Shirmayil G. BAGIROV

ON ASYMPTOTIC PROPERTIES OF SOLUTIONS TO NONLINEAR ELLIPTIC EQUATION

Abstract

The solutions of a nonlinear elliptic equation in cylindrical domain, satisfying the Neumann boundary condition is considered. Asymptotics of such solutions is obtained in the vicinity of infinity.

Let G be a bounded domain in \mathbb{R}^n with a Lipschits boundary.

Denote: $\Pi_{a,b} = G \times (a,b)$, $\Pi_{a,\infty} = \Pi_a$, $\Gamma_{a,b} = \partial G \times (a,b)$, $\Gamma_{a,\infty} = \Gamma_a$.

We'll investigate the behavior of the solution to the equation

$$u_{tt} + \Delta u - |u|^{\sigma} = 0 \text{ in } \Pi_0, \tag{1}$$

satisfying the condition

$$\frac{\partial u}{\partial n} = 0 \text{ in } \Gamma_0, \tag{2}$$

as $t \to +\infty$, where $\sigma > 1$, n is a unit vector of an external normal to ∂G .

Notice that the similar problem with a nonlinearity of the form $|u|^{\sigma-1} \cdot u$ was investigated in the papers [1], [2].

As a solution of problem (1), (2) we understand a generalized solution. The function u(x,t) is said to be a generalized solution of equation (1), satisfying condition (2) if $u(x,t) \in W_2^1(\Pi_{a,b}) \cap L_{\infty}(\Pi_{a,b})$ for any 0 < a, $b < \infty$ and it holds the equality

$$\int_{\Pi_{a,b}} u_t \cdot \varphi_t dx dt + \sum_{i=1}^n \int_{\Pi_{a,b}} u_{x_i} \cdot \varphi_{x_i} dx dt + \int_{\Pi_{a,b}} |u|^{\sigma} \cdot \varphi dx dt = 0$$
 (3)

for any function $\varphi(x,t) \in W_2^1(\Pi_{a,b})$ such that $\varphi(x,a) = \varphi(x,b) = 0$.

Prove some auxiliary facts.

Lemma 1. For any $\sigma > 1$ problem (1), (2) has no negative solutions.

Proof. In definition of the solution, as a test function we take $\varphi(x,t) = t \cdot \psi(t)$,

where
$$\psi(t) \in C_0^{\infty}(R)$$
, $\psi(t) = \begin{cases} 1, t \leq R \\ 0, t \geq 2R \end{cases}$.

Then we have

$$\int_{\Pi_{0,2R}} |u|^{\sigma} t \cdot \psi dt dx = -\int_{\Pi_{0,2R}} u_t (t\psi' + \psi) dt dx = \int_{\Pi_{0,2R}} u (t\psi'' + 2\psi') dt dx +$$

$$+ \int_{G} u\left(x,0\right) dx \leq \left(\int_{\Pi_{0,2R}} |u|^{\sigma} t \cdot \psi\left(t\right) dt dx\right)^{\frac{1}{\sigma}} \cdot \left(\int_{\Pi_{0,2R}} \frac{\left|t \cdot \psi'' + 2\psi'\right|^{q}}{t^{q-1}\psi^{q-1}} dt dx\right)^{\frac{1}{q}} + \int_{G} u\left(x,0\right) dx \leq \frac{\varepsilon}{\sigma} \int_{\Pi_{0,2R}} |u|^{\sigma} t \cdot \psi\left(t\right) dt dx +$$

Sh.G.Bagirov

$$+\frac{1}{\varepsilon^{q-1}\cdot q}\int_{\Pi_{0,2R}}\frac{\left|t\cdot\psi''+2\psi'\right|^{q}}{t^{q-1}\psi^{q-1}}dtdx+\int_{G}u\left(x,0\right)dx,$$

where $\frac{1}{\sigma} + \frac{1}{q} = 1$. Hence we get

$$\left(1 - \frac{\varepsilon}{\sigma}\right) \cdot \int_{\Pi_{0,2R}} |u|^{\sigma} t \cdot \psi(t) dt dx \leq \frac{1}{\varepsilon^{q-1} \cdot q} \times
\times \int_{\Pi_{0,2R}} \frac{\left|t\psi'' + 2\psi'\right|^{q}}{t^{q-1}\psi^{q-1}} dt dx + \int_{G} u(x,0) dx.$$
(4)

Make the substitution $\tau = \frac{t}{R}$. Take $\psi(t)$ in the form $\psi(t) = \psi(\tau R) = (\varphi_0(\tau))^{\mu} = \theta(\tau)$ where $\varphi_0(\tau) = \begin{cases} 1 \text{ as } \tau \leq 1, \\ 0 \text{ as } \tau \geq 2, \end{cases}$ $\varphi_0(\tau) \in C_0^{\infty}$, μ is a sufficiently great number in modulus. Estimate the first integral in the right hand side of inequality (4):

$$\begin{split} \int\limits_{\Pi_{0,2R}} \frac{\left|t\psi''+2\psi'\right|^q}{t^{q-1}\psi^{q-1}} dt dx &= \int\limits_{G} \int\limits_{1 \leq \tau \leq 2} \frac{\left|\tau \cdot R^{-1}\theta''+2R^{-1}\theta'\right|^q}{R^{q-1}\tau^{q-1}\theta^{q-1}} R d\tau dx = \\ &= R^{2(1-q)} \cdot mes G \int\limits_{1 \leq \tau \leq 2} \frac{\left|\tau \cdot \theta''+2\theta'\right|^q}{\tau^{q-1}\theta^{q-1}} d\tau = R^{2(1-q)} \cdot mes G \times \\ &\times \int\limits_{1 \leq \tau \leq 2} \frac{\left|\tau \cdot \mu \cdot \varphi_0^{\mu-1} \cdot \varphi_0''+\tau \cdot \mu \left(\mu-1\right) \cdot \varphi_0^{\mu-2} \cdot \varphi_0'^2 + 2\mu \cdot \varphi_0^{\mu-1}\varphi_0'\right|^q}{\tau^{q-1}\varphi_0^{\mu(q-1)}} d\tau = \\ &= R^{2(1-q)} \cdot A \left(\varphi_0\right), \end{split}$$

where

$$\begin{split} A\left(\varphi_{0}\right) &= mesG \times \\ &\times \int_{1 \leq \tau \leq 2} \frac{\left|\tau \cdot \mu \cdot \varphi_{0}^{\mu-1} \cdot \varphi_{0}^{\prime\prime} + \tau \cdot \mu \left(\mu-1\right) \cdot \varphi_{0}^{\mu-2} \cdot \varphi_{0}^{\prime2} + 2\mu \cdot \varphi_{0}^{\mu-1} \varphi_{0}^{\prime}\right|^{q}}{\tau^{q-1} \varphi_{0}^{\mu(q-1)}} d\tau. \end{split}$$

We can chose μ , φ_0 so that $A(\varphi_0) < \infty$.

If we take into account all these facts in (4), then:

$$\left(1 - \frac{\varepsilon}{\sigma}\right) \cdot \int_{\Pi_{0,2R}} |u|^{\sigma} t dt dx \leq \left(1 - \frac{\varepsilon}{\sigma}\right) \cdot \int_{\Pi_{0,2R}} |u|^{\sigma} t \cdot \psi(t) dt dx \leq
\leq \frac{1}{\varepsilon^{q-1}} \cdot R^{2(1-q)} \cdot A(\varphi) + \int_{G} u(x,0) dx.$$
(5)

Since $q = \frac{\sigma}{\sigma - 1} > 1$, if $\int_G u(x, 0) dx \le 0$ then as $R \to \infty$ from (5) we get

$$\int_{\Pi_{0,2R}} |u|^{\sigma} t dt dx = 0.$$

Transactions of NAS of Azerbaijan $\underline{\hspace{1cm}}$ [On asymptotic properties of solutions to...]

Hence we have $u \equiv 0$ in Π_0 if $\int u(x,0) dx \leq 0$. This proves lemma 1.

We obtain that if $u\left(x,t\right)$ is a nontrivial solution of problem (1), (2), then $\int_{C}u\left(x,0\right)dx>0. \text{ If as a test function we take }\varphi\left(x,t\right)=\left\{\begin{array}{c} \left(t-t_{0}\right)\psi\left(t\right),t\geq t_{0}\\ 0,\qquad t\leq t_{0},\end{array}\right.,$ then for any nontrival solution $u(x,t) \int_{C} u(x,t_0) dx > 0$.

Lemma 2. If u(x,t) is a solution of problem (1), (2), then

$$\lim_{t \to \infty} u(x, t) = 0.$$

Proof. At first prove that any solution of problem (1), (2) is bounded. If u(x,t)is a solution of equation (1), then u(x,t) is a subsolution of the equation

$$u_{tt} + \Delta u - |u|^{\sigma - 1} u = 0. (6)$$

Indeed:

$$u_{tt} + \Delta u - |u|^{\sigma - 1} u \ge u_{tt} + \Delta u - |u|^{\sigma} = 0.$$

Equation (6) has a strong positive solution $\omega(t)$ satisfying the relations $\omega(t_0) = 1$, $\omega'(t_0) = 0$ in the form of a parabola with asymptotes at the points $t_0 \pm T$ (where T is independent of t_0). Then for sufficiently large t from the maximum principle, the subsolution is less than the solution, i.e. $u(x,t) \leq \omega(t)$ in Π_{t_0-T,t_0+T} . Thus, u(x,t)is upper bounded, since for large t is less than the value at the top of the parabola.

The function $v(x,t) = u(x,t) - C_0 \cdot t^{-\frac{2}{\sigma-1}}$, where $C_0 = \left\lceil \frac{2(\sigma+1)}{(\sigma-1)^2} \right\rceil^{\frac{1}{\sigma-1}}$ is also an upper bounded subsolution of equation (6). Then

$$v_{tt} + \Delta v - a(x,t) v \ge 0, \tag{7}$$

where $a(x,t) \geq 0$.

Consider the function $v - \varepsilon t$. This function also satisfies inequality (7) and is negative for t=0. There exists such $T_0(\varepsilon)$ that for $T\geq T_0(\varepsilon)$ $v-\varepsilon T\leq 0$. Then it follows from the maximum principle that $v - \varepsilon t \leq 0$ for $t \geq 0$. Tending ε to zero, we get $v \leq 0$.

So,

$$u(x,t)^{+} \le C_0 \cdot t^{-\frac{2}{\sigma-1}}.$$
 (8)

Making in (1) the substitution v = -v, consider the equation

$$v_{tt} + \Delta v + |v|^{\sigma} = 0.$$

Since $|v| = v^+ - v^-$, $v = v^+ + v^-$ then

$$\int_{G} |v| \, dx \le -2 \int_{G} v^{-} dx \le 2 \int_{G} C_{0} \cdot t^{-\frac{2}{\sigma-1}} dx = C_{1} \cdot t^{-\frac{2}{\sigma-1}}.$$

If $\sigma < 3$, then

$$\int_{1}^{\infty} \int_{G} |v| \, dx dt \le C_1 \int_{1}^{\infty} t^{-\frac{2}{\sigma - 1}} dt = -C_2 \cdot t^{-\frac{\sigma - 3}{\sigma - 1}} \bigg|_{1}^{\infty} = C_2.$$

[Sh.G.Bagirov]

If $\sigma > 3$, then for large T

$$\int_{\Pi_{T-2,T+2}} |u| \, dx dt \le C_3,$$

where C_3 is independent of T. Indeed:

$$\int_{\Pi_{T-2,T+2}} |v| \, dx dt \le C_1 \int_{T-2}^{T+2} t^{-\frac{2}{\sigma-1}} dt = C_1 \frac{\sigma-1}{\sigma-3} \left((T+2)^{\frac{\sigma-3}{\sigma-1}} - (T-2)^{\frac{\sigma-3}{\sigma-1}} \right) =$$

$$= 4C_1 \left(T-2+\xi \cdot 4 \right)^{-\frac{2}{\sigma-1}} = 4C_1 \frac{1}{(T-2+\xi \cdot 4)^{\frac{2}{\sigma-1}}} \le 4C_1,$$

if T > 3. There $0 < \xi < 1$.

For $\sigma = 3$, similarly we get

$$\int_{\Pi_{T-2,T+2}} |v| \, dx dt \le C_1 \int_{T-2}^{T+2} t^{-1} dt = C_1 \ln T \, \left| \begin{array}{c} T+2 \\ T-2 \end{array} \right| =$$

$$= C_1 \frac{4}{(T-2+4\xi)^{\frac{2}{\sigma-1}}} \le 4C_1,$$

if T > 3.

From the theory of linear differential equations we know that [see3]

$$\max_{\Pi_{T-1,T+1}} |u| \le C \int_{\Pi_{T-2,T+2}} |u| \, dx dt \le C_3 \text{ as } T > 3.$$

So, everywhere |u| < C.

From (5) we get

$$\int_{\Pi_{1,\infty}} |u|^{\sigma} dx dt \le C_4. \tag{9}$$

Then, for each T_{ε} , there exists such a point $(x_{\varepsilon}, t_{\varepsilon}) \in \Pi_{T_{\varepsilon}-1, T_{\varepsilon}+1}$ and such C that

$$|u\left(x_{\varepsilon},t_{\varepsilon}\right)| \leq \frac{C}{2mesG} \int_{\Pi_{T_{\varepsilon}-1,T_{\varepsilon}+1}} |u| \, dxdt \to 0 \tag{10}$$

as $T_{\varepsilon} \to +\infty$.

This is easily proved by contradiction. Using this, prove that $u\left(x,t\right)\to0$ as $t\to\infty$.

If u(x,t) is a solution of equation (1), then v=-u is a solution of equation

$$v_{tt} + \Delta v + |v|^{\sigma} = 0. \tag{11}$$

Write it as follows

$$v_{tt} + \Delta v + |v|^{\sigma - 1} \operatorname{sign} v \cdot v = 0.$$

Transactions of NAS of Azerbaijan $\overline{}$ [On asymptotic properties of solutions to...]

Denote $q(x,t) = |v|^{\sigma-1} \operatorname{sign} v$. Since |v| = |u| < C, then $|q(x,t)| < C_1$. Consider the function

$$W(x,t) = v(x,t) + C_0 t^{-\frac{2}{\sigma-1}}. (12)$$

If follows from (8) that $W(x,t) \geq 0$.

W(x,t) satisfies the equation

$$W_{tt} + \Delta W + q(x,t) W = -C_0 \frac{2(\sigma+1)}{(\sigma-1)^2} t^{-\frac{2\sigma}{\sigma-1}} - q \cdot C_0 \cdot t^{-\frac{2}{\sigma-1}}.$$

Then by the Harnack inequality [see 4] we have:

$$\max_{\Pi_{T-1,T+1}} W(x,t) \leq C_{1} \int_{\Pi_{T-1,T+1}} W(x,t) + C_{2} \cdot ||f||_{L_{q/2}(\Pi_{T-2,T+2})} \leq
\leq C_{1} \cdot \inf_{\Pi_{T-1,T+1}} W(x,t) + C_{2} \times
\times \left(\int_{\Pi_{T-2,T+2}} t^{-\frac{q}{\sigma-1}} \left[-C_{0} \frac{2(\sigma+1)}{(\sigma-1)} t^{-2} - q \cdot C_{0} \right]^{q/2} dx dt \right)^{\frac{2}{q}} \leq
\leq C_{1} \cdot \inf_{\Pi_{T-1,T+1}} W(x,t) + C_{2} \cdot C_{3} \left(\int_{\Pi_{T-2,T+2}} t^{-\frac{q}{\sigma-1}} dt \right)^{\frac{2}{q}} \to 0 \text{ as } T \to \infty,$$

by (10) and (12).

Hence it follows that $u = -v = C_0 \cdot t^{-\frac{2}{\sigma-1}} - W \to 0$ as $t \to +\infty$. This proves

Now, prove that $u(x,t) = O\left(t^{-\frac{2}{\sigma-1}}\right)$. If u(x,t) is a non-negative solution, this is obvious.

Make the substitution v = -u.

Then

$$v_{tt} + \Delta v + |v|^{\sigma} = 0. (13)$$

Since $u \leq C \cdot t^{-\frac{2}{\sigma-1}}$, then $v \geq -C \cdot t^{-\frac{2}{\sigma-1}}$. Denote $h\left(t\right) = -C \cdot t^{-\frac{2}{\sigma-1}}$, $z = v - h\left(t\right)$. Then, $z \geq 0$ and

$$z_{tt} + \Delta v + |z + h|^{\sigma} = h_{tt}.$$

Write it as follows

$$z_{tt} + \Delta z + \frac{|h + z|^{\sigma} - |h|^{\sigma}}{z} z = C_1 \cdot t^{-\frac{2\sigma}{\sigma - 1}} + C_2 \cdot t^{-\frac{2\sigma}{\sigma - 1}} = O\left(t^{-\frac{2\sigma}{\sigma - 1}}\right).$$

Hence,

$$z_{tt} + \Delta z + B(x,t) z = C \cdot t^{-\frac{2\sigma}{\sigma-1}}, \tag{14}$$

where $B(x) = C \cdot t^{-2} + \frac{o(z)}{z}$ tends to zero as $z \to 0$.

Since $z \ge 0$, applying the Harnack inequality to (14), we get:

$$\max_{\Pi_{T-1,T+1}} |z\left(x,t\right)| \leq C_1 \min_{\Pi_{T-1,T+1}} |z\left(x,t\right)| + C_2 \cdot \|f\|_{L_{q/2}(\Pi_{T-2,T+2})} \,, \ q > n+1.$$

Sh.G.Bagirov

Let at first $T = t_{\varepsilon}$. Then by the Harnack inequality we have:

$$\max_{\Pi_{T-1,T+1}}\left|z\left(x,t\right)\right| \leq C_1 t_{\varepsilon}^{-\frac{2}{\sigma-1}} + C_2 \cdot t^{-\frac{2}{\sigma-1}}.$$

$$t_{\varepsilon}^{-\frac{2}{\sigma-1}} = C_3 (t_{\varepsilon} + 1 + t_{\varepsilon} - 1)^{-\frac{2}{\sigma-1}} = C_3 (t_{\varepsilon} + 1)^{-\frac{2}{\sigma-1}} \left(1 + \frac{t_{\varepsilon} - 1}{t_{\varepsilon} + 1} \right)^{-\frac{2}{\sigma-1}} =$$

$$= C_3 (t_{\varepsilon} + 1)^{-\frac{2}{\sigma-1}} \left(1 + \frac{1 - \frac{1}{t_{\varepsilon}}}{1 + \frac{1}{t_{\varepsilon}}} \right)^{-\frac{2}{\sigma-1}} \le C_4 (t_{\varepsilon} + 1)^{-\frac{2}{\sigma-1}} \le$$

$$\le C_4 (T + 1)^{-\frac{2}{\sigma-1}} \le C_4 t^{-\frac{2}{\sigma-1}},$$

if $T - 1 \le t \le T + 1$. So,

$$|z(x,t)| \le C_4 \cdot t^{-\frac{2}{\sigma-1}}$$
, if $T-1 \le t \le T+1$.

Having taken successively $T = t_{\varepsilon} + 1, t_{\varepsilon} + 2$ and etc., we get

$$|z(x,t)| \le C \cdot t^{-\frac{2}{\sigma-1}}$$
, for $t \ge T_0$.

Then

$$|v| = |z + h| \le |z| + |h| \le C \cdot t^{-\frac{2}{\sigma - 1}},$$

 $|u| = |v| = O\left(t^{-\frac{2}{\sigma - 1}}\right).$
 $|u|^{\sigma - 1} = O\left(t^{-2}\right).$

The following theorem is the basic result.

Theorem.

- **I.** For any $\sigma > 1$ there is no solution of equation (1) satisfying condition (2), negative in Π_a , a > 0.
- **II.** Let u(x,t) > 0 be a solution of equation (1) satisfying condition (2). Then, $u(x,t) = O\left(t^{-\frac{2}{\sigma-1}}\right)$.
- **III.** Let u(x,t) be a solution of equation (1) satisfying condition (2) that changes sign at each domain Π_a , a > 0. Then, $u(x,t) = O(e^{-ht})$, where h is independent of u(x,t).

Proof.

Above we proved I and II. Prove III. Write equation (1) in the form

$$u_{tt} + \Delta u - q(x,t) u = 0, \tag{15}$$

where $q(x,t) = |u|^{\sigma-1} \cdot signu$.

Since $\lim_{t\to\infty} |u(x,t)| = 0$, there exist such t_0 that for any $t \ge t_0$, $|u(x,t)|^{\sigma-1} < \varepsilon$.

Take $\theta(t) \in C^{\infty}$ such that $\theta(t) = 1$ for $t > t_0 + 1$, $\theta(t) = 0$ for $t \leq t_0$ and $0 \leq \theta(t) \leq 1$.

Assume

$$v(x,t) = \theta(t) \cdot u(x,t).$$

The function v(x,t) satisfies the equation

$$v_{tt} + \Delta v - q(x,t) v = F(x,t)$$

$$\tag{16}$$

and boundary conditions

$$\frac{\partial v}{\partial n} = 0 \text{ on } \Gamma, \tag{17}$$

where

$$q(x,t) = \begin{cases} |u|^{\sigma-1} sign \ u & \text{for } t \ge t_0 + 1, \\ 0 & \text{for } t \le t_0, \end{cases}$$
$$F(x,t) = (\theta_t \cdot u)_* + \theta_t \cdot u_t.$$

Obviously, the function F(x,t) has a compact support.

Show that $|v(x,t)| \leq C \cdot \exp\{-ht\}$, C = const. It follows from the theory of linear equations [see 4.5] that problem (16), (17) has the solution $v_1(x,t)$ such that

$$v_1(x,t) = \begin{cases} 0(e^{-ht}) \text{ as } t \to +\infty\\ at + b + 0(e^{ht}) \text{ as } t \to -\infty. \end{cases}$$
 (18)

The function $\omega\left(x,t\right)=v_{1}\left(x,t\right)-v\left(x,t\right)$ satisfies the equation

$$\omega_{tt} + \Delta\omega - q(x,t)\,\omega = 0 \tag{19}$$

and boundary condition

$$\frac{\partial \omega}{\partial n} = 0 \quad \text{on } \Gamma,$$

 $\omega(x,t) \to 0 \text{ as } t \to +\infty \text{ and } \omega = at + b + O\left(e^{ht}\right) \text{ as } t \to -\infty.$

It we prove $\omega \equiv 0$, then this will prove theorem. Show a=0, b=0. Assume a>0. So, $\omega\left(x,t\right)<0$ for t<-T, where T_1 is a sufficiently large positive number. Prove that $\omega<0$ for $t>-T_1$. Since $q\left(x,t\right)=\left|u\right|^{\sigma-1}sign\ u$ for $t\geq t_0+1$, then $q\left(x,t\right)=O\left(t^{-2}\right)$ for $t\to+\infty$.

Denote $k = \max_{t=T} \omega(x,t)$ and $W(x,t) = (\omega - k)^+$, where T is a sufficiently large positive number. Obviously, W(x,t) = 0 for $t = T_1$ and for t = T.

It is obvious that

$$W\left(x,t\right)\in W_{2}^{1}\left(Q_{T_{1},T}\right).$$

Then, from the definition of the solution we have:

$$\int_{A_k^+} |\omega_t|^2 dx dt + \int_{A_k^+} |\nabla \omega|^2 dx dt = -\int_{A_k^+} q(x, t) \,\omega \,(\omega - k)^+ dx dt,\tag{20}$$

where $A_k^+ = \{(x, t), W > 0\}.$

Estimate the right hand side using the inequality [see 3],

$$||u||_{\frac{2n}{n-2}} \le C ||\nabla u||_{2,\Omega},$$
 (21)

where C is a constant independent of the dimension of n. Then,

$$-\int_{A_{k}^{+}} q(x,t) \omega (\omega - k)^{+} dxdt \leq \int_{A_{k}^{+}} |q(x,t)| (\omega - k + k) (\omega - k) dxdt =$$

Sh.G.Bagirov

$$= \int_{A_{k}^{+}} |q(x,t)| \cdot |\omega - k|^{2} dx dt + k \int_{A_{k}^{+}} |q(x,t)| \cdot |\omega - k| dx dt \le$$

$$\le \int_{A_{k}^{+}} |q(x,t)| \cdot |\omega - k|^{2} dx dt + k \int_{A_{k}^{+}} |q(x,t)| \cdot |\omega - k| dx dt. \tag{22}$$

At first we estimate the first summand

$$F_{1} = \int_{\substack{A_{k}^{+} \\ t > t_{0}}} |q(x,t)| \cdot |\omega - k|^{2} \, dx dt \leq \left(\int_{\substack{A_{k}^{+} \\ t > t_{0}}} |q(x,t)|^{\frac{2(n+1)}{n-1}} \, dx dt \right)^{\frac{n-1}{n+1}} \times \left(\int_{\substack{A_{k}^{+} \\ t > t_{0}}} |q(x,t)|^{\frac{n+1}{2}} \, dx dt \right)^{\frac{2}{n+1}} \leq \left(\int_{\substack{A_{k}^{+} \cap Q_{T_{1},T_{2}}}} |\omega - k|^{\frac{2(n+1)}{n-1}} \, dx dt \right)^{\frac{n-1}{n+1}} \times \left(\int_{\substack{A_{k}^{+} \cap Q_{T_{1},T_{2}}}} |q(x,t)|^{\frac{n+1}{2}} \, dx dt \right)^{\frac{2}{n+1}} \leq \left[\left(\int_{\substack{A_{k}^{+} \cap Q_{T_{1},T_{2}}}} |\omega - k|^{\frac{2(n+1)}{n-1}} \, dx dt \right)^{\frac{n-2}{2(n+1)}} \right]^{2} \times \left(\int_{\substack{A_{k}^{+} \cap \{t > t_{0}\}}} |q(x,t)|^{\frac{n+1}{2}} \, dx dt \right)^{\frac{2}{n+1}} \leq C \cdot \left(\int_{\substack{A_{k}^{+} \cap Q_{T_{1},T_{2}}}} |\nabla (\omega - k)|^{2} \, dx dt \right) \cdot I_{2}, \quad (23)$$

$$\text{where } I_{2} = \left(\int_{\substack{A_{k}^{+} \cap \{t > t_{0}\}}} |q(x,t)|^{\frac{n+1}{2}} \, dx dt \right)^{\frac{2}{n+1}} \cdot N_{\text{owe estimate } I_{0}}$$

$$I_{2} = \left(\int_{A_{k}^{+} \cap \{t > t_{0}\}} |q(x, t)|^{\frac{n+1}{2}} dx dt \right)^{\frac{2}{n+1}} \le C_{1} \cdot \left(\int_{A_{k}^{+} \cap \{t > t_{0}\}} t^{-(n+1)} dx dt \right)^{\frac{2}{n+1}} \le C_{1} \cdot \left(\int_{A_{k}^{+} \cap \{t > t_{0}\}} t^{-(n+1)} dx dt \right)^{\frac{2}{n+1}} \le C_{2} \cdot \left(\frac{t^{-n}}{-n} \Big|_{t_{0}}^{T} \right)^{\frac{2}{n+1}} = C_{2} \cdot \left(\frac{T^{-n}}{-n} + \frac{t_{0}^{-n}}{n} \right)^{\frac{2}{n+1}} = C_{3} \cdot \left(t_{0}^{-n} - T^{-n} \right)^{\frac{2}{n+1}}$$

take t_0 so that $|u(x,t)| < \varepsilon$ and $C_3 \cdot t_0^{-\frac{2n}{n+1}} < \frac{1}{C \cdot 4}$. Then, we get

$$I_2 \le \frac{1}{C \cdot 4}.$$

Then from (23) we get

$$F_1 \le \frac{1}{4} \cdot \int_{A_k^+ \cap Q_{T_1, T_2}} |\nabla (\omega - k)|^2 dx dt.$$
 (24)

Estimate the second summand in the right hand side of (22)

$$F_{2} = k \cdot \int_{A_{k}^{+}} |q\left(x,t\right)| \cdot |\omega - k| \, dx dt \le k \cdot \left(\int_{A_{k}^{+}} |q\left(x,t\right)|^{p_{1}} \, dx dt\right)^{\frac{1}{p_{1}}} \times$$

$$\times \left(\int_{A_k^+} |\omega - k|^{\frac{2(n+1)}{n-1}} dx dt \right)^{\frac{n-1}{2(n+1)}} \le k \cdot C_1 \left(\int_{\substack{t > t_0 \\ A_k^+}} t^{-2p_1} dt \right)^{\frac{1}{p_1}} \times$$

$$\times \left(\int_{A_{k}^{+}} |\nabla (\omega - k)|^{2} dx dt \right)^{\frac{1}{2}} \leq \frac{1}{4} \int_{A_{k}^{+}} |\nabla (\omega - k)|^{2} dx dt + k^{2} \cdot C_{2} \left(\int_{\substack{t > t_{0} \\ A_{k}^{+}}} t^{-2p_{1}} dt \right)^{\frac{2}{p_{1}}}, (25)$$

here $\frac{1}{p_1} + \frac{n-1}{2(n+1)} = 1$. Hence $p_1 = 1 + \frac{n-1}{n+3}$. Combining (24) and (25), we get

$$\int\limits_{A_k^+} |\omega_t|^2 \, dx dt + \int\limits_{A_k^+} |\nabla \omega|^2 \, dx dt \le \frac{1}{2} \int\limits_{A_k^+} |\omega_t|^2 \, dx dt +$$

$$+\frac{1}{2}\int_{A_{+}^{+}}|\nabla\omega|^{2}dxdt+k^{2}\cdot C_{2}\left(\int_{t_{0}}^{T}t^{-2p_{1}}dt\right)^{\frac{2}{p_{1}}}.$$

As a result, for n > 1 we have

$$\frac{1}{2} \cdot \int_{A_k^+} |\omega_t|^2 dx dt + \frac{1}{2} \cdot \int_{A_k^+} |\nabla \omega|^2 dx dt \le k^2 \cdot C_2 \left(\int_{t_0}^T t^{-2p_1} dt \right)^{\frac{2}{p_1}}. \tag{26}$$

From $k(T) \to 0$ as $T \to 0$ and from the convergence of the integral $\int_{t}^{T} t^{-2p_1} dt$ we obtain $mesA_k^+ = 0$.

44

Sh.G.Bagirov

So, $\omega - k \leq 0$. Having taken T sufficiently large, we get that k tends to zero. Hence, it follows that $\omega < 0$.

We can similarly prove that if a < 0 then $\omega(x, t) > 0$.

Show that a = b = 0. Assume a > 0. So, $\omega(x,t) < 0$ for $t > t_1$. The function $\omega_1 = -t^{\beta}$ will be a supersolution of equation (9) for sufficiently large in modulus negative β .

Indeed:

$$L = \omega_{1tt} + \Delta w_1 - q(x,t) \,\omega_1 = -\beta (\beta - 1) \,t^{\beta - 2} + q(x,t) \,t^{\beta} =$$
$$= -t^{\beta - 2} \left(\beta (\beta - 1) - qt^{-2}\right) < 0.$$

Let t_2 be sufficiently great. Take A such small positive number that $-At_2^{\beta} \ge \omega(x, t_2)$.

Then, from
$$W = \omega\left(x, t_2\right) + At_2^{\beta} \leq 0$$
, $\omega\left(x, t\right) + At^{\beta} \to 0$ as $t \to +\infty$ and $LW > 0$.

As above, we can prove

$$\omega(x,t) + At^{\beta \le 0}$$
 as $t \ge t_2$.

Consider a points set, where v = u < 0, for them we have

$$-A \cdot t^{\beta} \ge \omega(x, t) \ge v_1 - C_1 e^{-ht}.$$

This contradiction shows that a may not be positive. Similarly, we can show that a may not be negative and that b=0. So, $\omega \to \pm \infty$ as $\omega \equiv 0$ and consequently $\omega \equiv 0$.

References

- [1]. Kondratiev V.A., Oleinik O.A. Some results for nonlinear elliptic equations in cylindrical domains // Operator Theory: Advances and Applications. 1992. v. 57, pp. 185–195.
- [2]. Khachlaev T.S. Asymptotics of solutions to semilinear elliptic equation satisfying the Neumann condition on lateral surface of cylindrical domain.// Trudy seminara im. I.G. Petrovskiy, 2004, issul 24, pp. 304-324 (Russian)
- [3]. Ladyzhenskaya O.A, Uraltseva N.N. Elliptic type linear and quasilinear equations M., Nauka, 1973 (Russian)
- [4]. Hilbarg D., Trudinger N. Second order partial elliptic differential equations. M., Nauka, 1989 (Russain)
- [5]. Agmon S., Nirenberg L. Properties of solutions of ordinary differential equations in Banach space // Comm. Pure Appl. Math. 1963. 16, pp. 121-239.
 - [6]. Pazy A. //Archive Rat'e Mech. and Anal. 1967. v. 24, pp. 13-218.

Shirmayil G. Bagirov

Baku State University,

23, Z.I. Khalilov str., AZ 1148, Baku, Azerbaijan

Tel.: (99412) 439 11 69 (off.).

Received March 17, 2010; Revised May 25, 2010.