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OF CONVOLUTION OF TWO PERIODIC

FUNCTIONS BY MEANS OF THEIR BEST
APPROXIMATIONS IN Lp (T) (THE CASE OF

DIFFERENT METRICS)

Abstract

In the paper the upper estimations of smoothess modules ωk

(
h(s); δ

)
γ

of

derivative h(s) of order s(h(0) ≡ h) of the convolution h = f ∗ g of two 2π peri-
odic functions f ∈ Lp (T) and g ∈ Lq (T) are obtained by means of expression
containing the product En−1 (f)p En−1 (g)q of the best approximations of these
functions in the metrics of Lp (T) and Lq (T) respectively, where k ∈ N, s ∈ Z+,
p, q ∈ [1,∞), 1/r = 1/p + 1/q − 1 > 0, γ ∈ (r,∞], T = (−π, π]. It is proved
in the case p, q ∈ (1,∞) that the obtained estimations are exact in the sense of
order on classes of convolutions with given majorants of sequences of the best
approximations of f and g under some regularity of these majorants.

In what follows we use the following notation.

• Lp (T) , 1 ≤ p < ∞, is the space of all measurable 2π periodic functions

f : R→ C with finite Lp-norm ‖f‖p =
(
(2π)−1 ∫

T |f (x)|p dx
)1/p

< ∞.

• C (T) ≡ L∞ (T) is the space of all continuous 2π periodic functions with uni-
form norm ‖f‖∞ ≡ max {|f (x)| : x ∈ T}.

• W s
p (T), s ∈ N, p ∈ [1,∞), is the class of functions f ∈ Lp(T) having an

absolutely continuous derivative of order s− 1 and f (s) ∈ Lp(T).

• Cs (T) ≡ W s∞ (T), s ∈ N, is the class of functions f ∈ C(T) having an ordinary
derivative f (s) ∈ C(T).

• En (f)p is the best approximation of a function f in the metric of Lp (T) by
the trigonometric polynomials of order ≤ n ∈ Z+.

• Sn (f ; ·) is the partial sum of order n ∈ Z+ of the Fourier-Lebesgue series of a
function f ∈ L1 (T) : Sn (f ; x) =

∑n
|ν|=0 cν (f) eiνx, x ∈ T.

• ωk (f ; δ)p is the smoothness module of order k of a function f ∈ Lp (T) :

ωk (f ; δ)p = sup
{∥∥∆k

t f
∥∥

p
: t ∈ R, |t| ≤ δ

}
, k ∈ N, δ ∈ [0,∞), where

∆k
t f (x) =

∑k
ν=0 (−1)k−ν

(
k
ν

)
f (x + νt) , x ∈ R.

• M0 is the class of all sequences λ = {λn}∞n=1 ⊂ R such that 0 < λn ↓ 0 (n ↑ ∞).

• Ep[λ] = {f ∈ Lp(T) : En−1(f)p ≤ λn, n ∈ N} for p ∈ [1,∞] and λ ∈ M0.




