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Tarlan Z. GARAYEV

“KADETS
1

4
- THEOREM” AND MULTIPLIERS OF

TYPE (p, p)

Abstract

In the present paper we prove analogues of the well-known “Kadets
1
4

–
theorem” for perturbated system of exponents cosines and sines in Lebesgue
spaces.

1. Introduction

A famous classical theorem of Paley-Wiener [6] claims that if {λn} is a sequence

of real numbers such that d ≡ sup
n
|λn − n| < 1

π2
, then the system of exponent

{
eiλnt

}
, n ∈ Z, (1)

forms a basis in L2(−π, π) and is isomorphic to the system
{
eint

}
n∈Z . They raised a

question to replace the constant
1
π2

with larger one such that the system (1) would

still form a basis in L2(−π, π). This question was completely solved by M. I. Kadets

[7], who proved that the above assertion holds under the weaker condition d <
1
4

and the constant
1
4

is optimal.
It is natural to ask whether there is an analogy of Kadets’ result in the space

Lp(−π, π) with p 6= 2. This question was the topic of investigation of Bilalov [1]–[3].
In some particular cases he has obtained affirmative answer to this and some other
relative questions. In the case when λn has perturbation (λn = n + α signn) has
been completely solved in works of Moiseev [9] and Sedletskii [10].

We use the notation ‖{·}‖2 to denote the multiplier of type (2,2). It is known
that (2, 2) ≡ l∞ and

∥∥{λn − n}n∈Z
∥∥

2
=

∥∥{λn − n}n∈Z
∥∥

l∞
= sup

n
|λn − n| .

Thus, the theorem of Paley-Wiener essentially claims that there exists δ > 0 such
that if {λn − n}n∈Z ∈ (2, 2) and

∥∥{λn − n}n∈Z
∥∥

2
< δ, then the system (1) forms

Riesz basis in L2(−π, π). In the present paper we extend this assertion to any
Lp(−π, π).

2. Auxiliary statements

In what follows, we use the abbreviation {an} ≡ {an}n∈Z. Given f ∈ L1(−π, π)
by {Fn (f)} we denote its Fourier coefficients

Fn (f) :=
1
2π

π∫

−π

f (t) e−intdt, n ∈ Z.
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We shall say that {δn} is a multiplier of type (p, q), i.e. {δn} ∈ (p, q), if for any
f ∈ Lp there exists g ∈ Lq such that Fn (g) = δnFn (f) for all n ∈ Z. It is known that
if {δn} ∈ (p, q), 1 ≤ p, q ≤ +∞, then there exists δpq > 0 such that the inequality

∥∥∥
∑

δncneint
∥∥∥

q
≤ δpq

∥∥∥
∑

cneint
∥∥∥

p
(2)

holds for any finite sum
∑

, where ‖·‖p - is the standard norm in Lp (−π, π). The
quantity

inf
{

δpq :
∥∥∥
∑

δncneint
∥∥∥

q
≤ δpq

∥∥∥
∑

cneint
∥∥∥

p

}

is called the norm of the multiplier {δn} and is denoted by ‖{δn}‖p,q . Clearly, if
{δn} ∈ (p, q), then for any real number δ,

{δδn} ∈ (p, q) , ‖{δδn}‖p,q = |δ| ‖{δn}‖p,q .

In particular, it follows that there are multipliers with arbitrarily small norms. Let
us denote ‖{δn}‖p ≡ ‖{δn}‖p,p and let

‖{an}‖Vr
= sup
{nk}k∈N⊂N

{
m∑

k=1

∣∣ank+1
− ank

∣∣r
}1/r

, Vr ≡
{{an} : ‖{an}‖vr

< +∞}
.

We shall need the following statement Hirschman which can be found in [4].

Theorem H. Let δn = O
(|n|−α)

as |n| → ∞. Then the following statements
hold:

1) If α > 0 and {δn} ∈ Vr for some r > 2, then {δn} ∈ (p, p) for any p ∈(
2r

r + 2
,

2r

r − 2

)
. But if {δn} ∈ Vr for r ∈ [1, 2), then {δn} ∈ (p, p) for any p ∈

[1, +∞);

2) If α ∈
(

0,
1
2

]
, then {δn} ∈ (p, p) for any p ∈

(
2

1 + 2α
,

2
1− 2α

)
.

3. Main results. Basis of exponents

Let λn = n + δn, n ∈ Z. The first result of our present paper is as follows:

Theorem 1. Let {δn}n∈Z ∈ (p, p) , 1 < p < +∞, be such that ‖{δn}‖p <
ln 2
π

.

Then the system (1) forms a basis in Lp (−π, +π) and is isomorphic to
{
eint

}
n∈Z .

Proof. Let
∑
n

fn

(
eiλnt − eint

)
be any finite sum. In view of the identity

eiλnt − eint =
(
eiλnt − 1

)
eint =

∞∑

k=1

(iδnt)k

k!
eint =

∞∑

k=1

(it)k

k!
δk
neint,

we have ∥∥∥∥∥
∑

n

fn

(
eiλnt − eint

)∥∥∥∥∥
p

=

∥∥∥∥∥
∑

n

fn

∞∑

k=1

(it)
k!

k

δk
neint

∥∥∥∥∥
p

=
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=

∥∥∥∥∥
∞∑

k=1

(it)k

k!

∑
n

fnδk
neint

∥∥∥∥∥
p

≤
∞∑

k=1

πk

k!

∥∥∥∥∥
∑
n

δk
nfneint

∥∥∥∥∥
p

. (3)

Let {δn}n∈Z ∈ (p, p), and denote δp = ‖{δn}‖p. Since f(t) ≡ ∑
n

fneint ∈
Lp(−π, π), we have ∥∥∥∥∥

∑
n

δnfneint

∥∥∥∥∥
p

≤ δp

∥∥∥∥∥
∑
n

fneint

∥∥∥∥∥
p

.

Therefore, ∥∥∥∥∥
∑

n

δk
nfneint

∥∥∥∥∥
p

≤ δk
p

∥∥∥∥∥
∑
n

fneint

∥∥∥∥∥
p

.

Combining this with (), we obtain
∥∥∥∥∥
∑
n

fn

(
eiλnt − eint

)∥∥∥∥∥
p

≤ (eπδp − 1)

∥∥∥∥∥
∑
n

fneint

∥∥∥∥∥
p

. (4)

Now let f ∈ Lp(−π; π). In (4) we define {fn} to be the Fourier coefficients of the
function f . From (4) it follows that the series

∞∑
−∞

fn(eiλnt − eint)

converges in Lp(−π, π). Consider the operator T defined as

Tf =
−∞∑
−∞

fn(eiλnt − eint).

Then from (4) we get ‖Tf‖p ≤
(
eπδp − 1) ‖f‖p, i.e.

‖T‖ ≤ eπδp − 1.

Since δn <
ln 2
π

, it follows that ‖T‖ < 1. Therefore, the operator I + T is in-

vertible (here I : Lp → Lp denotes the identity operator). On the other hand,
(I + T )

[
eint

]
= eiλnt for any n ∈ Z. Thus, the systems (1) and

{
eint

}
n∈Z are iso-

morphic in Lp (−π, π) . This finishes the proof of theorem 1.
Remark. In the case p = 2 it is known that sup

n
|δn| = ‖{δn}‖2, i.e. ‖{δn}‖l∞ =

‖{δn}‖2 . Thus, taking p = 2 from theorem 1 we obtain a known result.
Using the above mentioned result of Hirschman, from theorem 1 we obtain the

following consequence.
Corollary 1. Let δn = δ · δ̃n for any n ∈ Z. Then the following statements hold:
1) If δ̃n = O

(|n|−α)
as |n| → ∞ for some α > 0 and if

{
δ̃n

}
n∈Z

∈ Vr, r > 2,

then there exists δp > 0 such that for any δ ∈ [0, δp) the system (1) forms a basis

for Lp (−π, π) and is isomorphic to
{
eint

}
n∈Z for any p ∈

(
2r

r+2 , 2r
r−2

)
. Besides,



58
[T.Z.Garayev]

Transactions of NAS of Azerbaijan

if
{

δ̃n

}
n∈Z

∈ Vr, 1 ≤ r < 2, then the preceding assertion takes place for any

p ∈ (1, +∞);

2) If δ̃n = O
(|n|−α)

as |n| → ∞ and if α ∈
(

0,
1
2

)
, then there exists δp > 0

such that for any δ ∈ [0, δp) the assertion 1) holds for any p ∈
(

2
1 + 2α

,
2

1− 2α

)
.

Let us now consider the following Riesz properties [5]:
∥∥∥∥∥∥

0∑

−N1

aneint

∥∥∥∥∥∥
p

+

∥∥∥∥∥
N2∑

1

aneint

∥∥∥∥∥
p

≤ Mp

∥∥∥∥∥∥

N2∑

−N1

aneint

∥∥∥∥∥∥
p

, 1 < p < +∞, (5)

where N1 ≥ 0; N2 ≥ 1 are integers and Mp is a constant that depends only on p.

Using this property it is not difficult to show that if {δn} ∈ (p, p) , then
{

δ̃n

}
also

belongs to the class (p, p) , where card
{

n : δn 6= δ̃n

}
< +∞. Consider the following

example: let

δn =
{

β+, if n ≥ n1,
β−, if n ≤ n2,

where n1, n2 are any integers. All the cases are easily reduced to the case n1 = 0,
n2 = −1, so let us assume that n1 = 0; n2 = −1. Then from (5) it follows that
{δn} ∈ (p, p) , and besides ‖{δn}‖p ≤ Mpβ, where β = max

{∣∣β+
∣∣ ;

∣∣β−∣∣ }
. From

theorem 1 we obtain that for any βi ∈ (−δp, δp) , i = 1, 2, where δp =
ln 2
πMp

, the

system (1) forms a basis in Lp (−π, π) isomorphic to
{
eint

}
n∈Z .

4. Bases of cosines and sines

Let us mention the following Lemma, which is easy to establish:
Lemma 1. The system

{
e±iλnt

}
n∈N (or the system 1 ∪ {

e±iλnt
}

n∈N) forms a
basis in Lp (−π, π) if and only if systems {sinλnt}n∈N and {cosλnt}n∈N (respectively,
systems {sinλnt}n∈N and 1 ∪ {cosλnt}n∈N) simultaneously form bases in Lp (0, π) .

Let all the hypothesis of theorem 1 be satisfied. According to the results of
Levinson [8], we can assume that λ0 = 0. Then from lemma 1 we get that if ‖{δn}‖p <
δp, then the systems {sinλnt}n∈N and 1 ∪ {cosλnt}n∈N form bases in Lp (0, π) .

It is easy to note that if {δn} ∈ (p, p) , then {δn + c} also belongs to (p, p) for
any real c, and besides ‖{δn + c}‖p ≤ ‖{δn}‖p + |c|.

Now consider the system
{
e±iλnt

}
n∈N . It is absolutely obvious that this system

forms a basis in Lp (−π, π) only under such case if system
{
eiαt · e±iλnt

}
n∈N forms

a basis in Lp (−π, π) , where α is any real number. Let

µn =
{ −λ|n| + α, if n ≤ −1,

λn+1 + α, if n ≥ 0,

We have

δ̃n = µn − n = −λ|n| + α− n = − (
λ|n| − |n|

)
+ α = −δ|n| + α if n ≤ −1;
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δ̃n = µn − n = λn+1 + α− n = λn+1 − (n + 1) + α + 1 = δn+1 + α + 1 if n ≥ 0.

Thus,

δ̃n =





δn+1 + 1 + α, n ≥ 0 ;

−δ|n| + α, n ≤ −1.

Using the property Riesz (5) once again we can easily show that if {δn} ∈ (p, p) ,

where 1 < p < +∞, then
{

δ̃n

}
also belongs to (p, p) . Thus, if

∥∥∥
{

δ̃n

}∥∥∥
p

< δp

(δp – is a constant from theorem 1), then the system
{
e±iλnt

}
n∈N forms a basis in

Lp (−π, π) , and, moreover, each system of {cosλnt}n∈N, {sinλnt}n∈N forms a basis

in Lp (0, π) . Taking α = −1
2
, we eventually obtain that if at least one of the two

conditions
1) ‖{δn}‖p < δp

2)
∥∥∥∥
{

δn +
1
2

}∥∥∥∥
p

< δp

is satisfied, then the system of sines {sinλnt}n∈N forms a basis in Lp (0, π) . On the
other hand, if condition 1) holds, then the system 1 ∪ {cosλnt}n∈N also forms a
basis in Lp (0, π) .

Let the condition 2) take place. Then it is clear that the system {cosλnt}n∈N
forms a basis in Lp (0, π) . Denote µn = λn+1. For any n ≥ 0 we have

µn − n = λn+1 − n = λn+1 − (n + 1) + 1 ⇒ µn − n− 1
2

= δn+1 +
1
2
.

Thus if
∥∥∥∥
{

µn − n− 1
2

}∥∥∥∥
p

=
∥∥∥∥
{

δn+1 +
1
2

}∥∥∥∥
p

< δp, then the system {cosµnt}n≥0

forms a basis in Lp (0, π) . In accordance to the result of Levinson, we can assume

that µ0 = 0. As a result we obtain that if
∥∥∥∥
{

µn − n− 1
2

}∥∥∥∥
p

< δp, then the system

1 ∪ {cosµnt}n∈N forms a basis in Lp (0, π) .

Thus, we have proved the following theorem:

Theorem 2. Let {δn} ∈ (p, p) . If 1) ‖{δn}‖p <
ln 2
π

or 2)
∥∥∥∥
{

δn +
1
2

}∥∥∥∥
p

<

ln 2
π

, then the system of sines {sinλnt}n∈N forms a basis in Lp (0, π) isomorphic to

{sinnt}n∈N. If condition 1) holds or if
∥∥∥∥
{

δn − 1
2

}∥∥∥∥
p

<
ln 2
π

, then the system of

cosines 1 ∪ {cosλnt}n∈N forms a basis in Lp (0, π) isomorphic to {cosnt}n≥0 .
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