...)$ coincides with the space $H = H_1 \otimes H_2 \otimes ... \otimes H_m$ i.e. $\overline{L}(\Phi_1, \Phi_2, ..., \Phi_n, ...) = H$.

If the set $\{e_{i,1}, e_{i,2}, ..., e_{i,n}, ...\} \subset H_i$ is an orthonormed basis of the space $H_i, i = 1; 2; ...; m$ consisting of all the joint eigen elements of the family of compact, self-adjoint, permutational operators $K_{i,1}, K_{i,2}, ..., K_{i,m}$, corresponding to the eigen values $\alpha_{i,1,n_i}, \alpha_{i,2,n_i}, ..., \alpha_{i,m,n_i}$ (i.e. $K_{i,j}e_{m_i} = \alpha_{i,j,n_i}e_{i,n_i}$) then the all possible expandible tensors of the form $E_{n_1,n_2,...,n_m} = e_{1,n_1} \otimes e_{2,n_2} \otimes ... \otimes e_{m,n_m} \in H = H_1 \otimes H_2 \otimes ... \otimes H_m, n_1, n_2, ..., n_m = 1, 2, ...$ are the eigen elements of problem (2) that correspond to the eigen values $(\lambda_{1,n_1,n_2,...,n_m}, \lambda_{2,n_1,n_2,...,n_m}, ..., \lambda_{m,n_1,n_2,...,n_m})$. Here the coordinates $\lambda_{i,n_1,n_2,...,n_m}$ are the solutions of the system of equations

$$\begin{cases} \sum_{j=1}^{m} \lambda_j \alpha_{i,j,n_i} = 1, \\ i = 1; 2; \dots; m \end{cases}$$

whose solutions are found by the Kramer method in the form

$$\lambda_{i,n_1,n_2,\dots,n_m} = \frac{D_{i,n_1,n_2,\dots,n_m}}{D_{0,n_1,n_2,\dots,n_m}} \,, \tag{7}$$

$$D_{0,n_1,n_2,...,n_m} = \det \left(\alpha_{i,j,n_i} \right)_{\substack{i=1,2,...,m\\j=1,2,...,m}},$$

Transactions of NAS of Azerbaijan $\frac{}{[\text{Renewal of a multi-parametric spectral...}]}$

$$D_{i,n_1,n_2,...,n_m} = \det \left(\begin{array}{ccccccc} \alpha_{i,1,n_i} & ... & \alpha_{i,i-1,n_i} & 1 & \alpha_{i,i+1,n_i} & ... & \alpha_{i,m,n_i} \\ ... & ... & ... & ... & ... & ... \\ \alpha_{i,1,n_i} & ... & \alpha_{i,i-1,n_i} & 1 & \alpha_{i,i+1,n_i} & ... & \alpha_{i,m,n_i} \end{array} \right)$$

$$i = 1, 2, ..., m$$

And vice versa, an arbitrary eigen element $\Phi \in H = H_1 \otimes H_2 \otimes ... \otimes H_m$ of problem (2) is an expandible tensor $\Phi = \varphi_1 \otimes \varphi_2 \otimes ... \otimes \varphi_m$, where $\varphi_i \in H_i$ is a joint eigen element of the operators $K_{i,1}, K_{i,2}, ..., K_{i,m} i = 1; 2; ...; m$, i.e. if all the eigen values of the permutational operators $K_{i,1}, K_{i,2}, ..., K_{i,m}i = 1; 2; ...; m$, are known, then the eigen values $(\lambda_{1,n_1,n_2,...,n_m}, \lambda_{2,n_1,n_2,...,n_m}, ..., \lambda_{m,n_1,n_2,...,n_m})$ of problem (2) are found by means of equalities (7).

Using the above motioned facts, we formulate the inverse problem. Let the following four conditions be fulfilled:

- 1) $\{(\lambda_{1,n}, \lambda_{2,n}, ..., \lambda_{m,n})\}_{n=1,2,...} \subset \mathbb{R}^m$ is a sequence of collections of real numbers.
- 2) $\{\Phi_n\}_{n=1,2,...} = \{\varphi_{1,n} \otimes \varphi_{2,n} \otimes ... \otimes \varphi_{m,n}\}_{n=1,2,...} \subset H = H_1 \otimes H_2 \otimes ... \otimes H_m$ is some sequence corresponding to the elements of the sequence $\{(\lambda_{1,n}, \lambda_{2,n}, ..., \lambda_{m,n})\}_{n=1,2,...},$

$$\{\Delta_{1,n}, \lambda_{2,n}, ..., \lambda_{m,n}\}_{n=1,2,...}$$
,
3) the following equality holds: $(\Delta_0 \Phi_n, \Phi_n) = \det \left(\left(K_{i,j} \varphi_{i,n}, \varphi_{i,n} \right) \right)_{\substack{i=1,2,...,m \ j=1,2,...,m}}^{\otimes} > 0,$

$$\left\{\varphi_{1,p}\otimes\varphi_{2,p}\otimes\ldots\otimes\varphi_{m,p}\in\left\{\Phi_{n}\right\}_{n=1,2,\ldots,}\wedge\varphi_{1,q}\otimes\varphi_{2,q}\otimes\ldots\otimes\varphi_{m,q}\in\left\{\Phi_{n}\right\}_{n=1,2,\ldots,}\right\}\Rightarrow$$

$$\Rightarrow\varphi_{1,r_{1}}\otimes\varphi_{2,r_{2}}\otimes\ldots\otimes\varphi_{2,r_{m}}\in\left\{\Phi_{n}\right\}_{n=1,2,\ldots,}$$

where $r_i = p$ or $r_i = q$, i = 1; 2; ...; m.

By condition 4), the elements of the sequence of eigen elements $\{\Phi_n\}_{n=1,2,...}$ $\{\varphi_{1,n}\otimes\varphi_{2,n}\otimes...\otimes\varphi_{m,n}\}_{n=1,2,...}$ of problem (2) consist of all possible tensor products of the form $\Phi_{k_1,k_2,...,k_m}=\varphi_{1,n_{k_1}}\otimes\varphi_{2,n_{k_2}}\otimes...\otimes\varphi_{m,n_{k_m}}$ where the sequence $\left\{ \varphi_{i,n_{k_{2}}}\right\} ,i\,=\,1,2,...,m$ consists of all linearly independent eigen elements of the i-th equation of problem (2). From the sequence $\{\Phi_n\} = \{\varphi_{1,n} \otimes \varphi_{2,n} \otimes ... \otimes \varphi_{m,n}\}$ (consequently from the sequence

$$\Phi_{k_1,k_2,\ldots,k_m} = \varphi_{1,n_{k_1}} \otimes \varphi_{2,n_{k_2}} \otimes \ldots \otimes \varphi_{m,n_{k_m}} \subset H = H_1 \otimes H_2 \otimes \ldots \otimes H_m)$$

we choose the subsequence

$$\left\{\Phi_{(2^m-1)k,(2^m-1)k,...,(2^m-1)k}\right\} = \left\{\varphi_{1,n_{k_1}} \otimes \varphi_{2,n_{k_2}} \otimes ... \otimes \varphi_{m,n_{k_m}}\right\}_{k=1,2,...,k_m}$$

in the following way:

- a) $\Phi_{(2^m-1),(2^m-1),...,(2^m-1)} = \varphi_{1,1} \otimes \varphi_{2,1} \otimes ... \otimes \varphi_{m,1}$ i.e. $\varphi_{i,n_1} = \varphi_{i,1}, i = 1; 2; ...; m$
- b) $\Phi_{(2^m-1)(k+1),(2^m-1)(k+1),...,(2^m-1)(k+1)} = \varphi_{1,n_{k+1}} \otimes \varphi_{2,n_{k+1}} \otimes ... \otimes \varphi_{m,n_{k+1}}$ where $\varphi_{in_{k+1}} \notin L(\varphi_{i,n_1}, \varphi_{i,n_2}, ..., \varphi_{i,n_k}) i = 1; 2; ...; m.$

The eigen values corresponding to the eigen elements

$$\Phi_{(2^m-1)k,(2^m-1)k,\dots,(2^m-1)k} = \varphi_{1,n_k} \otimes \varphi_{2,n_k} \otimes \dots \otimes \varphi_{m,n_k}$$

denote by
$$(\lambda_{1,n_{(2^m-1)k}}, \lambda_{2,n_{(2^m-1)k}}, ..., \lambda_{m,n_{(2^m-1)k}}).$$

[E.Sh.Mamedov]

The eigen values corresponding to the eigen elements

$$\Phi_{(2^{m}-1)k+1,(2^{m}-1)k,...,(2^{m}-1)k} = \varphi_{1,n_{k+1}} \otimes \varphi_{2,n_{k}} \otimes ... \otimes \varphi_{m,n_{k}}$$

$$\Phi_{(2^{m}-1)k,(2^{m}-1)k+1,...,(2^{m}-1)k} = \varphi_{1,n_{k}} \otimes \varphi_{2,n_{k+1}} \otimes ... \otimes \varphi_{m,n_{k}}, ...,$$

$$\Phi_{(2^{m}-1)k,(2^{m}-1)k,...,(2^{m}-1)k+1} = \varphi_{1,n_{k}} \otimes \varphi_{2,n_{k}} \otimes ... \otimes \varphi_{m,n_{k+1}}$$

denote by

$$\left(\lambda_{1,n_{(2^m-1)k+1}}, \lambda_{2,n_{(2^m-1)k+1}}, ..., \lambda_{m,n_{(2^m-1)k+1}} \right),$$

$$\left(\lambda_{1,n_{(2^m-1)k+2}}, \lambda_{2,n_{(2^m-1)k+2}}, ..., \lambda_{m,n_{(2^m-1)k+2}} \right), ...,$$

$$\left(\lambda_{1,n_{(2^m-1)k+m}}, \lambda_{2,n_{(2^m-1)k+m}}, ..., \lambda_{m,n_{(2^m-1)k+m}} \right),$$

respectively.

Now, we can state a theorem that answers to the question on the inverse problem. Theorem 3. Let conditions 1)-4) be fulfilled, then there exists such a subsequence $\{n_k\}_{k=1,2,...} \subset N$ that $\{\varphi_{i,n_k}\} \subset H_i$, i=1;2;...;m is a complete system of joint eigen elements of permutational compact operators

$$K_{i,1}, K_{i,2}, ..., K_{i,2}i = 1; 2; ...; \text{ where } K_{i,j} = \sum_{k=1}^{\infty} \alpha_{i,j,n_k} P_{i,k},$$

$$\alpha_{i,j,n_k} = \begin{array}{c} D_{i,j,n_k} \\ D_{i,0,n_k} \end{array},$$
(8)

here

$$D_{i,0,n_i} =$$

$$= \det \begin{pmatrix} \lambda_{1,n_{(2^m-1)k+1}} & \dots & \lambda_{j-1,n_{(2^m-1)k+1}} & \lambda_{j,n_{(2^m-1)k+1}} & \lambda_{j+1,n_{(2^m-1)k+1}} & \dots & \lambda_{m,n_{(2^m-1)k+1}} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \lambda_{1,n_{(2^m-1)k+i-1}} & \dots & \lambda_{j-1,n_{(2^m-1)k+i-1}} & \lambda_{j,n_{(2^m-1)k+i-1}} & \lambda_{j+1,n_{(2^m-1)k+i-1}} & \dots & \lambda_{m,n_{(2^m-1)k+i-1}} \\ \lambda_{1,n_{(2^m-1)k}} & \dots & \lambda_{j-1,n_{(2^m-1)k}} & \lambda_{j,n_{(2^m-1)k}} & \lambda_{j+1,n_{(2^m-1)k+i-1}} & \dots & \lambda_{m,n_{(2^m-1)k+i-1}} \\ \lambda_{1,n_{(2^m-1)k+i+1}} & \dots & \lambda_{j-1,n_{(2^m-1)k+i+1}} & \lambda_{j,n_{(2^m-1)k+i+1}} & \lambda_{j+1,n_{(2^m-1)k+i+1}} & \dots & \lambda_{m,n_{(2^m-1)k+i+1}} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \lambda_{1,n_{(2^m-1)k+m}} & \dots & \lambda_{j-1,n_{(2^m-1)k+i}} & 1 & \lambda_{j+1,n_{(2^m-1)k+i-1}} & \dots & \lambda_{m,n_{(2^m-1)k+i}} \\ \dots & \dots \\ \lambda_{1,n_{(2^m-1)k+i-1}} & \dots & \lambda_{j-1,n_{(2^m-1)k+i-1}} & 1 & \lambda_{j+1,n_{(2^m-1)k+i-1}} & \dots & \lambda_{m,n_{(2^m-1)k+i-1}} \\ \lambda_{1,n_{(2^m-1)k+i+1}} & \dots & \lambda_{j-1,n_{(2^m-1)k+i+1}} & 1 & \lambda_{j+1,n_{(2^m-1)k+i-1}} & \dots & \lambda_{m,n_{(2^m-1)k+i-1}} \\ \dots & \dots \\ \lambda_{1,n_{(2^m-1)k+i+1}} & \dots & \lambda_{j-1,n_{(2^m-1)k+i+1}} & 1 & \lambda_{j+1,n_{(2^m-1)k+i+1}} & \dots & \lambda_{m,n_{(2^m-1)k+i+1}} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \lambda_{1,n_{(2^m-1)k+m}} & \dots & \lambda_{j-1,n_{(2^m-1)k+i+1}} & 1 & \lambda_{j+1,n_{(2^m-1)k+i+1}} & \dots & \lambda_{m,n_{(2^m-1)k+i+1}} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \lambda_{1,n_{(2^m-1)k+m}} & \dots & \lambda_{j-1,n_{(2^m-1)k+i+1}} & 1 & \lambda_{j+1,n_{(2^m-1)k+i+1}} & \dots & \lambda_{m,n_{(2^m-1)k+i+1}} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \lambda_{1,n_{(2^m-1)k+m}} & \dots & \lambda_{j-1,n_{(2^m-1)k+i+1}} & 1 & \lambda_{j+1,n_{(2^m-1)k+i+1}} & \dots & \lambda_{m,n_{(2^m-1)k+i+1}} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \lambda_{1,n_{(2^m-1)k+m}} & \dots & \lambda_{j-1,n_{(2^m-1)k+i+1}} & 1 & \lambda_{j+1,n_{(2^m-1)k+i+1}} & \dots & \lambda_{m,n_{(2^m-1)k+i+1}} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \lambda_{1,n_{(2^m-1)k+m}} & \dots & \lambda_{j-1,n_{(2^m-1)k+i+1}} & 1 & \lambda_{j+1,n_{(2^m-1)k+i+1}} & \dots & \lambda_{m,n_{(2^m-1)k+i+1}} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \lambda_{1,n_{(2^m-1)k+m}} & \dots & \lambda_{j-1,n_{(2^m-1)k+i+1}} & 1 & \lambda_{j+1,n_{(2^m-1)k+m}} & \dots & \lambda_{m,n_{(2^m-1)k+i+1}} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \lambda_{1,n_{(2^m-1)k+m}} & \dots & \lambda_{j-1,n_{(2^m-1)k+i+1}} & 1$$

$$\text{ and } \Big(\lambda_{1,n_{(2^m-1)k}},\lambda_{2,n_{(2^m-1)k}},...,\lambda_{m,n_{(2^m-1)k}}\Big), \Big(\lambda_{1,n_{(2^m-1)k+1}},\lambda_{2,n_{(2^m-1)k+1}},...,\lambda_{m,n_{(2^m-1)k+1}}\Big), \\ \Big(\lambda_{1,n_{(2^m-1)k+2}},\lambda_{2,n_{(2^m-1)k+2}},...,\lambda_{m,n_{(2^m-1)k+2}}\Big) \,,..., \Big(\lambda_{1,n_{(2^m-1)k+m}},\lambda_{2,n_{(2^m-1)k+m}},...,\lambda_{m,n_{(2^m-1)k+m}}\Big) \\ \text{ are the eigen values of problem (2) that correspond to the eigen elements}$$

$$\Phi_{(2^m-1)k,(2^m-1)k,\dots,(2^m-1)k} = \varphi_{1,n_k} \otimes \varphi_{2,n_k} \otimes \dots \otimes \varphi_{m,n_k},$$

Renewal of a multi-parametric spectral...

$$\begin{split} &\Phi_{(2^m-1)k+1,(2^m-1)k,...,(2^m-1)k} = \varphi_{1,n_{k+1}} \otimes \varphi_{2,n_k} \otimes ... \otimes \varphi_{m,n_k}, \\ &\Phi_{(2^m-1)k,(2^m-1)k+1,...,(2^m-1)k} = \varphi_{1,n_k} \otimes \varphi_{2,n_{k+1}} \otimes ... \otimes \varphi_{m,n_k}, ..., \\ &\Phi_{(2^m-1)k,(2^m-1)k,...,(2^m-1)k+1} = \varphi_{1,n_k} \otimes \varphi_{2,n_k} \otimes ... \otimes \varphi_{m,n_{k+1}} \end{split}$$

respectively. $P_{i,k}$ is an operator of projection onto one-dimensional space $L\left\{\varphi_{i,n_k}\right\} \subset H_i, i=1;2;...;m$.

Proof. The sequence of eigen elements $\{\Phi_n\} = \{\varphi_{1,n} \otimes \varphi_{2,n} \otimes ... \otimes \varphi_{m,n}\}$ of problem (2) consists of all possible tensor products of the form $\Phi_{k_1,k_2,...,k_m} = \varphi_{1,n_{k_1}} \otimes \varphi_{2,n_{k_2}} \otimes ... \otimes \varphi_{m,n_{k_m}}$, where the sequence $\{\varphi_{i,n_{k_2}}\}$, i=1,2,...,m consists of linearly independent eigen elements of the *i*-th equation of problem (2). From the sequence $\{\Phi_n\} = \{\varphi_{1,n} \otimes \varphi_{2,n} \otimes ... \otimes \varphi_{m,n}\}$ (consequently from the sequence

$$\Phi_{k_1,k_2,...,k_m} = \varphi_{1,n_{k_1}} \otimes \varphi_{2,n_{k_2}} \otimes ... \otimes \varphi_{m,n_{k_m}} \subset H = H_1 \otimes H_2 \otimes ... \otimes H_m$$

we choose the subsequence

$$\{\Phi_{(2^m-1)k,(2^m-1)k,...,(2^m-1)k}\}=\{\varphi_{1,n_k}\otimes\varphi_{2,n_k}\otimes...\otimes\varphi_{m,n_k}\}_{k=1,2,...}$$

in the following way:

a)
$$\Phi_{(2^m-1),(2^m-1),...,(2^m-1)} = \varphi_{1,1} \otimes \varphi_{2,1} \otimes ... \otimes \varphi_{m,1}$$
 i.e. $\varphi_{i,n_1} = \varphi_{i,1}, i=1;2;...;m$ b) $\Phi_{(2^m-1)(k+1),(2^m-1)(k+1),...,(2^m-1)(k+1)} = \varphi_{1,n_{k+1}} \otimes \varphi_{2,n_{k+1}} \otimes ... \otimes \varphi_{m,n_{k+1}}$ where $\varphi_{in_{k+1}} \notin L\left(\varphi_{i,n_1},\varphi_{i,n_2},...,\varphi_{i,n_k}\right) i=1;2;...;m$.

The eigen values corresponding to the eigen elements

$$\Phi_{(2^m-1)k,(2^m-1)k,\dots,(2^m-1)k} = \varphi_{1,n_k} \otimes \varphi_{2,n_k} \otimes \dots \otimes \varphi_{m,n_k}$$

denote by $(\lambda_{1,n_{(2^m-1)k}}, \lambda_{2,n_{(2^m-1)k}}, ..., \lambda_{m,n_{(2^m-1)k}})$. The eigen values corresponding to the eigen elements

$$\Phi_{(2^{m}-1)k+1,(2^{m}-1)k,...,(2^{m}-1)k} = \varphi_{1,n_{k+1}} \otimes \varphi_{2,n_{k}} \otimes ... \otimes \varphi_{m,n_{k}}$$

$$\Phi_{(2^{m}-1)k,(2^{m}-1)k+1,...,(2^{m}-1)k} = \varphi_{1,n_{k}} \otimes \varphi_{2,n_{k+1}} \otimes ... \otimes \varphi_{m,n_{k}}, ...,$$

$$\Phi_{(2^{m}-1)k,(2^{m}-1)k,...,(2^{m}-1)k+1} = \varphi_{1,n_{k}} \otimes \varphi_{2,n_{k}} \otimes ... \otimes \varphi_{m,n_{k+1}}$$

denote by

$$\begin{split} & \left(\lambda_{1,n_{(2^m-1)k+1}},\lambda_{2,n_{(2^m-1)k+1}},...,\lambda_{m,n_{(2^m-1)k+1}}\right), \\ & \left(\lambda_{1,n_{(2^m-1)k+2}},\lambda_{2,n_{(2^m-1)k+2}},...,\lambda_{m,n_{(2^m-1)k+2}}\right),..., \\ & \left(\lambda_{1,n_{(2^m-1)k+m}},\lambda_{2,n_{(2^m-1)k+m}},...,\lambda_{m,n_{(2^m-1)k+m}}\right) \end{split}$$

respectively.

One spectral hypersurface π_{i,n_k} of the equation of the form $\sum_{j=1}^{m} \alpha_{i,j,n_k} \lambda_j = 1$, i = 1; 2; ...; m corresponds to each eigen element φ_{i,n_k} of the *i*-th equation of system (2). Consequently, to each eigen element

$$\Phi_{(2^m-1)k,(2^m-1)k,\dots,(2^m-1)k} = \varphi_{1,n_k} \otimes \varphi_{2,n_k} \otimes \dots \otimes \varphi_{m,n_k}$$

of system (2) there corresponds a family of spectral hypersurfaces $\pi_{1,k}, \pi_{2,k}, ..., \pi_{m,k}$. The intersection of the hypersurfaces $\pi_{1,k}, \pi_{2,k}, ..., \pi_{i-1,k}, \pi_{i,k+1}, \pi_{i+1,k}, ..., \pi_{m,k}$ will be $\left(\lambda_{1,n_{(2^m-1)k+i}},\lambda_{2,n_{(2^m-1)k+i}},...,\lambda_{m,n_{(2^m-1)k+i}}\right)$, i=1;2;...;m. Then the follosing family of the system of m equations hold:

$$\begin{cases} \sum_{j=1}^{m} \alpha_{i,j,n_k} \lambda_{j,n_{(2^m-1)k}} = 1, \\ \sum_{j=1}^{m} \alpha_{i,j,n_k} \lambda_{j,n_{(2^m-1)k+r}} = 1, \text{ for } r = 1; 2; ...; r \neq i \end{cases}$$

From the last system of equations we get $\alpha_{i,j,n_k} = \frac{D_{i,j,n_k}}{D_{i,0,n_k}}$, where D_{i,j,n_k} and $D_{i,0,n_k}$ are found in the form (8).

Consequently, for the compact self-adjoint operators $K_{i,1}, K_{i,2}, ..., K_{i,m}, i =$ 1; 2; ...; m the following expansions hold:

$$K_{i,j} = \sum_{k=1}^{\infty} \alpha_{i,j,n_k} P_{i,k},$$

where $P_{i,k}$ is an operator of projection onto one-dimensional subspace $L\left\{\varphi_{in_k}\right\}$ $H_i, i = 1; 2; ...; m.$

The completeness of eigen elements $\{\varphi_{i,n_k}\}\subset H_i, i=1;2;...;m$ is easily obtained from the condition $\overline{L}(\Phi_1, \Phi_2, ..., \Phi_n, ...) = H$. The theorem is proved.

References

- [1]. Isayev H.A. Introduction to general multi-parameter spectral theory. In the book "Spectral theory of operators" Baku, Elm, 1980 issue 3, pp. 142-201. (Rus-
- [2]. Mamedov E. Sh. On spectrum of two parameter problem with compact selfadjoin operators. The author's thesis for Ph. Degree Baku, 1992 (Russian).

Eldar Sh. Mamedov

Azerbaijan Technological University 8, Saglamlig str, Girez settlement, AZ 2000 Ganja, Azerbaijan Tel.: (99412) 539 47 20 (off.).

Received September 07, 2010; Revised November 29, 2010.