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REGULARITY ANALYSIS FOR NONLINEAR TIME
OPTIMAL CONTROL PROBLEMS SUBJECT TO
STATE CONSTRAINTS

Abstract

In this paper the necessary conditions for optimality are obtained for reg-
ular solutions of the time optimal control problems with state and endpoint
constraints.

Introduction

For the first time Pontryagin maximum principle for problems with state con-
straints was obtained by Gamkrelidze R. V. in 1959 [1], [2]. In 1963 another variant
of the maximum principle [3] has been received. After that, the matter was the
subject of many studies [5], [6]. This list of works is not exhaustive.

In the case, where there is a restriction only on the control function and there
are no state constraints, necessary optimality conditions gives Pontryagin’s maxi-
mum principle [1]. These problems have been well studied because of the absolute
continuity and non-triviality of adjoint functions.

The optimal control problems with state constraints are recognized as an im-
portant and difficult class of the similar problems, since the maximum principle for
such problems [3], [5], [6] contains an unknown infinite-dimensional Lagrange mul-
tiplier of the complex nature—bounded regular Borel measure which has a rather
complicated relationship with the optimal trajectory. Therefore, the optimal con-
trol problem with state constraints are outside the scope of the effective application
of the Pontryagin maximum principle [1]. Questions arise: Are there any solutions
of an optimal control problem for which the corresponding conjugate function is
non-trivial and absolutely continuous, and if so, how to find them?

Applying a similar technique in [14], [15] we try to answer these questions for
non-autonomous systems with phase and endpoint constraints.

Analogical question about the structure of the measures appearing in the ratios
of the maximum principle for the classical optimal control problem was considered
by W. W. Hager [7], K. Malanowski [8], Hoang Xuan Phu [9], H.Maurer [10], A.
A. Milutin [11], J. F. Bonnans [13], for the differential inclusions by S. M. Aseev
[12]. In [7] -[11], [13] sufficient conditions for the absence of a singular component
obtained under the condition that the time optimal control function is continuous
and takes values strictly in the interior of U.

In [12], sufficient conditions for the absence of a singular component were ob-
tained under the condition that the set of admissible velocities is strictly convex and
the Hamiltonian of the system satisfies certain smoothness conditions.

These and the results, obtained in this study are difficult to compare: they are
all proved under different assumptions and have different conditions. Apparently,
this issue needs a separate study.
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Statement of the problem
Consider the time optimal control problem with state and endpoint constraints
for non-autonomous system

x:f(x7u’t)7
z(0) € Co, z(T) € Cp
u(t) eU(t), a.a.t€]0,T], (1)
z(t)e X, tel0,T],
T — min.

Here, z € E™-state variable, u € E™-control parameter. Let Q (E™) be the set
of all nonempty compact and conv Q (E™) the set of all nonempty compact convex

subset of E™. Functions f (z,u,t), 5g e continuous in (z,u) and measurable in
T

t. Let the set valued map U : E! — Q(E™) be measurable and satisfy the estimate
|U (t)| < k (t) where k (t) is a scalar function, Lebesgue integrable on any finite time
interval [0,T]. f(z,U(t), t) € conv Q(E™), t € [0,T]. Cy, Cg € conv Q(E"), X
is a closed convex subset of E".

Let H (F,v) = max{(f,v): f € F'} be the support function of the set F' C E"
in the direction of v, where (f,1) denotes the scalar product of vectors f and .
T (A,a) and N (A, a) are the tangent and normal cones to a closed, convex set A
at a point a € A, respectively. All finite-dimensional vectors are considered column
vectors.

Function u (t) € U (t), t € [0,7T] is called an admissible control on the interval
[0,T], if it is measurable and one—valued branch of the multivalued mapping U (t)
so that the corresponding solution x (¢), t € [0, 7] of the given system of differential
equations satisfy the initial condition z (0) € C,, and the inclusion z (t) € X, t €
[0,77].

The challenge is in finding an admissible control u (t), t € [O,ﬂ , so that the
corresponding trajectory z (t), t € [0,7] satisfies condition z (T) € Cg and T is
minimal.

This work is dedicated to deriving the maximum principle for which the optimal
solution is regular.

Optimal solution is called regular, if the corresponding conjugate function is a
nontrivial absolute continuous function.

Let (Z(t), u(t)), t € [0,T] be a solution to (1) and U (Z (t),t) C U (t) be a
subset, defined as:

U@, ) ={uclU@®): f@@), wt)eT(X,7@)}, tel[0,T].
Non emptiness of the subset will be proved below.
Here, T (X, 7 (t)) is the tangent cone to X at T (t) € X, i.e.
T(X,7 (1) = d{Ay-T (1), A>0, ye X},
where clA means the closure of A.
Consider the corresponding problem without phase constraints
z(t)e f(z(t), U®).t), t€[0,T],
2(0) € Co, x(T) € Cy, (2)

T — min.
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Definition. If there are sets Cha, @5 € conv Q(E™) and the decision
(zo (t), uo (t)), t € [0,T] of the problem (2), for which the inclusions

T<f(x(t),U(x(t),t),t),i(t)) CT(f(mo (t),U(t),t),:bo(t)> ,a.a. t€[0,T],

T(Can X, 7(0)) € T (Ca, 70 (0)),
T(Csn X, 7(T)) T (Co, w0 (T)),

hold, then (zo (t), uo (t)),t € [0,T] is called similar to the solution (T (t), w(t)), t €
[0,T] of (1).

Note. The main requirement of this definition is the equality of optimal values
of quality criteria in the original (problem with state constraints (1)) and auxiliary
(the problem without phase constraints (2)) problems.

Theorem. Suppose, there exists a similar solution (zq (t), uo (), t € [0,T] of
(2) to (z(t), u(t)), t € [0,T]. Then, there exists a nonzero absolutely continuous
solution of the adjoint system of differential equations

b (1) = ~ 2 (@ (%; 8y 41y, aa. t e [0,7],

with the transversality conditions
H(Can X, 0(0) = @(0), (0)), H(CsnX, v (T)) = (@(T), —v(T)),
for which, the maximum condition
max {(f (T (t), u,t), v () :ucU @), t)} = (g&(t), zp(t)> ,a.a. t € [0,T)]

holds.
If the additional condition

<<9f* @@®), u),t) of (wo(t), uo(t),t)
Oz Oz

> Y (t)=0, aa. t€[0,T]

holds, then the conjugate system of differential equations will have the form

bty =2 (x(tg:’nu(t)’t)z/)(t), a.a.te[0,T],

with the transversality conditions
H(Can X, ¢(0)) = (@(0),v(0)),
H(CsnX, = (T)) = (z(T), —¢(T)).

Before proving the theorem, we first prove the following lemma.

Lemma. Let z(t), t € [0,T] be an absolutely continuous function, so that
z(t) € X, Vvt € [0,T], where X C E™ is a closed convex subset. Then the inclusion

r(t)eT(X,z(t), aa. tecl0,T]
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18 true.
Proof. Assume that, there exists the derivative z (¢o) at the point tg € (0,7).
By the definition,
. t)—x(t
x (tg) = limiw( ) — @ (to)
t—to t— tO
Let t > tg. Then

@O -z € = (k) 220, yeX),

1
since z (t) € X and P 0, ¥t €[0,T], t > ty. Then
— o

t) —x(t
tim SO =T00) e (= (t0) A > 0, y € X
fSho 1=t

Due to the fact that, there exists (o), we will have the equality

0 t—to t— to t—to t— tO ’
t>tg t<tg

At the end points 0 and 7' we hold a similar argument regarding the left (at 7") and
the right (at 0) limits in the definition of the derivative.
Consequently, we find that

.’i‘ (to) eT (X, T (to)) .

From the arbitrariness of to € [0, 7] and the absolutely continuity of z (t), ¢ € [0, 7]
we conclude that = (t) € T (X, x (t)), a.a.t € [0,T].

Thus, we have proved the lemma.

Corollary. If z(t), t € [0,T] is any admissible solution of (1), then

fl@®),U@),)nT(X,z(t) #9, a.a.te|0,T].

The proof of the corollary follows immediately from the lemma.

Now we give the proof of the theorem. Since (zq (t), uo(t)), t € [0,T] is a
solution to problem (2), which is a problem without phase constraints, we can apply
the Pontryagin maximum principle for this decision [1]. In other words, there exists
a nontrivial absolutely continuous function v (t), ¢ € [0, ﬂ as a solution of the dual
system of equations

() = — 2 o (gg’c “w®:D ), qate0,T],

with the transversality conditions
H (Cay ©(0)) = (20(0)., 0)).

H (65, — (T)) = (xO (T) ;Y (T)) )



Transactions of NAS of Azerbaijan 65
[Regularity analysis for nonlinear time...|

for which the maximum condition
max {(f (w0 (1), w,t), ¥ (®) sue U@} = (s0(t), ¥ (1), aa te[0T]

holds.
The latest equalities mean that

~

$(0) € N (Cay 20(0)), =0 (T) € N (Cp, 20 (T)) . (3)

and

B(t) e N (fleo(®), U®),0).50(1), aate0T],

where N (A, a) is a normal cone of the set A € conv Q (E™) at a point a € A.
By the definition of the similar solutions and conditions of the theorem,

T(Can X, 7(0) € T (Cav 20 (0)), T(CanX, (T)) T (Cs o (T))
and
T(f(a:(t),U(:c(t),t),t),é:(t)) cT(f(xo(t),U(t),t),xo (t)), aa. te0,T],
therefore,

N (Cas 20(0)) € N (Can X, 7(0)), N(Cs, w0 (T)) C N (Csn X, 7(T))
and
N (f (@0 (), U (8),8) 30 (1)) € N <f(x(t),U(:n(t),t),t),i*(t)) ,aa. te0,T],

From the inclusions (3), we conclude that the absolutely continuous nontrivial one
valued branch ¢ (t) , t € [0,T] of the multivalued map N (f (zo (t),U (t),1), 0 (t)),
with the conditions

~

¥ (0) € N (ca, - (0)) .~y (T)eN (éﬁ, %o (T)) ,
is the one valued branch of the multivalued mapping
N (f (x(t),U(x(t),t),t),i(t)) , te[0,T]
with the conditions
$(0) e N(Can X, 2(0), —¢(T)eN(CsnX, z(T)),

also. This means that

max {(f (T (t), u,t), ¥ (t):uecU(T(t),t)} = <x(t), w(t)>, a.a.t e [O,T]
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and

H(Can X, ¢(0) = (@(0),v(0), H(CnX, —¢(T)) = (z(T), —¥(T))

In case of the additional condition of the theorem, it is easy to show that the
conjugate function ¥ (t), t € [0, ﬂ satisfies the system of the differential equations

ofE®), a1
ox

b (t) = b (t), a.a. tel0,T],

with the transversality conditions

H(Can X, ¥(0))=(x(0),v(0), H(CsnX, —(T))=(z(T), —(T))-

The theorem is proved.
Consider a linear optimal control problem with state constraint

()= Az (t)+ 7 (ut),
(0) € Cq, z(T) € Cy
(t)eU(t), a.a. t€]0,T], (4)
) eX, telo,T],

and the corresponding problem without state constraint

P () = A () + 7 (w,0),
z(0) € Cy, 2 (T) € Cg
u(t)eU(t), aa. t€[0,T],

T — min.

(5)

Here, A is a given n X n matrix of bounded measurable elements, 7 (u, t) measurable
in t and continuous in u, n (U (t),t) € conv Q(E™), t € [0,T] and Cy, Cg, Ca, ag €
conv Q (E™).

Consequence. Let there exist a similar solution (g (t), uo(t)), t € [0,T] of
(5) to the solution (T (t), u(t)), t € [0,T] of (4). Then there exists a nontrivial
solution of the adjoint system of differential equations

b (t) = —A* ()Y (1), aa te[0,T],
with the transversality conditions
H(CoanX, ¥(0)=(z(0),¢(0), H(CsnX, =4 (T)) == (T), —v(T))
for which, the mazimum condition
max {(n (u,t),% (t)), we U@ (), t)} = m(@(t),t), ¥ (1), aa. t€[0,T]
holds. Where, U (Z (t), t) C U (t) is a subset, so that

U@@M), t)={ucU®) nut)e(T(X,T{t)-A®TE)}, te[0,T].
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The proof follows easily from the proof of the theorem.
Note. For linear on x systems, an additional condition is always satisfied, since

in this case
of* (@(t), u(t),t) Of (o (t), uo(t),t)
= A*(t) = . . .a.t 0, T
Ox (*) Ox ) G- T € [ ’T
Thus, in cases, linear with respect to the phase coordinates, we need only condition

for the existence of the similar solutions.
Example. Consider the time optimal control problem with state constraint

til:an
ro=u, |ul<1, 2(0)=um0, 2(T)=0, x9—221 <2,
T — min

In the example we show that the similarity condition holds, therefore there exists
the absolutely continuous nontrivial adjoint function ¢ (t), ¢ € [0,T] for which the
maximum condition holds.

V15

5 )

The optimality of the control function (Fig. 1)

Assume that zg = | 0,

+1, te [0,7’1],
a7 _ U(E(t))7 te(TlvTQ])
U(t> - +17 te (7—2773]7

~1, te (r3T]

may be shown by [4].

-

vis)

Fig. 1.

In other words, on the time interval [0,7;] we are moving along the curve z; =
1 15
gx% T then on the time interval [r1, 72| along the straight line zo — 227 = 2,

1 7
after that on the time interval |79, 73] along the curve z; = ix% — 3 then on the

_ 1
time interval [Tg,T] along the parabola 21 = —Qx% (Fig. 2).
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Fig. 2.

\J

By the calculation we find that

F(r1) = (-H?’ﬂ ﬂl) and T (79) = (-3 1).

42 T 22 4’2

The corresponding tangent cone is:

(—00,0], te€0,73]

T(U (z(t),u(t) = { [0,+00), te [7'3,?}

The auxiliary problem without state constraint

€Tl = T2,

ro=u, |ul<1, 2(0)=24, z(T)=0,
T — min

has the optimal control function

B 1, tel0,73],
uo(t)—{ -1, te (Tg?ﬂ

which is similar to the @ (¢), t € [O,ﬂ, because
T (U (z(t),u(t) =T U,uo(t), aa te[0,T]

1 _
Then there exists absolutely continuous function v (t) = ( et > , t € [O,T}
3 —

(Fig. 3), as a solution of the adjoint system of differential equations

.T.h:o
Yy =~y
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for which the maximum condition

HU (@), )= @(t),¢ (), aa te[0,T]
holds.

Fig. 3.

Conclusion. Note that, the results obtained in this study include the entire
regular optimal trajectory, i. e. the optimal trajectory is investigated as a whole,
not dividing it to the boundary or interior parts.

The advantage of this result is the fact that the adjoint equation is much simpler
and has the same form as in optimal control problems without state constraints and
regular trajectories in this case may be irregular for the whole set U.

A specialty of this work is also that the maximum condition is not taken on a
set U, but on a subset U (Z (t)) C U, as done in [14], [15].
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