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Rovshan A.BANDALIEV

ON A TWO-WEIGHT CRITERION FOR HARDY
TYPE OPERATOR

IN THE VARIABLE LEBESGUE SPACES WITH
MEASURES

Abstract

The main purpose of this paper is to prove the boundedness of multidimen-
sional Hardy type operator in variable Lebesgue spaces with measures.

It is well known that the variable exponent Lebesgue space in the literature for
the first time already in a 1931 was studied by Orlicz [24]. In [24] the Hölder’s
inequality for variable exponent discrete Lebesgue space was proved. Orlicz also
considered the variable exponent Lebesgue space on the real line, and proved the
Hölder inequality in this setting.

However, after this one paper, Orlicz abandoned the study of variable exponent
Lebesgue spaces, to concentrate on the theory of the Orlicz spaces (see also [21]).
Further development of this theory was connection with theory of modular function
spaces. The first systematic study of modular spaces is due to Nakano [22]. In
the appendix, Nakano mentions explicitly variable exponent Lebesgue spaces as an
example of the more general spaces he considers. Somewhat later, a more explicit
version of these spaces, namely modular function spaces, were investigated by many
mathematicians (see. Musielak [20]).

The next step in the investigation of variable exponent spaces was the paper by
Sharapu-dinov [27],[28] and Kováčik and Rǎkosńık in [14]. This paper established
many basic properties of variable exponent Lebesgue and Sobolev spaces. The study
of these spaces has been stimulated by problems of elasticity, fluid dynamics, calculus
of variations and differential equations with non-standard growth conditions (see [2],
[30], [25]).

In this paper a necessary and sufficient condition for the pair of measures ensuring
the validity of inequality of strong type for Hardy type operator are found. We also
investigated the corresponding problem for the dual operator.

Let Rn be the n-dimensional Euclidean spaces of points x = (x1, . . . , xn) , |x| =(
n∑

i=1
x2

i

)1/2

and (Rn, Σ, µ) be a σ-finite, complete measure spaces. By P (Rn) we

define the set of µ-measurable functions such that p : Rn 7→ [1,∞). The functions
p ∈ P (Rn) are called exponents on Rn. Let p = ess inf

x∈Rn
p(x) and p = ess sup

x∈Rn
p(x).

By Q (Rm) we define the set of ν-measurable functions such that r : Rm 7→ [1,∞).

Let p′(x) is the conjugate exponent function defined by
1

p(x)
+

1
p′(x)

= 1 and x ∈

Rn. Obviously, ess sup
x∈Rn

p′(x) = p′ =
p

p− 1
and ess inf

x∈Rn
p′(x) = p′ =

p

p− 1
.

Definition. Let p ∈ P (Rn) . By Lp(x), µ (Rn) we denote the space of µ-measurable
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functions f on Rn such that
∫

Rn

|f(x)|p(x) dµ(x) < ∞.

Under the condition 1 ≤ p(x) ≤ p < +∞, the space Lp(x), µ (Rn) is a Banach space
(see [8]) with respect to the norm

‖f‖Lp(x), µ(Rn) = ‖f‖p(·), µ = inf



λ > 0 :

∫

Rn

( |f(x)|
λ

)p(x)

dx ≤ 1



 .

For absolutely continuous measures the spaces Lp(x), µ (Rn) coincides with the
weighted variable Lebesgue space Lp(x), ω (Rn) , where ω is a weight function on Rn.

The following theorem is valid.
Theorem 1. Let 1 ≤ p ≤ p(x) ≤ q(y) ≤ q < ∞ for almost every x ∈ Rn and

y ∈ Rm, p ∈ P (Rn) and q ∈ Q (Rm) . If p(x) ∈ C (Rn) , then the inequality

∥∥∥‖f‖Lp(·), µ(Rn)

∥∥∥
Lq(·), ν(Rm)

≤
(

p

q
+

q − p

q

) 2
p

∥∥∥‖f‖Lq(·), ν(Rm)

∥∥∥
Lp(·), µ(Rn)

is valid, where q = ess inf
Rm

q(x), q = ess sup
Rm

q(x) and C (Rn) is space of continuous

functions in Rn and f : Rn ×Rm → R is µ⊗ ν-measurable function such that
∥∥∥‖f‖Lq(·), ν(Rm)

∥∥∥
Lp(·), µ(Rn)

=

= inf



δ > 0 :

∫

Rn

(‖f(x, ·)‖Lq(·), ν(Rm)

δ

)p(x)

dµ(x) ≤ 1



 < ∞.

The proof of Theorem 1 is similar to the case of Lebesgue measures µ and ν.
Remark 1. Note that in the case p(x) = 1, and when the measure µ and ν is

Lebesgue measures Theorem 1 is the analog of generalized Minkowski type inequality
and was proved in [26].

Now we prove a criteria on boundedness of multidimensional Hardy type operator
in variable Lebesgue spaces with measure.

Theorem 2. Let µ and ν nonnegative Borel measure on Rn and ν∗ is absolutely
continuous part of measure ν. Let p(x) = p = const, q ∈ P (Rn) and 1 < p ≤ q(x) ≤
q < ∞. Then the inequality

‖Hf‖Lq(·), µ(Rn) ≤ C ‖f‖Lp, ν(Rn) (1)

holds, for every f ≥ 0 if and only if there exists α ∈ (0, 1) such that

A(α, p, q) =

= sup
t>0




∫

|y|<t

[
dν∗

dy

]1−p′

dy




α
p ′

∥∥∥∥∥∥∥∥




∫

|y|<|·|

[
dν∗

dy

]1−p′

dy




1−α

p
′

∥∥∥∥∥∥∥∥
Lq(·), µ(|x|>t)

< ∞. (2)



Transactions of NAS of Azerbaijan
[On a two-weight criterion for Hardy type...]

47

Moreover, if C > 0 is the best possible constant in (1) then

sup
0<α<1

p ′A(α, p, q)

(1− α)
[(

p ′
1−α

)p
+ 1

α(p−1)

]1/p
≤ C ≤

≤
(

p

q
+

q − p

q

) 2
p

inf
0<α<1

A(α, p, q)
(1− α)1/p ′ .

Proof. Sufficiency. Let f = 0 on the support of singular part of measure ν.
Then the inequality (1) is equivalent to the inequality

‖Hf‖Lq(·), µ(Rn) ≤ C




∫

Rn

|f(x)|p dν∗

dx
dx




1/p

.

Passing to the polar coordinates , we have

h(y) =




∫

|z|<|y|

[
dν∗

dz

]1−p′

dz




α
p ′

=




∫

|z|<|y|

[ω(z)]−p
′
dz




α

p
′

=

=




|y|∫

0

sn−1




∫

|ξ|=1

[ω(sξ)]−p
′
dξ


 ds




α

p
′

,

where
dν∗

dz
= ωp(z) and dξ the surface element on the unit sphere. Obviously,

h(y) = β(|y|), i.e., h(y) is a radial function.
Applying Hölder’s inequality for Lp(Rn) spaces and after some standard trans-

formations, we have

‖Hf‖Lq(·), µ(Rn) =

∥∥∥∥∥∥∥

∫

|y|<|·|

f(y) dy

∥∥∥∥∥∥∥
Lq(·), µ(Rn)

=

=

∥∥∥∥∥∥∥

∫

|y|<|·|

[f(y)h(y)ω(y)] [h(y)ω(y)]−1 dy

∥∥∥∥∥∥∥
Lq(·), µ(Rn)

≤

≤
∥∥∥∥∥‖f hω‖Lp(|y|<|·|)

∥∥∥[hω]−1
∥∥∥

L
p
′ (|y|<|·|)

∥∥∥∥∥
Lq(·), µ(Rn)

=

=

∥∥∥∥∥
∥∥∥∥f h ω χ{|·|<|y|}(·)

∥∥∥[h ω]−1
∥∥∥

Lp ′ (|y|<|·|)

∥∥∥∥
Lp(Rn)

∥∥∥∥∥
Lq(·),µ(Rn)

.
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Applying Theorem 1, we have
∥∥∥∥∥
∥∥∥∥f h ω χ{|·|<|y|}(·)

∥∥∥[hω]−1
∥∥∥

Lp ′ (|y|<|·|)

∥∥∥∥
Lp(Rn)

∥∥∥∥∥
Lq(·),µ(Rn)

≤

≤
(

p

q
+

q − p

q

) 2
p

∥∥∥∥∥
∥∥∥∥fh ω χ{|·|<|y|}(·)

∥∥∥[hω]−1
∥∥∥

Lp ′ (|y|<|·|)

∥∥∥∥
Lq(·), µ(Rn)

∥∥∥∥∥
Lp(Rn)

=

=
(

p

q
+

q − p

q

) 2
p

∥∥∥∥∥f h ω

∥∥∥∥χ{|·|<|y|}(·)
∥∥∥[hω]−1

∥∥∥
Lp ′ (|y|<|·|)

∥∥∥∥
Lq(·), µ(Rn)

∥∥∥∥∥
Lp(Rn)

=

=
(

p

q
+

q − p

q

) 2
p

∥∥∥∥∥f h ω

∥∥∥∥
∥∥∥[hω]−1

∥∥∥
Lp ′ (|y|<|·|)

∥∥∥∥
Lq(·), µ(|·|>|y|)

∥∥∥∥∥
Lp(Rn)

.

Passing to polar coordinates in Rn, we get

∥∥∥[hω]−1
∥∥∥

Lp ′ (|y|<|x|)
=




∫

|y|<|x|

[h(|y|) ω(y)]−p
′
dy




1/p
′

=

=




|x|∫

0

rn−1 [h(r)]−p
′




∫

|ξ|=1

[ω(rξ)]−p
′

dξ


 dr




1/p
′

=

=




|x|∫

0




r∫

0

sn−1




∫

|ξ|=1

[ω(sξ)]−p
′
dξ


 ds




−α 


∫

|ξ|=1

[ω(rξ)]−p
′

dξ


 rn−1dr




1/p
′

=

=
1

(1− α)1/p ′




|x|∫

0

d

dr








r∫

0

sn−1




∫

|ξ|=1

[ω(sξ)]−p
′
dξ


 ds




1−α



dr




1/p
′

=

=
1

(1− α)1/p
′




|x|∫

0

sn−1




∫

|ξ|=1

[ω(sξ)]−p
′
dξ


 ds




1−α

p
′

=

=
1

(1− α)1/p ′




∫

|y|<|x|

[ω(y)]−p
′
dy




1−α

p
′

.

Therefore by the condition (2), we obtain
∥∥∥∥∥f hω

∥∥∥∥
∥∥∥[h ω]−1

∥∥∥
Lp ′ (|y|<|·|)

∥∥∥∥
Lq(·), µ(|·|>|y|)

∥∥∥∥∥
Lp(Rn)

=
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=
1

(1− α)1/p ′

∥∥∥∥f ω h
∥∥∥[h(| · |)] 1−α

α

∥∥∥
Lq(·), µ(|·|>|y|)

∥∥∥∥
Lp(Rn)

≤

≤ A(α, p, q)

(1− α)1/p ′
‖f ω‖Lp(Rn) =

A(α, p, q)

(1− α)1/p ′
‖f‖Lp, ν(Rn) .

Necessity. Let f ∈ Lp,ν (Rn) , f ≥ 0 and the inequality (1) is valid. We choose
the test function as

f(x) =
p′

1− α
[g(t)]

− α

p
′ − 1

p

[
dν∗

dx

]1−p′

χ{|x|<t}(x)+[g(|x|)]−
α

p
′ − 1

p

[
dν∗

dx

]1−p′

χ{|x|>t}(x),

where t > 0 is a fixed number and

g(t) =
∫

|y|<t

[
dν∗

dx

]1−p′

dy =

t∫

0

sn−1




∫

|η|=1

ω−p′(sη) dη


 ds.

It is obvious that
dg

dt
= tn−1

∫

|η|=1

ω−p′(tη) dη. Passing to polar coordinates from the

right hand side of inequality (1) we get that

‖f‖Lp,ν(Rn) =




∫

|x|<t

(
p′

1− α

)p

[g(t)]−α(p−1)−1 ω−p′(x) dx+

+
∫

|x|>t

[g(|x|)]−α(p−1)−1 ω−p′(x) dx




1/p

=

=




(
p′

1− α

)p

[g(t)]α(1−p) +

∞∫

t

rn−1 [g(r)]−α(p−1)−1




∫

|ξ|=1

ω−p′(rξ) dξ


 dr




1/p

=

=




(
p′

1− α

)p

[g(t)]α(1−p) − 1
α(p− 1)

∞∫

t

d

dr
[g(r)]−α(p−1) dr




1/p

=

=




(
p′

1− α

)p

[g(t)]α(1−p) +
1

α(p− 1)





[g(t)]−α(p−1) −



∫

Rn

ω−p′(y) dy



−α(p−1)








1/p

≤

≤
[(

p′

1− α

)p

+
1

α(p− 1)

]1/p

[g(t)]−
α
p′ =

[(
p′

1− α

)p

+
1

α(p− 1)

]1/p

[h(t)]−1.

After some calculations from the left hand side of inequality (1), we have

‖Hf‖Lq(·), µ(Rn) =

∥∥∥∥∥∥∥

∫

|y|<|·|

f(y) dy

∥∥∥∥∥∥∥
Lq(·), µ(Rn)

≥

∥∥∥∥∥∥∥

∫

|y|<|·|

f(y) dy

∥∥∥∥∥∥∥
Lq(·), µ(|·|>t)

=
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=

∥∥∥∥∥∥∥
p′

1− α

∫

|y|<t

[g(t)]
− α

p
′ − 1

p ω−p′(y) dy +
∫

t<|y|<|·|

[g(|y|)]−
α

p
′ − 1

p ω−p′(y) dy

∥∥∥∥∥∥∥
Lq(·), µ(|·|>t)

=

=

∥∥∥∥∥∥∥
p′

1− α
[g(t)]

1−α
p′ +

|·|∫

t

rn−1 [g(r)]
− α

p
′ − 1

p




∫

|η|=1

ω−p′(rη) dη


 dr

∥∥∥∥∥∥∥
Lq(·), µ(|·|>t)

=

=

∥∥∥∥∥∥∥
p′

1− α
[g(t)]

1−α
p′ +

p′

1− α

|·|∫

t

d

dr
[g(r)]

1−α
p′ dr

∥∥∥∥∥∥∥
Lq(·), µ(|·|>t)

=

∥∥∥∥
p′

1− α
[g(t)]

1−α
p′ +

p′

1− α

(
[g(| · |)]

1−α
p′ − [g(t)]

1−α
p′

)∥∥∥∥
Lq(·), µ(|·|>t)

=

=
p′

1− α

∥∥∥[g(·)]
1−α
p′

∥∥∥
Lq(·), µ(|·|>t)

.

Hence, implies that

p′

1− α

[(
p′

1− α

)p

+
1

α(p− 1)

]−1/p

[g(t)]
α
p′

∥∥∥[g(·)]
1−α
p′

∥∥∥
Lq(·), µ(|·|>t)

≤ C,

i.e.,
p ′A(α, p, q)

(1− α)
[(

p ′
1−α

)p
+ 1

α(p−1)

]1/p
≤ C for all α ∈ (0, 1).

This completes the proof of Theorem 2.
Corollary. Let q(x) = q = const and µ and ν satisfies the condition of Theorem

2. Then condition

` = sup
t>0




∫

|y|>t

dµ(y)




1
q



∫

|y|<t

[
dν∗

dy

]1−p′

dy




1
p ′

< ∞, (3)

is equivalent to the condition (2) and there exists a constant α ∈ (0, 1) such that the
inequalities

` ≤ A(α, p, q) ≤ (1/α)1/q ` (4)

hold.
Proof. Let the condition (2) is valid. It is obvious that

A(α, p, q) = sup
t>0




∫

|y|<t

[
dν∗

dy

]1−p′

dy




α
p ′

∥∥∥∥∥∥∥∥




∫

|y|<|·|

[
dν∗

dy

]1−p′

dy




1−α

p
′

∥∥∥∥∥∥∥∥
Lq, µ(|x|>t)

≥

≥ sup
t>0




∫

|y|<t

[
dν∗

dy

]1−p′

dy




α
p ′

∥∥∥∥∥∥∥∥




∫

|y|<t

[
dν∗

dy

]1−p′

dy




1−α

p
′

∥∥∥∥∥∥∥∥
Lq, µ(|x|>t)

=
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= sup
t>0




∫

|y|<t

[
dν∗

dy

]1−p′

dy




α
p ′

·




∫

|y|<|·|

[
dν∗

dy

]1−p′

dy




1−α

p
′ 


∫

|y|>t

dµ(y)




1
q

=

= sup
t>0




∫

|y|>t

dµ(y)




1
q



∫

|y|<t

[
dν∗

dy

]1−p′

dy




1
p ′

.

Now we prove the right hand side of inequality (4). Let the condition (3) is valid.
We have




∫

|y|<t

[
dν∗

dy

]1−p′

dy




α
p ′

∥∥∥∥∥∥∥∥




∫

|y|<|·|

[
dν∗

dy

]1−p′

dy




1−α

p
′

∥∥∥∥∥∥∥∥
Lq, µ(|x|>t)

≤

≤ `1−α ·




∫

|y|<t

[
dν∗

dy

]1−p′

dy




α
p ′

∥∥∥∥∥∥∥∥




∫

|y|>|·|

dµ(y)




α−1
q

∥∥∥∥∥∥∥∥
Lq, µ(|x|>t)

=

= `1−α ·




∫

|y|<t

[
dν∗

dy

]1−p′

dy




α
p ′




∫

|x|>t




∫

|y|>|x|

dµ(y)




α−1

dµ(x)




1/q

=

= `1−α · 1
α1/q




∫

|y|<t

[
dν∗

dy

]1−p′

dy




α
p ′




∫

|x|>t

dµ(x)




α
q

≤

≤ 1
α1/q

`1−α · `α =
1

α1/q
`.

The Theorem below is proved analogously.
Theorem 3. Let µ and ν nonnegative Borel measure on Rn and ν∗ is absolutely

continuous part of measure ν. Let p(x) = p = const, q ∈ P (Rn) and 1 < p ≤ q(x) ≤
q < ∞. Then the inequality

∥∥∥∥∥∥∥

∫

|y|>|·|

f(y) dy

∥∥∥∥∥∥∥
Lq(·), µ(Rn)

≤ C ‖f‖Lp, ν(Rn) (5)

holds, for every f ≥ 0 if and only if there exists β ∈ (0, 1) such that

B(β, p, q) =

= sup
t>0




∫

|y|<t

[
dν∗

dy

]1−p′

dy




β
p ′

∥∥∥∥∥∥∥∥




∫

|y|<|·|

[
dν∗

dy

]1−p′

dy




1−β

p
′

∥∥∥∥∥∥∥∥
Lq(·), µ(|x|>t)

< ∞. (2)



52
[R.A.Bandaliev]

Transactions of NAS of Azerbaijan

Moreover, if C > 0 is the best possible constant in (5) then

sup
0<β<1

p ′B(β, p, q)

(1− β)
[(

p ′
1−β

)p
+ 1

β(p−1)

]1/p
≤ C ≤

≤
(

p

q
+

q − p

q

) 2
p

inf
0<β<1

B(β, p, q)
(1− β)1/p ′ .

Remark. Note that the Theorem 2 and Theorem 3 at n = 1, p(x) = p = const
and q(x) = q = const, for x ∈ (0,∞) and under condition (3) were proved in [18].
Recently the Theorem 2 in the case of absolutely continuous measures at n = 1,
p(x) = p = const and q(x) = q = const, x ∈ (0,∞) and under condition (2) (more

exactly at α =
s− 1
p− 1

, where s ∈ (1, p)) was proved in [29]. Also, the sufficiency

parts of Theorem 2 and Theorem 3 in the case of absolutely continuous measures
at n = 1, x ∈ (0,∞) were proved in [1]. Further development in the direction of
the boundedness of Hardy operator was given in the paper [5]-[8], [10]-[12] and [16].
Two-weight criterion for Hardy operator at x ∈ [0, 1] was proved in [13]. Also, other
type two-weight criterion for multidimensional Hardy operator was proved in [17].
In the case p(x) = p = const and q(x) = q = const at x ∈ (0,∞) for absolutely
continuous measures in classical Lebesgue spaces the various variants of Theorem
2 and Theorem 3 were proved in [4], [9], [11], [15], [19], [23] and etc. Recently the
Theorem 2 and Theorem 3 in the case of absolutely continuous measures was proved
in [32](see also [31]).
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