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A MODEL OF MOTION OF TWO INTERACTING
PARTICLES

Abstract

The paper is devoted to construction and investigation of mathematical mod-
els (asymmetric) of S = 2 moving particles on a ring without overtaking with
arbitrary parameters. Necessary and sufficient conditions are found when the
separately considered particle performs a random binomial motion. A class of
distributions of distances between the moving particles is described.

1. Introduction. In connection with wide use of mathematical models of
moving particles in different applications (transport problems, service nets, computer
nets and etc.), there is a great interest to investigation of such models. In 1969, Yu.K.
Belyayev [1] constructed a simplified mathematical model of motion of two particles
on a straight line without overtaking describing behavior of transport systems. It
was unexpectedly revealed that in stationary motion a separately considered particle
performs random binomial walk. In [2], this result was generalized for models with
a great number of particles when the particles motion depends on distance between
them. This effect allowed to calculate some characteristics of transport flows and
reveal undesirable phenomena as jams in transport systems. More complicated
mathematical models arise in investigating motion of particles on closed contrours,
for example on a ring, since each particle may brake the motion of other particle.

Asymmetric mathematical model of motion of two particles on a ring (when
one particle is leading and the motion of another one may be braken by a leader)
is constructed and studied in [3], where invariant character of binomial walk of
separately considered particle is proved. In [4], similar effect was revealed for a
symmetric model of motion of S > 2 particles on a ring, where a class of distributions
arising between moving particles is also described. The above mentioned models are
discrete and motion happens at discrete time. Continuous motion models were
investigated in [5], where the motion diagram determining steady state mode of
motion in these models is found.

The models and the method stated in [1] were used in [6] for planning transport
motion of Moscow in annular road.

The paper is devoted to construction and investigation of mathematical models
(asymmetric) of S = 2 moving particles on a ring without overtaking with arbitrary
parameters. Necessary and sufficient conditions are found when a separately consid-
ered particle performs a random binomial walk. A class of distributions of distances
between the moving particles is described.

2. Model’s description. Let’s consider a unit radius circle and clockwise
numbered two particles that move (counterclokwise) on equidistant points of the
circle. The motion happens at discrete time t ∈ T = {0, h, 2h, ...} , h > 0. Each
particle may perform a jump per a distance unit in the direction of the motion at
moment t with some probability (below we’ll give law of motion of particles) or
remain at its place.

Introduce the denotation:
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ξi,t is a coordinate of the particle of number i = 1, 2 at time t, ρi,t is a distance
from the i-th particle to the next particle in the direction of the motion at time t,
i.e. ρi,t = ξ2,t − ξ1,t if ξ2,t > ξ1,t and ρi,t = n + ξ2,t − ξ1,t , if ξ2,t < ξ1,t.

εi,t =
∣∣ξi,t+h − ξi,t

∣∣ determines the particle’s motion, i.e. εi,t = 1 if the i-th
particle performs a jump at time t, and εi,t = 0 if the i-th particle stands at its
place.

Let the parameters of motion of one particle r and l (r + l = 1, 0 < r < 1), and
the motion parameters of another particle r and l

(
r + l = 1, 0 < r < 1

)
, i.e. the

motion happens by he following law:

P
{
ε1,t = 1

∣∣ρ1,t = k
}

= r, P
{
ε1,t = 0

∣∣ρ1,t = k
}

= l k = 2, n− 1, r + l = 1;

P
{
ε1,t = 1

∣∣ρ1,t = 1 , ε2,t = 1
}

= r, P
{
ε1,t = 0

∣∣ρ1,t = 1 , ε2,t = 1
}

= l;

P
{
ε1,t = 1

∣∣ρ1,t = 1 , ε2,t = 0
}

= 0, P
{
ε1,t = 0

∣∣ρ1,t = 1 , ε2,t = 0
}

= 1;

P
{
ε1,t = 0, ε2,t = 0

∣∣ρ1,t = 1
}

= l; P
{
ε1,t = 1, ε2,t = 1

∣∣ρ1,t = 1
}

= rr;

P
{
ε1,t = 0, ε2,t = 0

∣∣ρ1,t = 1
}

= lr; P
{
ε1,t = 1, ε2,t = 0

∣∣ρ1,t = 1
}

= 0; (1)

P
{
ε2,t = 1

∣∣ρ1,t = n− k
}

= r, P
{
ε2,t = 0

∣∣ρ1,t = n− k
}

= l k = 2, n− 1, r+l = 1;

P
{
ε2,t = 1

∣∣ρ1,t = n− 1 , ε1,t = 1
}

= r, P
{
ε2,t = 0

∣∣ρ1,t = n− 1 , ε1,t = 1
}

= l;

P
{
ε2,t = 1

∣∣ρ1,t = n− 1 , ε1,t = 0
}

= 0, P
{
ε2,t = 0

∣∣ρ1,t = n− 1 , ε1,t = 0
}

= 1.

It follows from these relations that the first particle is leading since none of the
particles may impede its motion.

Theorem 1. For a model defined by relations (1) there is a unique stationary
distribution

ak = lim
t→∞P

{
ρ2,t = k

}
,

n−1∑

k=1

ak = 1. (2)

for which it holds the recurrent formula

akrl = ak+1rl. (3)

Whence ak is determined as

ak =
Ak

A
, Ak =

(r

l

)k−l
(

l

r

)k−l

, A1 = 1, A =
n−1∑

j=1

Aj . (4)

Proof. The random variables ρ2,t form Markov’s ergodic chain with finite num-
ber of states. Consequently, [7, p.550] these exists a unique stationary distribution
of ρ2,t. Using the total probabilities formula and relation (1), for stationary prob-
abilities of distribution of distance between the particles we write the recurrent
equations.

P
{
ρ2,t+h = 1

}
= P

{
ρ2,t = 1

} [
P

{
ε1,t = 1

∣∣ρ2,t = 1
}×

×P
{
ε2,t = 1

∣∣ρ2,t = 1
}

+ P
{
ε1,t = 0

∣∣ρ2,t = 1
}]

+

+P
{
ρ2,t = 2

}
P

{
ε1,t = 0

∣∣ρ1,t = 2
}

P
{
ε2,t = 1

∣∣ρ1,t = 2
}

;
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P
{
ρ2,t+h = k

}
= P

{
ρ2,t = k − 1

}
P

{
ε1,t = 1

∣∣ρ2,t = k − 1
}×

×P
{
ε2,t = 0

∣∣ρ2,t = k − 1
}

+ P
{
ρ2,t = k

}×

× [
P

{
ε1,t = 1

∣∣ρ2,t = k
}

P
{
ε2,t = 1

∣∣ρ2,t = k
}

+

+P
{
ε2,t = 0

∣∣ρ2,t = k
}

P
{
ε1,t = 0

∣∣ρ2,t = k
}]

+ (5)

+P
{
ρ2,t = k + 1

}
P

{
ε1,t = 0

∣∣ρ2,t = k + 1
}

P
{
ε2,t = 1

∣∣ρ2,t = k + 1
}

; k = 2, n− 2;

P
{
ρ2,t+h = n− 1

}
= P

{
ρ2,t = n− 2

}
P

{
ε1,t = 1

∣∣ρ2,t = n− 2
}×

×P
{
ε2,t = 0

∣∣ρ1,t = n− 2
}

+ P
{
ρ1,t = n− 1

}×

× [
P

{
ε2,t = 1

∣∣ρ2,t = n− 1
}

P
{
ε1,t = 1

∣∣ρ2,t = n− 1
}
+P

{
ε2,t = 0

∣∣ρ2,t = n− 1
}]

.

Passing to limit as t →∞ and using the fact that there exists a stationary mode,
from (5) we get

a1 = a1 (rr + l) + a2lr;

ak = ak+1lr + ak

(
rr + ll

)
+ ak−1lr,

(
k = 2, n− 2

)
; (6)

an−1 = an−2lr + an−1

(
rr + l

)
;

Hence we get: 



a1 = a1,

a2 = a1
r

l

l

r
,

a3 = a2
r

l

l

r
,

a4 = a3
r

l

l

r
,

.

.

ak = ak−1
r

l

l

r
.

(7)

Hence, recurrent formula (3) follows.
From (7) we get:





a1 = a1,

a2 = a1
r

l

l

r
,

a3 = a1

(r

l

)2
(

l

r

)2

,

a4 = a1

(r

l

)3
(

l

r

)3

,

.

.

.

ak = a1

(r

l

)k−1
(

l

r

)k−1

,
(
k = 1, n− 1

)
.
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If we denote A1 = 1, Ak =
(r

l

)k−1
(

l

r

)k−1

, A =
n−1∑

j=1

Aj , then





a1 = a1A1,
a2 = a1A2,
a3 = a1A3,
a4 = a1A4,
.
.
.
ak = a1Ak, k = 1, n− 1.

Hence,

n−1∑

k=1

ak = 1 =⇒ 1 = a1 (A1 + A2 + ... + An+1) = a1

n−1∑

j=1

Aj =⇒ 1 = a1A =⇒ a1 =
1
A

.

We get that ak =
Ak

A
is a solution of (6).

This proves theorem 1.
Denote rn−1 = P

{
ε2,t = 1

∣∣ρ2,t = n− 1
}

Lemma. In order that

P {ε1,t = 1} = P {ε2,t = 1} = r

be fulfilled for a model described by relation (1) it is necessary and sufficient that the
condition rn−1 = 1 be satisfied.

Proof. Let

r = r
n−1∑

k=1

(
r + l

)
ak =

n−1∑

k=1

rrak +
n−1∑

k=1

rlak =
n−1∑

k=1

rrak + rlan−1 +
n−2∑

k=1

rlak =

= rlan−1 +
n−1∑

k=1

rrak +
n−2∑

k=1

lrak+1 = rlan−1 + rra1 +
n−1∑

k=2

rrak +
n−1∑

k=2

lrak =

= rlan−1 + rra1 +
n−1∑

k=2

rak.

On the other hand, for probabilities of jumps of particles we have

P {ε1,t = 1} =
n−1∑

k=2

P
{
ε2,t = 1, ρ2,t = k

}
+ P

{
ε2,t = 1, ρ2,t = 1, ε1,1 = 1

}
=

=
n−1∑

k=2

P
{
ε2,t = 1

∣∣ρ2,t = k
}

P
{
ρ2,t = k

}
+ P

{
ε2,t = 1

∣∣ρ2,t = 1 , ε1,t = 1
}×

×P
{
ρ2,t = 1, ε1,t = 1

}
=

n−1∑

k=2

rak + rra1 .
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r = P {ε2,t = 1}+ rlan−1. (8)

Since

P {ε1,t = 1} =
n−2∑

k=1

P
{
ε1,t = 1, ρ2,t = k

}
+ P

{
ε1,t = 1, ρ2,t = n− 1, ε2,t = 1

}
=

=
n−2∑

k=1

P
{
ε1,t = 1

∣∣ρ2,t = k
}

P
{
ρ2,t = k

}
+

+P
{

ε1,t = 1| ρ2,t = n− 1, ε2,t = 1
}

P
{
ε2,t = 1

∣∣ρ2,t = n− 1
}

P
{
ρ2,t = n− 1

}
=

=
n−2∑

k=1

rak + rran−1 = r (1− an−1) + rran−1 = r − rlan−1

r = P {ε1,t = 1}+ ran−1l. (9)

From equalities (8) and (9) we get the statement of the lemma.
Theorem 2. In order b (ε1, ..., εm) = P {εi,t+h = ε1, ..., εi,t+mh = εm} = rε+

m lε
−
m ,

(i = 1, 2) where εj = 0 or 1 ( εj takes the value 1 if the particle performs a jump,

otherwise it takes the value 0), ε+
m =

m∑

j=1

εj , ε−m = m − ε+
m, it is necessary and

sufficient that the conditions rn−1 = 1 be satisfied.
Proof. We’ll prove it by the mathematical induction method. For m = 1, the

theorem’s proof was obtained in expressions (8),(9).
Let the statement be true for m steps. Prove it for m + 1,

b (ε1, ..., εm) =
n−1∑

k=1

P
{

ε2,t+h = ε1, ..., ε2,t+(m+1)h = 1, ρ2,t+(m+1)h = k
}

=

=
n−1∑

k=1

P
{
ε2,t+h = ε1, ..., ε2,t+mh = εm, ε2,t+(m+1)h =

= 1, ρ2,t+(m+1)h = k, ε1,t+(m+1)h = 1
}

+

+
n−2∑

k=1

P
{
ε2,t+h = ε1, ..., ε2,t+mh = εm, ε2,t+(m+1)h = 1,

ρ2,t+(m+1)h = k + 1, ε1,t+(m+1)h = 0
}

=

=
n−1∑

k=1

P {ε2,t+h = ε1, ..., ε2,t+mh = εm}P
{

ρ2,t+(m+1)h =

= k |ε2,t+h = ε1, ..., ε2,t+mh = εm }×
×P

{
ε1,t+(m+1)h = 1 |ε2,t+h = ε1, ..., ε2,t+mh = εm , ρ2,t+(m+1)h = k

}
×

×P
{
ε2,t+(m+1)h = 1 |ε2,t+h = ε1, ..., ε1,t+mh = εm ,
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ρ2,t+(m+1)h = k, ε1,t+(m+1)h = 1
}

+

×
n−2∑

k=1

P {ε2,t+h = ε1, ..., ε2,t+mh = εm}P
{

ρ2,t+(m+1)h =

= k + 1 |ε2,t+h = ε1, ..., ε2,t+mh = εm }×
×P

{
ε1,t+(m+1)h = 0 |ε2,t+h = ε1, ..., ε2,t+mh = εm , ρ2,t+(m+1)h = k + 1

}
×

×P
{
ε2,t+(m+1)h = 1 |ε2,t+h = ε1, ..., ε2,t+mh = εm ,

ρ2,t+(m+1)h = k + 1, ε1,t+(m+1)h = 0
}

=

=
n−1∑

k=1

rrakb (ε1, ..., εm) +
n−1∑

k=1

rlak+1b (ε1, ..., εm) =

= b (ε1, ..., εm)

(
n−1∑

k=1

rrak +
n−2∑

k=1

rak+1l

)
= b (ε1, ..., εm)

(
n−1∑

k=1

rrak +
n−2∑

k=1

rakl

)
=

= b (ε1, ..., εm)

(
rran−1 +

n−2∑

k=1

rak

)
= b (ε1, ..., εm) P {ε1,t = 1} = b (ε1, ..., εm) r.

The case εm+1 = 0 is proved similarly.
Theorem 2 is proved.
This result may be interpreted in the following way.
If we make one perticle visible, the other one invisible, then the visible particle

performs a random walk with parameters r, l.
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