Niyazi A. ILYASOV

ESTIMATIONS OF THE SMOOTHNESS MODULES OF CONVOLUTION OF TWO PERIODIC FUNCTIONS BY MEANS OF THEIR BEST APPROXIMATIONS IN $L_p(\mathbb{T})$ (THE CASE OF DIFFERENT METRICS)

Abstract

In the paper the upper estimations of smoothess modules $\omega_k\left(h^{(s)};\delta\right)_{\gamma}$ of derivative $h^{(s)}$ of order $s(h^{(0)} \equiv h)$ of the convolution h = f * g of two 2π periodic functions $f \in L_p\left(\mathbb{T}\right)$ and $g \in L_q\left(\mathbb{T}\right)$ are obtained by means of expression containing the product $E_{n-1}\left(f\right)_p E_{n-1}\left(g\right)_q$ of the best approximations of these functions in the metrics of $L_p\left(\mathbb{T}\right)$ and $L_q\left(\mathbb{T}\right)$ respectively, where $k \in \mathbb{N}$, $s \in \mathbb{Z}_+$, $p, q \in [1, \infty)$, 1/r = 1/p + 1/q - 1 > 0, $\gamma \in (r, \infty]$, $\mathbb{T} = (-\pi, \pi]$. It is proved in the case $p, q \in (1, \infty)$ that the obtained estimations are exact in the sense of order on classes of convolutions with given majorants of sequences of the best approximations of f and g under some regularity of these majorants.