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ELLIPTIC EQUATIONS OF DIVERGENT FORM

Abstract

In this paper we consider a nondivergent elliptic equation of second order
whose leading coefficients are from some weight space. The sufficient condition
of removability of a compact with respect to this equation in the weight space of
Hölder functions was found.

Let D be a bounded domain situated in n-dimensional Euclidean space En of
the points x = (x1, ..., xn) , n ≥ 3, ∂D be its boundary. Consider in D the following
elliptic equation Lu =

n∑
i,j=1

∂
∂xi

(
aij (x)

∂u
∂xj

)
+

n∑
i=1

bi (x)uxi + c (x)u+ b (x, u,∇u) = 0

u|∂D\E = 0
(1)

in supposition that ∥aij (x)∥ is a real symmetric matrix, moreover

γ |ξ|2 ω (x) ≤
n∑

i,j=1

aij (x) ξiξj ≤ γ−1ω (x) |ξ|2 ; ξ ∈ En, x ∈ D, (2)

aij (x) ∈ C1
ω

(
D
)
; i, j, 1, ..., n, (3)

|bi (x)| ≤ b0; −b0 ≤ c (x) ≤ 0; i = 1, ..., n; x ∈ D. (4)

|b (x, u,∇u)| ≤ g (u)ω (x) |∇u| ,
a∫
0

g (u) du < ∞, a < ∞. (5)

Here g (x) is non-negative function from u, ui =
∂u

∂xi
, uij =

∂2u

∂xi∂xj
; i, j =

1, ..., n; γ ∈ (0, 1] and b0 ≥ 0 are constants. Besides we’ll assume that the mi-
nor coefficients of the operator L are measurable in D. Let λ ∈ (0, 1) be some
number.

The compact E ⊂ D is called removable with respect to the equation (1) in the
space Cλ

ω (D) if from

Lu = 0, x ∈ D\E; u|∂D\E = 0; u (x) ∈ Cλ
ω (D) (6)

it follows that u (x) ≡ 0 in D.

The aim of the given paper is finding sufficient condition of removability of a
compact with respect to the equation (1) in the space Cλ

ω (D). This problem have
been investigated by many researchers. For the Laplace equation the corresponding
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result was found by L. Carleson [1]. Concerning the second order elliptic equations of
divergent structure, we show in this direction the papers [2], [3]. For a class of non-
divergent elliptic equations of the second order with discontinuous coefficients the
removability condition for a compact in the space Cλ (D) was found in [4]. Mention
also papers [5-7] in which the conditions of removability for a compact in the space
of continuous functions have been obtained.The removable sets of solutions of the
second order elliptic and parabolic equations in nondivergent form were considered in
[10]-[12]. In [13], T. Kilpelainen and X. Zhong have studied the divergent quasilinear
equation without minor members, proved the removability of a compact. Removable
sets for pointwise solutions of elliptic partial differential equations were found by
J. Diederich [14]. Removable singularities of solutions of linear partial differential
equations were considered in R. Harvey, J. Polking paper [15]. Removable sets at
the boundary for subharmonic functions have been investigated by B. Dahlberg [16].
Also we mentioned the papers of A.V.Pokrovskii [17], [18].

Denote by BR (z) and SR (z) the ball {x : |x− z| < R} and the sphere
{x : |x− z| = R} of radius R with the center at the point z ∈ En respectively.

We’ll need the following generalization of mean value theorem belonging to E.M.
Landis and M.L. Gerver [8] in weight case.

Lemma. Let the domain D be situated between the spheres SR (0) and S2R (0),
moreover the intersection ∂D∩{x : R < |x| < 2R} be a smooth surface. Further, let
in D the uniformly positive definite matrix ∥aij (x)∥ ; i, j = 1, ..., n and the function
u (x) ∈ C2 (D) ∩ C1

ω

(
D
)
be given. Then there exists the piece-wise smooth surface

Σ dividing in G the spheres SR (0) and S2R (0) such that∫
Σ

ω

∣∣∣∣∂u∂ν
∣∣∣∣ ds ≤ Kosc

D
u · ω (D)

R2
.

Here K > 0 is a constant depending only on the matrix ∥aij (x)∥ and n,
∂u

∂ν
is a

derivative by a conormal determined by the equality

∂u (x)

∂ν
=

n∑
i,j=1

aij (x)
∂u (x)

∂xi
cos (n̄, xj)

1
2 ,

where cos (n̄, xj) ; j = 1, ..., n are direction cosines of a unit external normal vector
to Σ.

Theorem 1. Let D be a bounded domain in En, E ⊂ D be a compact. If
with respect to the coefficients of the operator L the conditions (2)-(5) are fulfilled,
then for removability of the compact E with respect to the equation (1) in the space
Cλ
ω (D) it sufficies that

mn−2+λ
H (E) = 0. (7)

Proof. At first we show that without loss of generality we can suppose the
condition ∂D ∈ C1 is fulfilled. Suppose, that the condition (7) provides the remov-
ability of the compact E for the domains, whose boundary is the surface of the class
C1, but ∂D ∈ C1 and by fulfilling (7) the compact E is not removable. Then the
problem (6) has non-trivial solution u (x), moreover u|E = f (x) and f (x) ̸= 0. We
always can suppose the lowest coefficients of the operator L are infinitely differen-
tiable in D. Moreover, without loss of generality, we’ll suppose that the coefficients
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of the operator L are extended to a ball B ⊃ D with saving the conditions (2)-(5).
Let f+ (x) = max {f (x) , 0} , f− (x) = min {f (x) , 0}, and u± (x) be generalized by
Wiener (see [8]) solutions of the boundary value problems

Lu± = 0, x ∈ D\E; u±
∣∣
∂D\E = 0; u±

∣∣
E
= f±.

Evidently, by u (x) = u+ (x) + u− (x). Further, let D′ be such a domain, that
∂D′ ∈ C1, D ⊂ D′, D′ ⊂ B, and ϑ± (x) be solutions of the problems

Lϑ± = 0, x ∈ D′\E; ϑ±∣∣
∂D′ = 0; ϑ±∣∣

E
= f±; ϑ± (x) ∈ Cλ

ω

(
D′) .

By the maximum principle for x ∈ D

0 ≤ u+ (x) ≤ ϑ+ (x) , ϑ− (x) ≤ u− (x) ≤ 0.

But according to our supposition ϑ+ (x) ≡ ϑ− (x) ≡ 0. Hence, it follows, that u (x) ≡
0. So, we’ll suppose that ∂D ∈ C1. Now, let u (x) be a solution of the problem (6),
and the condition (7) be fulfilled. Give an arbitrary ε > 0. Then there exists a
sufficiently small positive number δ and a system of the balls

{
Brk

(
xk
)}

, k =

1, 2, ..., such that rk < δ, E ⊂
∞
∪

k=1
Brk

(
xk
)
and

∞∑
k=1

rn−2+λ
k < ε. (8)

Consider a system of the spheres
{
B2rk

(
xk
)}

, and let Dk = D ∩ B2rk

(
xk
)
,

k = 1, 2, ...,. Without loss of generality we can suppose that the cover
{
B2rk

(
xk
)}

has a finite multiplicity a0 (n). By lemma for every k there exists a piece-wise smooth
surface Σk dividing in Dk the spheres Srk

(
xk
)
and S2rk

(
xk
)
, such that∫

Σk

ω

∣∣∣∣∂u∂ν
∣∣∣∣ ds ≤ Kosc

Dk

u
ω (Dk)

r2k
. (9)

Since u (x) ∈ Cλ
ω (D), there exists a constant H1 > 0 depending only on the function

u (x) such that
osc
Dk

ωu ≤ H1 (2rk)
λ . (10)

Besides,

ω (Dk) ≤ mesnB2rk

(
xk
)
= Ωn2

nrnk ; k = 1, 2, ..., (11)

where Ωn = mesnB1 (0). Using (10)-(11) in (9), we get∫
Σk

ω

∣∣∣∣∂u∂ν
∣∣∣∣ ds ≤ C1r

n−2+λ
k ; k = 1, 2, ..., (12)

where C1 = KH12
n+λ.

Let DΣ be an open set situated in D\E whose boundary consists of unification

of Σ and Γ, where Σ =
∞
∪

k=1
Σk, Γ = ∂D\

∞
∪

k=1
D+

k , D+
k is a part of Dk remaining
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after the removing of points situated between Σ and S2rk

(
xk
)
; k = 1, 2, .... Denote

by D′
Σ the arbitrary connected component DΣ, and by M we denote the elliptic

operator of divergent structure

M =

n∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
.

According to Green formula for any functions z (x) and W (x) belonging to the

intersection C2 (D′
Σ) ∩ C1

(
D

′
Σ

)
, we have

∫
D′

Σ

(zMβ − βMz) dx =

∫
∂D′

Σ

(
z
∂β

∂ν
− β

∂z

∂ν

)
ds. (13)

Since ∂D ∈ C1, then u (x) ∈ C1 (D′
Σ)∩C1

(
D′

Σ

)
(x) ∈ C1

(
DΣ′

)
(see [9]). From

(13) choosing the functions z = 1, β = ωu2 we have∫
D′

Σ

M
(
ωu2

)
dx = 2

∫
∂D′

Σ

ωu
∂u

∂ν
ds+

∫
∂DΣ

ωxiu
2ds.

But |u (x)| ≤ M < ∞ for x ∈ D. Let’s assume that the condition

ωxi < cω. (∗)

is fulfilled. By virtue of condition (*) and
∫

∂DΣ

ωu2ds < C3Mε, subject to (12) and

(8) we conclude∫
D′

Σ

M
(
ωu2

)
dx ≤ 2Ma0

∞∑
k=1

∫
Σk

ω

∣∣∣∣∂u∂ν
∣∣∣∣ ds+ ∫

D′
Σ

ωu2dx ≤

≤ 2Ma0C1

∞∑
k=1

rn−2+α
k + εMC2 < C3ε, (14)

where C3 = 2Ma0C1.

On the other hand

M
(
ωu2

)
= 6uωM (u) + 2

n∑
i,j=1

ωaijuiuj + (2u+ 1)

n∑
i,j=1

aijuxjωxi+

+

n∑
i,j=1

∂aij
∂xi

uωxj +

n∑
i,j=1

aijuωxixj

and besides,

Mu = Lu−
n∑

i=1

di (x)ui + c (x)u− b (x, u,∇u) ,
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where

di (x) =
n∑

j=1

∂aij (x)

∂xj
− bi (x) , i = 1, ..., n.

It is evident that by virtue of conditions (3)-(4) |di (x)| ≤ d0 < ∞; i = 1, ...n. Thus,
from (13) we obtain

6

∫
D′

Σ

uω

n∑
i=1

di (x)uidx− 6

∫
D′

Σ

u2c (x) dx+ 2

∫
D′

Σ

n∑
i,j=1

ω (x) aijuiujdx+

+(2u+ 1)

∫
D′

Σ

n∑
i,j=1

aijujωxidx+

∫
D′

Σ

n∑
i,j=1

∂aij
∂xj

uωxidx+ |∇u|2 dx+

+

∫
D′

Σ

n∑
i,j=1

aijuωxixjdx+ b (x, u,∇u) < C3ε.

Let’s estimate the nonlinear member on the right part applying the inequality∫
D′

Σ

b (x, u,∇u) dx ≤
∫
D′

Σ

g (x)ω (x) |∇u| dx ≤ 1

2α

∫
D′

Σ

g2 (u) dx+

∫
D′

Σ

ω2 (x) |∇u|2 dx.

Hence, for any α > 0 applying Cauchy inequality we have

2γ

∫
D′

Σ

ω |∇u|2 dx < 6d0

∫
D′

Σ

ω |u| |ui | dx+ 6

∫
D′

Σ

u2ω (x) + (2u+ 1)

∫
D′

Σ

aijujωxidx+

+d0

∫
D′

Σ

uω2
xi
dx+

∫
D′

Σ

aijuωxixj + C3ε ≤ 6
d0
ε

∫
D′

Σ

|u|2 dx+ 6
d0ε

2

∫
D′

Σ

ω2 |∇u|2 dx+

+(2n+ 1)

∫
D′

Σ

ujωdx+ d0

∫
D′

Σ

uωdx+ γC4ε ≤ 6
d0
ε
MmesnD+

+
(2M + 1) γ

ε
mesnD + d0Mω (D) + γC4Mω (D) + C3ε. (15)

If we’ll take into account that∣∣ωxixj

∣∣ < C4ω (x) ,

then from here we have that ∫
D′

Σ

ω2 |∇u|2 dx ≤ C5,

where C5 = (6d0 + (2M + 1))MmesnD+(d0M + γC4M)ω (D)+
C3

γ
. Without loss

of generality we assume that ε ≤ 1. Hence we have∫
D

ω2 |∇u|2 dx ≤ C6.
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Thus u (x) ∈ W 1
2,ω (D). From the boundary condition and mesn−1 (∂D ∩ E) = 0

we get u (x) ∈ W̊ 1
2,ω (D). Now, let σ ≥ 2 be a number which will be chosen later,

D+
Σ = {x : x ∈ D′

Σ, u (x) > 0}. Without loss of generality, we suppose that the set
D+

Σ isn’t empty. Supposing in (13) z = 1, β = ωuσ, we get∫
D+

Σ

M (ωuσ) dx = σ

∫
∂D+

Σ

(
ωνu

σ + σuσ−1∂u

∂ν

)
ds ≤

≤ Mσ

∫
∂D+

Σ

ωds+ σMσ−1

∫
∂D+

Σ

∣∣∣∣∂u∂ν
∣∣∣∣ ds ≤ C5 (a0,M, σ, C1) ε.

But, on the other hand

M (uσ) =

n∑
i,j=1

∂

∂xi

(
aij

∂ωuσ

∂xj

)
+ b (x, u,∇u) =

=
n∑

i,j=1

∂

∂xi

aijω

(
σuσ−1 ∂u

∂xj

)
+

n∑
i,j=1

∂

∂xi

(
aijωxi

∂uσ

∂xj

)+ b (x, u,∇u) =

=
n∑

i,j=1

∂

∂xi

(
aijωσu

σ−1 ∂u

∂xj

)
+

n∑
i,j=1

∂

∂xi

(
aijσu

σ−1ωx
∂u

∂xj

)
+ b (x, u,∇u) =

= σωuσ−1M (u)+σω
∂

∂xi

(
aiju

σ−1 ∂u

∂xj

)
+σuσ−1 ∂

∂xi

(
aijω

∂u

∂xj

)
+b (x, u,∇u)+β =

= σωuσ−1M (u) + σωuσ−1 ∂

∂xi

(
aij

∂u

∂xj

)
+ σωaijuxj (σ − 1)uσ−2uxi+

+σuσ−1ωxi

(
aij

∂u

∂xj

)
+ σuσ−1ω

∂

∂xi

(
aij

∂u

∂xj

)
+ β + b (x, u,∇u) =

= 3σωuσ−1M (u) + σ (σ − 1) aijuxiuxju
σ−2ω + σuσ−1ωxiaijuxj + β + b (x, u,∇u) =

= σ

∫
D+

Σ

di (x)uxiuωdx− σ (σ − 1)

∫
D+

Σ

uσω (x) c (x) dx+

+σ (σ − 1)

∫
D+

Σ

n∑
i,j=1

uσ−2ω (x) aijuiujdx+(2u+ 1)

∫
D+

Σ

n∑
i,j=1

aijujωxju
σ−1+b (x, u,∇u) .

Hence, we conclude

σ(σ − 1)

∫
D+

Σ

ω2uσ−2 |∇u|2 dx ≤ d0

∫
D+

Σ

uσ−1ωuidx+ b (x, u,∇u) ≤

≤ d0

∫
D+

Σ

uσ−1ωuidx+ b (x, u,∇u) ≤ d0ε

2

∫
D+

Σ

uσdx+ b (x, u,∇u) . (16)
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Let D+ = {x : x ∈ D,u (x) > 0} , D+
1 be an arbitrary connected component of

D+. Subject to the arbitrariness of ε from (16) we get

(σ − 1)γ

∫
D+

1

ωuσ−2 |∇u|2 dx ≤ d0

∫
D+

1

ωuσ−1
n∑

i=1

|ui| dx.

Thus, for any µ > 0

(σ − 1)γ

∫
D+

1

ωuσ−2 |∇u|2 dx ≤ d0µ

2

∫
D+

1

ωuσ−2

(
n∑

i=1

|ui|

)2

dx+
d0
2µ

∫
D+

1

ωuσdx ≤

≤ d0µn

2

∫
D+

1

ωuσ−2 |∇u|2 dx+
d0
2µ

∫
D+

1

ωuσdx. (17)

But, on the other hand

I = −σ

n∑
i=1

∫
D+

1

xiωu
σ−1uidx = −

n∑
i=1

∫
D+

1

xiω (uσ)i dx = n

∫
D+

1

ωuσdx,

and besides, for any β > 0

I =
σβ

2

∫
D+

1

r2ωuσdx+
σ

2β

∫
D+

1

uσ−2ω2 |∇u|2 dx

Then

I ≤ σβ

2

∫
D+

1

r2ωuσdx+
σ

2β

∫
D+

1

ω2 |∇u|2 uσ−2dx,

where r = |x|. Denote by k(D) the quantity sup
x∈D

|x|. Without loss of generality we’ll

suppose, that k(D) = 1. Then

I ≤ σ

2β

∫
D+

1

ωuσdx+
σ

2β

∫
D+

1

ω2uσ−2 |∇u|2 dx.

Thus, (
n− σβ

2

) ∫
D+

1

ωuσdx+
σ

2β

∫
D+

1

ω2uσ−2 |∇u|2 dx.

Now, choosing β =
n

σ
, we finally obtain

∫
D+

1

ωuσdx ≤ σ2

n2

∫
D+

1

ω2uσ−2 |∇u|2 dx. (18)
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Subject to (18) in (17) , we conclude

(σ − 1) γ

∫
D+

1

ω2uσ−2 |∇u|2 dx ≤
(
d0εn

2
+

d0σ
2

2εn2

) ∫
D+

1

ω2uσ−2 |∇u|2 dx. (19)

Now choose µ such that

(σ − 1) γ >
d0µn

2
+

d0σ
2

2µn2
. (20)

Then from (18)-(20) it will follow that u (x) ≡ 0 in D+
1 , and thus u (x) ≡ 0 in

D. Suppose that µ =
(σ − 1) γ

d0n
. Then (20) is equivalent to the condition

n >

(
σ

σ − 1

)2(d0
γ

)2

. (21)

At first, suppose that

n >

(
d0
γ

)2

. (22)

Let’s choose and fix such a big σ ≥ 2 that by fulfilling (22) the inequality (21)
was true. Thus, the theorem is proved, if with respect to n the condition (22) is
fulfilled. Show that it is true for any n ≥ 3. For that, at first, note that if k (D) ̸= 1,
then condition (22) will take the form

n >

(
d0k(D)

γ

)2

.

Now, let the condition (22) be not fulfilled. Denote by k the least natural number
for which

n+ k >

(
d0
γ

)2

. (23)

Consider (n+ k)-dimensional semi-cylinder

D′ = D × (−δ0, δ0)× ...×,×(−δ0, δ),

where the number δ0 > 0 will be chosen later. Since ω(D) = 1, then ω(D′) ≤
1 + δ0

√
k. Let’s choose and fix δ0 so small that along with the condition (23) the

condition

n+ k >

(
d0ω(D

′)

γ

)2

(24)

was fulfilled too.

Let

y = (x1, ..., xn, xn+1, ..., xn+k), E
′ = E × [−δ0, δ0]× ...× [−δ0, δ0]︸ ︷︷ ︸

k times
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Consider on the domain D′ the equation

L′
ϑ =

n∑
i,j=1

aij (x)ϑij +
k∑

i=1

∂2ϑ

∂x2n+i

+
n∑

i=1

bi (x)ϑi + c (x)ϑ = 0. (25)

It is easy to see that the function ϑ (y) = u (x) is a solution of the equation
(25) in D′\E′. Besides, mn+k−2+λ

H (E′) = (2δ0)
k mn−2+λ

H (E) = 0, the function ϑ (y)

vanishes on

∂D × [−δ0, δ0]× ..× [−δ0, δ0]︸ ︷︷ ︸
k times

 \E′ and
∂ϑ

∂ν ′
= 0 at xn+i = ±δ0, i =

1, ..., k, where
∂

∂ν ′
is a derivative by the conormal generated by the operator L′.

Noting that γ (L′) = γ (L) , d0 (L′) = d0 (L) and subject to the condition (24), from
the proved above we conclude that ϑ (y) ≡ 0, i.e. D′. The theorem is proved.
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