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THE SPECTRUM STRUCTURE OF NORMAL

OPERATORS

Abstract

In this work the structure of the spectrum of a normal operator is investigated
in terms of the spectra of its real and imaginary parts. Furthermore, it is
established an asymptotical formula of the modules of the eigenvalues of the
normal operators with discrete spectrum in the language of the asymptotical
behaviour of the eigenvalues its real and imaginary parts.

1. Introduction

It is known that a densely defined closed linear operator A in the Hilbert
space H with domain D (A), A : D (A) ⊂ H → H, is called a normal operator
if D (A) = D (A∗) and for each element x ∈ D (A) the condition ‖Ax‖H = ‖A∗x‖H

holds. The general theory of the normal operators and its spectral theory have been
studied in [1-11]. However, in these works spectral structure properties of normal
operators have not been constructively investigated. For the latter investigation, let
ρ(A) , σ (A) , σp (A) , σc (A) , σr(A) , Hλ(A) denote resolvent set, spectrum, point,
continuous, residual spectrums, linear subspace of eigenvectors corresponding to
λ ∈ σp (A) of an operatorA respectively. It is known that for any linear normal
operator A in the Hilbert space H σr (A) = ∅ [2].

On the other hand in many books and papers the spectral properties and asymp-
totical behavior of the eigenvalues of the linear densely defined self adjoint operators
in any Hilbert space are well studied.

This work consists of two sections. In the first section a formula for the spec-
trum of the one subclass normal operators is given and in the second section an
asymptotical formula for the modules of eigenvalues of such normal operators with
discrete spectrum in the any Hilbert space is established.

2. Structure of spectrum of the normal operators

In this and next sections, let AR (λr) and AI (λi) denote respectively real and
imaginary parts of an operator A ( number λ ∈ C ) in any Hilbert space, i.e.

AR =
1
2

(A + A∗), AI =
1
2i

(A−A∗)
(

λr =
1
2

(
λ + λ

))
,

(
λi =

1
2i

(
λ− λ

))
.

Theorem 2.1. If A is a normal operator in any Hilbert space H, then

σp (A) = σp (AR) ¢ iσp (AI) ,
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where ¢ denotes special algebraic sum of λr ∈ σp (AR) and λi ∈ σp (AI) such that
Hλr (AR) ∩ Hλi (AI) 6= {0}.

Moreover, if at least one of the sets σp (AR) and σp (AI) is empty, then σp (A)
is empty and is vice versa.

Proof. If A is a normal operator in H, then it is clear that the operator A+ zE

is normal for any number z ∈ C. In this case it is easy to see that

‖ (A− λE) x‖2
H = ‖ (AR − λrE) x‖2

H + ‖ (AI − λiE) x‖2
H

for every complex number λ ∈ C and for any element x ∈ D(A).
From this if λ = λr + iλi ∈ σp (A), then we get λr ∈ σp (AR) and λi ∈ σp (AI)

and these two have the same eigenvector x ∈ Hλr (AR) ∩ Hλi
(AI). On the other

hand, if λr ∈ σp (AR) and λi ∈ σp (AI) with eigenvector x ∈ Hλr (AR) ∩Hλi
(AI),

x 6= 0, then the above equality implies that λ ∈ σp (A) with eigenvector x.
Example 2.2. Let us H = L2 (0, 1), AI = −i d

dt , AR = E, D (AI) ={
u : u′ ∈ L2 (0, 1) , u (0) = u (1)

}
, D (AR) = L2 (0, 1). In this case AR = AR

∗ ,
AI = A∗I and an operator A = d

dt + E is a normal in L2 (0, 1). It is clear that
σ (AR) = σp (AR) = {1}, H1 (AR) = H, σp (AI) = {2nπ : n ∈ Z}, Hλn (AI) =
H2nπ (AI) = span

(
e2nπi

)
, n ∈ Z. Then by the above Theorem 2.1

σp (A) = σp (AR) ¢ iσp (AI) = {1 + 2nπi : n ∈ Z} .

Theorem 2.3. The joint spectrum of two commuting operators is contained in
the Cartesian product of their spectra.

Proof. Let A = AR + iAI be a normal operator in the Hilbert space H and
λ ∈ σ(A). Then for any ε > 0 there exists xε ∈ D(A) such that

‖ (A− λE) xε‖ ≤ ε‖xε‖

(see [1]). Since the operator A is normal, then

‖ (AR − λrE) xε‖2 + ‖ (AI − λiE) xε‖2 = ‖ (A− λE) xε‖2 ≤ ε2‖xε‖2

From this we obtain

‖ (AR − λrE) xε‖ ≤ ε‖xε‖, ‖ (AI − λiE) xε‖ ≤ ε‖xε‖.

Hence from last relation and [1] we have λr ∈ σ(AR) andλi ∈ σ(AI) .Therefore,

σ(A) ⊂ σ(AR) + iσ(AI).

Theorem 2.4. If A is a normal operator in the Hilbert space H and ρ(AR) 6= ∅
(ρ(AI) 6= ∅), then

ρ(AR) + iR ⊂ ρ(A) (R+ iρ(AI) ⊂ ρ(A)) .
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Proof. Let λr ∈ ρ(AR). In this case for the number λ = λr + iµ, µ ∈ R,

A− λE = (AR − λrE) + i (AI − µE)

= i (AR − λrE)
[
(AR − λrE)−1 (AI − µE)− iE

]
.

Now we show that the operator T := (AR − λRE)−1 (AI − µE), λr ∈ ρ(AR),
µ ∈ R is closed in any Hilbert space H and investigate this case in general. We
prove that if T and S are two linear closed operators in H and S−1∈ L (H), then
the operator K := TS−1 is closed in H. Let an arbitrary sequence (xn) be defined
in D (K) such that xn

H−→ x and Kxn = TS−1xn
H−→ y as n → ∞. Because of

S−1 ∈ L (H) S−1xn
H−→ S−1x as n →∞. On the other hand since S−1xn

H−→ S−1x

and T
(
S−1xn

) H−→ y as n → ∞ and hence T is a closed operator in H, then
y = TS−1x and S−1x is an element in D (K). From these results we get y = TS−1x

and the element x is in D
(
TS−1

)
and so the operator K = TS−1 is closed in H.

Hence we have λ ∈ ρ(A). On the other hands, since ARAI = AIAR then for every
λ := λr + iµ ∈ C the operator A−λE = (AR − λrE)+ i (AI − µE) is normal. Hence

(AR − λrE) (AI − µE) = (AI − µE) (AR − λrE)

and for every λr ∈ ρ (AR)

AI − µE ⊃ (AR − λrE)−1 (AI − µE) (AR − λrE)

is obtained. From the last equation

(AI − µE) (AR − λrE)−1 ⊃ (AR − λrE)−1 (AI − µE)

is hold. It means that these operators are commutative. Moreover

T ∗ =
[
(AR − λrE)−1 (AI − µE)

]∗
⊃ (AI − µE)∗

[
(AR − λrE)−1

]∗

= (AI − µE) (AR − λrE)−1 ⊃ (AR − λrE)−1 (AI − µE)

= T

i.e. T ∗ ⊃ T . Hence T is symmetric.
Now we show that the operator T = (AR − λrE)−1 (AI − µE) : D (T ) → H for

any λr ∈ ρ (AR) and λi ∈ R is a self-adjoint. For that it is sufficient to show that
the deficiency indices of T is n+ = n− = 0. Firstly, let us consider the equation

(AI − µE) (AR − λrE)−1 x± ix = 0, x ∈ D (T ∗) .

In this case

(AI − µE) (AR − λrE)−1 x± (AR − λrE) (AR − λrE)−1 x = 0

is hold. From this

[(AI − µE)± i (AR − λrE)] (AR − λrE)−1 x = 0.
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For y := (AR − λrE)−1 x the last equation can be written in form (AI − µE) y ±
i (AR − λrE) y = 0. Since A is a normal operator then

‖(AI − µE) y‖2 + ‖(AR − λrE) y‖2 = 0.

From this (AI − µE) y = 0 and (AR − λrE) y = 0. Because of λr ∈ ρ (AR), y = 0 is
obtained. It means that (AR − λrE)−1 x = 0, i.e.

(AR − λrE) (AR − λrE)−1 x = (AR − λrE)−1 0 = 0.

Then x = 0 and therefore n+ = n− = 0 is hold. Hence for any numbers λr ∈ ρ (AR)
and µ ∈ R the operator T is a self adjoint in H and so i ∈ C is a regular point of
this operator.

The second part of this theorem can be proved similarly.
In this section one of the main purpose is to establish the formula σ (A) =

σ (AR) + iσ (AI) for the one class of normal operators in any Hilbert space H.
Now we give an example which shows that this formula is not true in general for

normal operators.
Example 2.5. Let B be a linear bounded selfadjoint operator in the Hilbert

spaceH such that π, 3π
2 ∈ σ (B) and A = eiB. Then A is a linear unitary operator in

H [1] and A = cosB+ i sinB, AR = cosB,AI = sinB. By the spectral mapping
theorem [1] σ (sinB) = sin (σ (B)), σ (cosB) = cos (σ (B)) and 0 ∈ σ (sinB), 0 ∈
σ (cosB). But since A is the unitary operator in H, then 0 /∈ σ (A), i.e. 0 = 0+ i0 /∈
σ (A) Hence, the formula σ (A) = σ (AR) + iσ (AI) is not valid in this simple case.

Now we will give a theorem in which the above formula given for the spectrum
will be established. If A is a linear bounded normal operator in separable Hilbert
space H, then there exists a linear self adjoint operator B and a bounded measurable
function f : R → C such that A = f (B) (for the purely point spectrum [13], for
the general case [14]). This result has been proved for the unbounded linear normal
operators by Y. Mimura [15]. In the both cases a measurable function f : R → C
can be chosen continuously (see [16]).

Theorem 2.6. Let A ∈ L (H) be a normal operator in separable Hilbert space
H and A = f (B). Then the equality σ (A) = σ(AR) + iσ(AI) holds if and only
if for every x, y ∈ σ (B) there is an element z = z (x, y) in σ (B) which satisfies
fR (z) = fR (x) and fI (z) = fI (y), where f = fR + ifI .

This claim does not depend on the description A = f (B).
Proof. From the theorem 2.3 it is clear that the relation σ(A) ⊂ σ(AR)+iσ(AI)

is true. Now let us prove that σ(AR) + iσ(AI) ⊂ σ(A). According to spectral
mapping theorem this result is equal to a relation fR (σ(B))+ifI (σ(B)) ⊂ f (σ(B)).
The last relation means that for every x, y ∈ σ (B) there is an element z = z (x, y)
in σ (B) which satisfies fR (z) = fR (x), fI (z) = fI (y) and is vice versa.

Now let f (x) and h (x) be two continuous functions from R to C and B and
C be two linear selfadjoint operators in H such that A = f (B) and A = h (C).
Firstly, suppose that the equalities A = f (B) and σ(A) = σ(AR) + iσ(AI) are true,
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in other words, for all x, y ∈ σ (B) there is an element z in σ (B) which satisfies
fR (z) = fR (x) and fI (z) = fI (y).

Now let A = h (C), C = C∗, and arbitrary two elements α and β be in σ (C).
It is known that the equality σ (A) = f (σ (B)) and σ (A) = h (σ (C)). In this case,
since h (α),h (β) ∈ σ (A), then there are two elements xα and yβ in σ (B) such that
h (α) = f (xα) and h (β) = f (yβ), i.e.

h (α) = hR (α) + ihI (α) = fR (xα) + ifI (xα) (1)

h (β) = hR (β) + ihI (β) = fR (yβ) + ifI (yβ) . (2)

Hence, since the equality σ(A) = σ(AR) + iσ(AI) holds and the elements xα and yβ

are in σ (B), then there exists an element zα,β = z (xα, yβ) = z (α, β) in σ (B) such
that

fR (xα) = fR (zα,β) ,

fI (yβ) = fI (zα,β).

Therefore, (2.1) and (2.2) imply that

hR (α) = fR (xα) = fR (zα,β)

hI (β) = fI (yβ) = fI (zα,β)

}
(3)

and also there is an element γα,β in σ (C) for the element zα,β such that f (zα,β) =
h

(
γα,β

)
. Hence,

fR (zα,β) = hR

(
γα,β

)
,

fI (zα,β) = hI

(
γα,β

)
.

It follows from the previous equations and (2.3) that for every α, β ∈ σ (C) there
exists an element γ = γα,β in σ (C) such that

hR (α) = hR

(
γα,β

)

hI (α) = hI

(
γα,β

)
.

which proves the theorem.
Remark 2.7. If at least one of the functions fR, fI : R → R is constant on

σ (B), then conditions in the theorem 2.6 hold.
Example 2.8. Let us consider an operator A : L2(0, 1) → L2(0, 1) Af(t) :=

f(t)+ i
1∫
0

k(t, s)f(s)ds where k(t, s) :=

{
t(1− s), if 0 ≤ t ≤ s ≤ 1

s(1− t), if 0 ≤ s ≤ t ≤ 1
. It is easy

to see that Bf(t) :=
1∫
0

k(t, s)f(s)ds is a compact selfadjoint operator in L2(0, 1)

Hilbert space and

σ(B) = σp(B) ∪ σc(B) =
{

1
π2n2

: n ∈ N
}
∪ {0} .
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Moreover A = E+iB can be written. In this case fR(λ) = 1 and fR(λ) = λ, λ ∈ R.
Because the conditions of theorem 2.6 hold, the relation σ(A) = σ(AR) + iσ(AI) is
true, i.e.

σ(A) =
{

1 + i
1

π2n2
: n ∈ N

}
∪ {1} .

The following results can be proved easily.
Corollary 2.9. If U is a unitary operator in any Hilbert space H and U = eiC ,

C = C∗, then the equality σ(C) = σ(cosC)+iσ(sinC) is true if and only if x+y = nπ

or x− y = mπ, n,m ∈ Z, is satisfied, where x, y ∈ σ (C).
Corollary 2.10. If U = eiC , C = C∗, is a unitary operator in any Hilbert space

H and σc (C) 6= ∅, then the equality σ(C) = σ(cosC) + iσ(sinC) is not true (see
[2], p.312).

3. Asymptotical behavior of the modules of the eigenval-

ues of normal operators

In this section we will investigate discreteness of the spectrum and asymptotical
behavior of the modules of eigenvalues of normal operators in any Hilbert space H .

We denote by Sp (H), p ≥ 1, the Schatten-von Neumann class of operators and
B(H) the space of linear bounded operators in the Hilbert space H [1].

Theorem 3.1. Let A be a normal operator in H . If
(
AR − λ0

rE
)−1 ∈ Sp(H),

p ≥ 1, for some λ0
r ∈ R, then for any λ = λ0

r + iλi, λi ∈ R, (A− λE)−1 ∈ Sp(H),
p ≥ 1 .

Similarly, if for some λ0
r ∈ R,

(
AI − λ0

i E
)−1 ∈ Sp (H), p ≥ 1 then for any

λ = λr + iλ0
i , λr ∈ R, (A− λE)−1 ∈ Sp(H), p ≥ 1.

Proof. For any λ = λ0
r + iλi, λi ∈ R we can write

A− λE =
(
AR − λ0

rE
)

+ i (AI − λiE) =

= i
(
AR − λ0

rE
) [(

AR − λ0
rE

)−1 (AI − λiE)− iE
]
.

According to the stimulus in the proof of Theorem 2.4 the operator(
AR − λ0

rE
)−1 (AI − λiE) is closed in Hilbert space H. Since the operator(

AR − λ0
rE

)−1 (AI − λiE) is a self adjoint operator, then the point i ∈ C is their

regular point, i.e.
((

AR − λ0
rE

)−1 (AI − λiE)− iE
)−1

∈ B(H). Hence from the
last equality we get

(A− λE)−1 = (−i)
(
AR − λ0

r

)−1
((

AR − λ0
rE

)−1 (AI − λiE)− iE
)−1

∈ Sp(H).

In a similar manner, one can prove the second part of the theorem.
Definition 3.2. Let (an) and (bn) be two sequences of real numbers. If lim

n→∞
an

bn
=

1, then we will write an∼bn , as n →∞.
Theorem 3.3. Let A−1

R , A−1
I ∈ S∞(H), λn (AR)∼anα, λn (AI)∼bnβ, 0 <

a, b, α, β < +∞, as n → ∞ and λm(A) = λpm
(AR) + iλqm

(AI) ∈ σp(A), qm =
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qm(pm), m ≥ 1 such that λpm
(AR)∼cmγ, λqm

(AI)∼dmσ, 0 < c, d, γ, σ < +∞, then
λm(A)∼emmax(γ,σ) where 0 < e < +∞, as m →∞.

Proof. From Theorem 3.1 we have A−1 ∈ S∞(H). On the other hand, by
Theorem 2.1 it is clear that λk,l(A) = λk(AR) + iλl(AI) k, l ≥ 1 and l = l(k).

Therefore,

|λm(A)| =
(∣∣λpm

(AR)
∣∣2 +

∣∣λqm
(AI)

∣∣2
) 1

2 ∼ (
c2m2γ + d2m2σ

) 1
2

= mmax(γ,σ)
(
c2m2γ−2max(γ,σ) + d2m2σ−2max(γ,σ)

)
∼emmax(γ,σ)

as m →∞, 0 < e < +∞, which completes the proof.
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