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Shirmayil G. BAGIROV

ON ASYMPTOTIC PROPERTIES OF SOLUTIONS
TO NONLINEAR ELLIPTIC EQUATION

Abstract

The solutions of a nonlinear elliptic equation in cylindrical domain, sat-
isfying the Neumann boundary condition is considered. Asymptotics of such
solutions is obtained in the vicinity of infinity.

Let G be a bounded domain in Rn with a Lipschits boundary.
Denote: Πa,b = G× (a, b), Πa,∞ = Πa, Γa,b = ∂G× (a, b), Γa,∞ = Γa.
We’ll investigate the behavior of the solution to the equation

utt + ∆u− |u|σ = 0 in Π0, (1)

satisfying the condition
∂u

∂n
= 0 in Γ0, (2)

as t → +∞, where σ > 1, n is a unit vector of an external normal to ∂G.
Notice that the similar problem with a nonlinearity of the form |u|σ−1 · u was

investigated in the papers [1], [2].
As a solution of problem (1), (2) we understand a generalized soltion. The func-

tion u (x, t) is said to be a generalized solution of equation (1), satisfying condition
(2) if u (x, t) ∈ W 1

2 (Πa,b)∩L∞ (Πa,b) for any 0 < a , b < ∞ and it holds the equality

∫

Πa,b

ut · ϕtdxdt +
n∑

i=1

∫

Πa,b

uxi · ϕxi
dxdt +

∫

Πa,b

|u|σ · ϕdxdt = 0 (3)

for any function ϕ (x, t) ∈ W 1
2 (Πa,b) such that ϕ (x, a) = ϕ (x, b) = 0.

Prove some auxiliary facts.
Lemma 1. For any σ > 1 problem (1), (2) has no negative solutions.
Proof. In definition of the solution, as a test function we take ϕ (x, t) = t ·ψ (t),

where ψ (t) ∈ C∞
0 (R), ψ (t) =

{
1, t ≤ R
0, t ≥ 2R

.

Then we have
∫

Π0,2R

|u|σ t · ψdtdx = −
∫

Π0,2R

ut

(
tψ′ + ψ

)
dtdx =

∫

Π0,2R

u
(
tψ′′ + 2ψ′

)
dtdx+

+
∫

G

u (x, 0) dx ≤




∫

Π0,2R

|u|σ t · ψ (t) dtdx




1
σ

·




∫

Π0,2R

∣∣t · ψ′′ + 2ψ′
∣∣q

tq−1ψq−1 dtdx




1
q

+

+
∫

G

u (x, 0) dx ≤ ε

σ

∫

Π0,2R

|u|σ t · ψ (t) dtdx+
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+
1

εq−1 · q
∫

Π0,2R

∣∣t · ψ′′ + 2ψ′
∣∣q

tq−1ψq−1 dtdx +
∫

G

u (x, 0) dx,

where 1
σ + 1

q = 1.
Hence we get

(
1− ε

σ

)
·

∫

Π0,2R

|u|σ t · ψ (t) dtdx ≤ 1
εq−1 · q×

×
∫

Π0,2R

∣∣tψ′′ + 2ψ′
∣∣q

tq−1ψq−1 dtdx +
∫

G

u (x, 0) dx. (4)

Make the substitution τ = t
R . Take ψ (t) in the form ψ (t) = ψ (τR) = (ϕ0 (τ))µ =

θ (τ) where ϕ0 (τ) =
{

1 as τ ≤ 1,
0 as τ ≥ 2,

ϕ0 (τ) ∈ C∞
0 , µ is a sufficiently great number

in modulus. Estimate the first integral in the right hand side of inequality (4):
∫

Π0,2R

∣∣tψ′′ + 2ψ′
∣∣q

tq−1ψq−1 dtdx =
∫

G

∫

1≤τ≤2

∣∣τ ·R−1θ′′ + 2R−1θ′
∣∣q

Rq−1τ q−1θq−1 Rdτdx =

= R2(1−q) ·mesG

∫

1≤τ≤2

∣∣τ · θ′′ + 2θ′
∣∣q

τ q−1θq−1 dτ = R2(1−q) ·mesG×

×
∫

1≤τ≤2

∣∣∣τ · µ · ϕµ−1
0 · ϕ′′0 + τ · µ (µ− 1) · ϕµ−2

0 · ϕ′20 + 2µ · ϕµ−1
0 ϕ′0

∣∣∣
q

τ q−1ϕ
µ(q−1)
0

dτ =

= R2(1−q) ·A (ϕ0) ,

where
A (ϕ0) = mesG×

×
∫

1≤τ≤2

∣∣∣τ · µ · ϕµ−1
0 · ϕ′′0 + τ · µ (µ− 1) · ϕµ−2

0 · ϕ′20 + 2µ · ϕµ−1
0 ϕ′0

∣∣∣
q

τ q−1ϕ
µ(q−1)
0

dτ.

We can chose µ, ϕ0 so that A (ϕ0) < ∞.
If we take into account all these facts in (4), then:

(
1− ε

σ

)
·

∫

Π0,2R

|u|σ tdtdx ≤
(
1− ε

σ

)
·

∫

Π0,2R

|u|σ t · ψ (t) dtdx ≤

≤ 1
εq−1

·R2(1−q) ·A (ϕ) +
∫

G

u (x, 0) dx. (5)

Since q = σ
σ−1 > 1, if

∫
G

u (x, 0) dx ≤ 0 then as R →∞ from (5) we get

∫

Π0,2R

|u|σ tdtdx = 0.
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Hence we have u ≡ 0 in Π0 if
∫
G

u (x, 0) dx ≤ 0. This proves lemma 1.

We obtain that if u (x, t) is a nontrivial solution of problem (1), (2), then
∫
G

u (x, 0) dx > 0. If as a test function we take ϕ (x, t) =
{

(t− t0) ψ (t) , t ≥ t0
0, t ≤ t0,

,

then for any nontrival solution u (x, t)
∫
G

u (x, t0) dx > 0.

Lemma 2. If u (x, t) is a solution of problem (1), (2), then

lim
t→∞u (x, t) = 0.

Proof. At first prove that any solution of problem (1), (2) is bounded. If u (x, t)
is a solution of equation (1), then u (x, t) is a subsolution of the equation

utt + ∆u− |u|σ−1 u = 0. (6)

Indeed:
utt + ∆u− |u|σ−1 u ≥ utt + ∆u− |u|σ = 0.

Eqution (6) has a strong positive solution ω (t) satisfying the relations ω (t0) = 1,
ω′ (t0) = 0 in the form of a parabola with asymptotes at the points t0± T (where T
is independent of t0). Then for sufficiently large t from the maximum principle, the
subsolution is less than the solution, i.e. u (x, t) ≤ ω (t) in Πt0−T,t0+T . Thus, u (x, t)
is upper bounded, since for large t is less than the value at the top of the parabola.

The function v (x, t) = u (x, t) − C0 · t−
2

σ−1 , where C0 =
[

2(σ+1

(σ−1)2

] 1
σ−1 is also an

upper bounded subsolution of equation (6). Then

vtt + ∆v − a (x, t) v ≥ 0, (7)

where a (x, t) ≥ 0.
Consider the function v − εt. This function also satisfies inequality (7) and is

negative for t = 0. There exists such T0 (ε) that for T ≥ T0 (ε) v − εT ≤ 0. Then
it follows from the maximum principle that v − εt ≤ 0 for t ≥ 0. Tending ε to zero,
we get v ≤ 0.

So,
u (x, t)+ ≤ C0 · t−

2
σ−1 . (8)

Making in (1) the substitution v = −v, consider the equation

vtt + ∆v + |v|σ = 0.

Since |v| = v+ − v−, v = v+ + v− then
∫

G

|v| dx ≤ −2
∫

G

v−dx ≤ 2
∫

G

C0 · t−
2

σ−1 dx = C1 · t−
2

σ−1 .

If σ < 3, then

∞∫

1

∫

G

|v| dxdt ≤ C1

∞∫

1

t−
2

σ−1 dt = −C2 · t−
σ−3
σ−1

∣∣∣∣∣∣

∞

1

= C2.
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If σ > 3, then for large T
∫

ΠT−2,T+2

|u| dxdt ≤ C3,

where C3 is independent of T . Indeed:

∫

ΠT−2,T+2

|v| dxdt ≤ C1

T+2∫

T−2

t−
2

σ−1 dt = C1
σ − 1
σ − 3

(
(T + 2)

σ−3
σ−1 − (T − 2)

σ−3
σ−1

)
=

= 4C1 (T − 2 + ξ · 4)−
2

σ−1 = 4C1
1

(T − 2 + ξ · 4)
2

σ−1

≤ 4C1,

if T > 3. There 0 < ξ < 1.
For σ = 3, similarly we get

∫

ΠT−2,T+2

|v| dxdt ≤ C1

T+2∫

T−2

t−1dt = C1 ln T

∣∣∣∣
T + 2
T − 2

=

= C1
4

(T − 2 + 4ξ)
2

σ−1

≤ 4C1,

if T > 3.
From the theory of linear differential equations we know that [see3]

max |u|
ΠT−1,T+1

≤ C

∫

ΠT−2,T+2

|u| dxdt ≤ C3 as T > 3.

So, everywhere |u| < C.
From (5) we get ∫

Π1,∞

|u|σ dxdt ≤ C4. (9)

Then, for each Tε, there exists such a point (xε, tε) ∈ ΠTε−1,Tε+1 and such C that

|u (xε, tε)| ≤ C

2mesG

∫

ΠTε−1,Tε+1

|u| dxdt → 0 (10)

as Tε → +∞.
This is easily proved by contradiction. Using this, prove that u (x, t) → 0 as

t →∞.
If u (x, t) is a solution of equation (1), then v = −u is a solution of equation

vtt + ∆v + |v|σ = 0. (11)

Write it as follows

vtt + ∆v + |v|σ−1 signv · v = 0.



Transactions of NAS of Azerbaijan
[On asymptotic properties of solutions to...]

39

Denote q (x, t) = |v|σ−1 signv. Since |v| = |u| < C, then |q (x, t)| < C1. Consider
the function

W (x, t) = v (x, t) + C0t
− 2

σ−1 . (12)

If follows from (8) that W (x, t) ≥ 0.
W (x, t) satisfies the equation

Wtt + ∆W + q (x, t) W = −C0
2 (σ + 1)
(σ − 1)2

t−
2σ

σ−1 − q · C0 · t−
2

σ−1 .

Then by the Harnack inequality [see 4] we have:

max
ΠT−1,T+1

W (x, t) ≤ C1

∫

ΠT−1,T+1

W (x, t) + C2 · ‖f‖Lq/2(ΠT−2,T+2)
≤

≤ C1 · inf
ΠT−1,T+1

W (x, t) + C2×

×




∫

ΠT−2,T+2

t−
q

σ−1

[
−C0

2 (σ + 1)
(σ − 1)

t−2 − q · C0

]q/2

dxdt




2
q

≤

≤ C1 · inf
ΠT−1,T+1

W (x, t) + C2 · C3




∫

ΠT−2,T+2

t−
q

σ−1 dt




2
q

→ 0 as T →∞,

by (10) and (12).
Hence it follows that u = −v = C0 · t−

2
σ−1 −W → 0 as t → +∞. This proves

lemma 2.
Now, prove that u (x, t) = O

(
t−

2
σ−1

)
. If u (x, t) is a non-negative solution, this

is obvious.
Make the substitution v = −u.
Then

vtt + ∆v + |v|σ = 0. (13)

Since u ≤ C ·t− 2
σ−1 , then v ≥ −C ·t− 2

σ−1 . Denote h (t) = −C ·t− 2
σ−1 , z = v−h (t).

Then, z ≥ 0 and
ztt + ∆v + |z + h|σ = htt.

Write it as follows

ztt + ∆z +
|h + z|σ − |h|σ

z
z = C1 · t−

2σ
σ−1 + C2 · t−

2σ
σ−1 = O

(
t−

2σ
σ−1

)
.

Hence,
ztt + ∆z + B (x, t) z = C · t− 2σ

σ−1 , (14)

where B (x) = C · t−2 + o(z)
z tends to zero as z → 0.

Since z ≥ 0, applying the Harnack inequality to (14), we get:

max
ΠT−1,T+1

|z (x, t)| ≤ C1 min
ΠT−1,T+1

|z (x, t)|+ C2 · ‖f‖Lq/2(ΠT−2,T+2)
, q > n + 1.
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Let at first T = tε. Then by the Harnack inequality we have:

max
ΠT−1,T+1

|z (x, t)| ≤ C1t
− 2

σ−1
ε + C2 · t−

2
σ−1 .

t
− 2

σ−1
ε = C3 (tε + 1 + tε − 1)−

2
σ−1 = C3 (tε + 1)−

2
σ−1

(
1 +

tε − 1
tε + 1

)− 2
σ−1

=

= C3 (tε + 1)−
2

σ−1

(
1 +

1− 1
tε

1 + 1
tε

)− 2
σ−1

≤ C4 (tε + 1)−
2

σ−1 ≤

≤ C4 (T + 1)−
2

σ−1 ≤ C4t
− 2

σ−1 ,

if T − 1 ≤ t ≤ T + 1. So,

|z (x, t)| ≤ C4 · t−
2

σ−1 , if T − 1 ≤ t ≤ T + 1.

Having taken successively T = tε + 1, tε + 2 and etc., we get

|z (x, t)| ≤ C · t− 2
σ−1 , for t ≥ T0.

Then
|v| = |z + h| ≤ |z|+ |h| ≤ C · t− 2

σ−1 ,

|u| = |v| = O
(
t−

2
σ−1

)
.

|u|σ−1 = O
(
t−2

)
.

The following theorem is the basic result.
Theorem.
I. For any σ > 1 there is no solution of equation (1) satisfying condition (2),

negative in Πa, a > 0.
II. Let u (x, t) > 0 be a solution of equation (1) satisfying condition (2). Then,

u (x, t) = O
(
t−

2
σ−1

)
.

III. Let u (x, t) be a solution of equation (1) satisfying condition (2) that changes
sign at each domain Πa, a > 0. Then, u (x, t) = O

(
e−ht

)
, where h is independent

of u (x, t).
Proof.
Above we proved I and II. Prove III. Write equation (1) in the form

utt + ∆u− q (x, t) u = 0, (15)

where q (x, t) = |u|σ−1 · signu.
Since lim

t→∞ |u (x, t)| = 0, there exist such t0 that for any t ≥ t0, |u (x, t)|σ−1 < ε.

Take θ (t) ∈ C∞ such that θ (t) = 1 for t > t0 + 1, θ (t) = 0 for t ≤ t0 and
0 ≤ θ (t) ≤ 1.

Assume
v (x, t) = θ (t) · u (x, t) .
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The function v (x, t) satisfies the equation

vtt + ∆v − q (x, t) v = F (x, t) (16)

and boundary conditions
∂v

∂n
= 0 on Γ, (17)

where

q (x, t) =
{ |u|σ−1 sign u for t ≥ t0 + 1,

0 for t ≤ t0,

F (x, t) = (θt · u)t + θt · ut.

Obviously, the function F (x, t) has a compact support.
Show that |v (x, t)| ≤ C · exp {−ht}, C = const. It follows from the theory of

linear equations [see 4.5] that problem (16), (17) has the solution v1 (x, t) such that

v1 (x, t) =
{

0
(
e−ht

)
as t → +∞

at + b + 0
(
eht

)
as t → −∞.

(18)

The function ω (x, t) = v1 (x, t)− v (x, t) satisfies the equation

ωtt + ∆ω − q (x, t) ω = 0 (19)

and boundary condition
∂ω

∂n
= 0 on Γ,

ω (x, t) → 0 as t → +∞ and ω = at + b + O
(
eht

)
as t → −∞.

It we prove ω ≡ 0, then this will prove theorem. Show a = 0, b = 0. Assume
a > 0. So, ω (x, t) < 0 for t < −T , where T1 is a sufficiently large positive number.
Prove that ω < 0 for t > −T1. Since q (x, t) = |u|σ−1 sign u for t ≥ t0 + 1, then
q (x, t) = O

(
t−2

)
for t → +∞.

Denote k = max
t=T

ω (x, t) and W (x, t) = (ω − k)+, where T is a sufficiently large

positive number. Obviously, W (x, t) = 0 for t = T1 and for t = T .
It is obvious that

W (x, t) ∈ W 1
2 (QT1,T ) .

Then, from the definition of the solution we have:
∫

A+
k

|ωt|2 dxdt +
∫

A+
k

|Oω|2 dxdt = −
∫

A+
k

q (x, t) ω (ω − k)+ dxdt, (20)

where A+
k = {(x, t) ,W > 0}.

Estimate the right hand side using the inequality [see 3],

‖u‖ 2n
n−2

≤ C ‖Ou‖2,Ω , (21)

where C is a constant independent of the dimension of n. Then,

−
∫

A+
k

q (x, t)ω (ω − k)+ dxdt ≤
∫

A+
k

|q (x, t)| (ω − k + k) (ω − k) dxdt =
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=
∫

A+
k

|q (x, t)| · |ω − k|2 dxdt + k

∫

A+
k

|q (x, t)| · |ω − k| dxdt ≤

≤
∫

A+
k

t>t0

|q (x, t)| · |ω − k|2 dxdt + k

∫

A+
k

t>t0

|q (x, t)| · |ω − k| dxdt. (22)

At first we estimate the first summand

F1 =
∫

A+
k

t>t0

|q (x, t)| · |ω − k|2 dxdt ≤




∫

A+
k

t>t0

|q (x, t)| 2(n+1)
n−1 dxdt




n−1
n+1

×

×




∫

A+
k

t>t0

|q (x, t)|n+1
2 dxdt




2
n+1

≤




∫

A+
k ∩QT1,T2

|ω − k| 2(n+1)
n−1 dxdt




n−1
n+1

×

×



∫

t>t0

|q (x, t)|n+1
2 dxdt




2
n+1

≤







∫

A+
k ∩QT1,T2

|ω − k| 2(n+1)
n−1 dxdt




n−2
2(n+1)




2

×

×




∫

A+
k ∩{t>t0}

|q (x, t)|n+1
2 dxdt




2
n+1

≤ C ·




∫

A+
k ∩QT1,T2

|∇ (ω − k)|2 dxdt


 · I2, (23)

where I2 =


 ∫

A+
k ∩{t>t0}

|q (x, t)|n+1
2 dxdt




2
n+1

.

Now, estimate I2.

I2 =




∫

A+
k ∩{t>t0}

|q (x, t)|n+1
2 dxdt




2
n+1

≤ C1 ·




∫

A+
k ∩{t>t0}

t−(n+1)dxdt




2
n+1

≤

≤ C1 ·




T∫

A+
k ∩{t>t0}

t−(n+1)dxdt




2
n+1

≤ C2 ·
(

t−n

−n

∣∣∣∣
T

t0

) 2
n+1

=

= C2 ·
(

T−n

−n
+

t−n
0

n

) 2
n+1

= C3 ·
(
t−n
0 − T−n

) 2
n+1
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take t0 so that |u (x, t)| < ε and C3 · t
− 2n

n+1

0 < 1
C·4 . Then, we get

I2 ≤ 1
C · 4 .

Then from (23) we get

F1 ≤ 1
4
·

∫

A+
k ∩QT1,T2

|∇ (ω − k)|2 dxdt. (24)

Estimate the second summand in the right hand side of (22)

F2 = k ·
∫

A+
k

|q (x, t)| · |ω − k| dxdt ≤ k ·




∫

A+
k

|q (x, t)|p1 dxdt




1
p1

×

×




∫

A+
k

|ω − k| 2(n+1)
n−1 dxdt




n−1
2(n+1)

≤ k · C1




∫

t>t0

A+
k

t−2p1dt




1
p1

×

×




∫

A+
k

|∇ (ω − k)|2 dxdt




1
2

≤ 1
4

∫

A+
k

|∇ (ω−k)|2 dxdt+k2 · C2




∫

t>t0

A+
k

t−2p1dt




2
p1

, (25)

here 1
p1

+ n−1
2(n+1) = 1.

Hence p1 = 1 + n−1
n+3 . Combining (24) and (25), we get

∫

A+
k

|ωt|2 dxdt +
∫

A+
k

|∇ω|2 dxdt ≤ 1
2

∫

A+
k

|ωt|2 dxdt+

+
1
2

∫

A+
k

|∇ω|2 dxdt + k2 · C2




T∫

t0

t−2p1dt




2
p1

.

As a result, for n > 1 we have

1
2
·
∫

A+
k

|ωt|2 dxdt +
1
2
·
∫

A+
k

|∇ω|2 dxdt ≤ k2 · C2




T∫

t0

t−2p1dt




2
p1

. (26)

From k (T ) → 0 as T → 0 and from the convergence of the integral
T∫
t0

t−2p1dt we

obtain mesA+
k = 0.
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So, ω − k ≤ 0. Having taken T sufficiently large, we get that k tends to zero.
Hence, it follows that ω < 0.

We can similarly prove that if a < 0 then ω (x, t) > 0.
Show that a = b = 0. Assume a > 0. So, ω (x, t) < 0 for t > t1. The function

ω1 = −tβ will be a supersolution of equation (9) for sufficiently large in modulus
negative β.

Indeed:

L = ω1tt + ∆w1 − q (x, t) ω1 = −β (β − 1) tβ−2 + q (x, t) tβ =

= −tβ−2
(
β (β − 1)− qt−2

)
< 0.

Let t2 be sufficiently great. Take A such small positive number that −Atβ2 ≥
ω (x, t2).

Then, from W = ω (x, t2) + Atβ2 ≤ 0, ω (x, t) + Atβ → 0 as t → +∞ and

LW ≥ 0.

As above, we can prove
ω (x, t) + Atβ≤0 as t ≥ t2.

Consider a points set, where v = u < 0, for them we have

−A · tβ ≥ ω (x, t) ≥ v1 − C1e
−ht.

This contradiction shows that a may not be positive. Similarly, we can show
that a may not be negative and that b = 0. So, ω → ±∞ as ω ≡ 0 and consequently
ω ≡ 0.
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