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Shirmayil G. BAGIROV

ON ASYMPTOTIC PROPERTIES OF SOLUTIONS
TO NONLINEAR ELLIPTIC EQUATION

Abstract

The solutions of a nonlinear elliptic equation in cylindrical domain, sat-
isfying the Neumann boundary condition is considered. Asymptotics of such
solutions is obtained in the vicinity of infinity.

Let G be a bounded domain in R™ with a Lipschits boundary.
Denote: I, = G x (a,b), I, 0 =114, Ty p = OG X (a,b), T'g00 =T
We'll investigate the behavior of the solution to the equation

upe + Au — ‘U|U =0 in I, (1)
satisfying the condition
0
671; =0 in T, 2)

as t — +o0o, where o > 1,n is a unit vector of an external normal to 9G.

Notice that the similar problem with a nonlinearity of the form \u|‘7_1 - U Was
investigated in the papers [1], [2].

As a solution of problem (1), (2) we understand a generalized soltion. The func-
tion u (x,t) is said to be a generalized solution of equation (1), satisfying condition
(2) if u (x,t) € Wi (ITy5) N Loo (I143) for any 0 < a, b < co and it holds the equality

[ odadt+ Y [ o dodtr [ Jul7 - pdzat =0 (3)

i—1
Ha,b v Ha,b Ha,b

for any function ¢ (z,t) € W4 (Il ) such that ¢ (x,a) = ¢ (z,b) = 0.
Prove some auxiliary facts.
Lemma 1. For any o > 1 problem (1), (2) has no negative solutions.
Proof. In definition of the solution, as a test function we take ¢ (x,t) =t-v (t),

1,t<R
where v (t) ECSO(R),w(t)—{ 0.t>9R
Then we have

/ |u|” t - Ppdtdr = — / Uy (tij/ + ¢) dtdr = / u (t?/)” + 2¢’) dtdz+

Io,2r Mo2r Io,2r

Q=

}t w//+2wl}q

tq—lzpq‘l dtdz +

+/u(m,0)dm < / ul” t - o (¢) dtda

G o2 IMo2r

—i—/u(x,O)d:J; Sg / |ul” t -9 (t) dtdx+

G Mo2r
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1 t . " + 2 /149
[t v _¢| dtdx + [ u(z,0)dz,
gt—1.¢q ta—1q)d 1
o2r G
1 1 _
Where p —+ E = 1.
Hence we get

€ o 1
(1_5> : / |7 ¢ -1 () dtdz < S
o 2r
t¢/l+2w q
Io2r G
Make the substitution 7 = 4. Take 1 (£) in the form ¢ () = ¢ (TR) = (¢ (7))" =

<
0 (1) where ¢ (1) = { é Z: : > ;’ o (1) € C§°, p is a sufficiently great number

in modulus. Estimate the first integral in the right hand side of inequality (4):

t " 2 q .Rflel/ 2R719/ q
[t + ¢1| dtdz / / i Aieci " Rrdz
ta— 1¢11 A Rq—qu—leq
Iy 2R 1<1<2
. 9// 29/ q
= R2(1*q) . meSG / Wd,r — R2(1*Q) . mesz
ra—

1<7<L2

w(g—1) dr =

-1 -2 -1 g

/’T-u-%‘ T (= 1) 0o 2 0 @
X

I~ 1)

1<r<2
= R*179 . A(gy),

where
A (pg) = mesGx

-1 -2 -1 419
’T-u-wé‘ oo+ T (= 1)+ 20 0

Tq_l(pg(q_l) dr.

X

1<7<2

We can chose p, ¢, so that A (¢,) < oo.
If we take into account all these facts in (4), then:

(1-2) / juf tatde < (1- ) / Wl ¢ () dtdz <

Io2r Io2r

1

< o RO A+ [ul@0)da, )
G

Since ¢ = %5 > 1, 1ffu:L‘O)da:<0thenasR—>oofrom()Weget

/ |u|” tdtdx =
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Hence we have u = 0 in Il if [u(z,0)dz < 0. This proves lemma 1.
G

We obtain that if w(z,¢) is a nontrivial solution of problem (1), (2), then
Ju(z,0)dz > 0. If as a test function we take ¢ (z,t) = ,
a 07 t < to,
then for any nontrival solution u (z,t) [u (x,ty)dz > 0.

G
Lemma 2. If u(x,t) is a solution of problem (1), (2), then

lim u (z,t) = 0.
t—o0
Proof. At first prove that any solution of problem (1), (2) is bounded. If u (x,t)
is a solution of equation (1), then u (x,t) is a subsolution of the equation

ug + Au— |u|” P u = 0. (6)

Indeed:
gt 4+ Au — [ul” u > w4 Au — |ul” = 0.

Eqution (6) has a strong positive solution w (t) satisfying the relations w (tg) = 1,
W' (tp) = 0 in the form of a parabola with asymptotes at the points tg £ T (where T
is independent of ty). Then for sufficiently large ¢ from the maximum principle, the
subsolution is less than the solution, i.e. u(x,t) < w (t) in ;7 4,4+7. Thus, u(z,t)
is upper bounded, since for large ¢ is less than the value at the top of the parabola.

2(o+1
(0—1)

1
The function v (z,t) = u (z,t) — Cp - t_%, where Cy = [ } "' is also an

upper bounded subsolution of equation (6). Then
vy + Av—a(z,t)v >0, (7)

where a (z,t) > 0.

Consider the function v — et. This function also satisfies inequality (7) and is
negative for ¢ = 0. There exists such Ty (¢) that for T > Ty () v — €T < 0. Then
it follows from the maximum principle that v — et < 0 for ¢ > 0. Tending ¢ to zero,

we get v < 0.
So,
4 __2
u(z,t)” < Cy-t o1, (8)
Making in (1) the substitution v = —v, consider the equation

v + Av + |v]7 = 0.

Since |v| = vt —v~, v=v" + v~ then

/!v\dm < —2/v_dx 32/00-t021d:c:01 .t*ﬁ.
G G G

If 0 < 3, then

o0 o0 o0

//]v|dmdt§C’1/t—a21dt:_Cz.t—g‘;’ = O,
1 G

1 1
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If 0 > 3, then for large T
/ |u| dzdt < Cs,
Hr_2 7142

where Cs is independent of T'. Indeed:

T+2
__2 oc—1 o—3 o—3
/ |U|d1’dt§01/t o—1dt = C 3<(T+2)071—(T_2)071):
O’_
Mr_2 142 T—2
1
— 4O (T =2+ €-4) 71 = 40y <40y,

(T —24&-4)o1
if T'>3. There 0 < £ < 1.
For o = 3, similarly we get

T+2
/ lv| dzdt < Oy /tldt: CllnT' ;f; =
r_2, 742 T—2
4
=0 — < 4Ch,
(T — 2 +4¢)7-1

if T'> 3.
From the theory of linear differential equations we know that [see3]

max |u| < C / |u| dedt < C3 as T > 3.

Ty
T—1,T+1 Ty oo
So, everywhere |u| < C.
From (5) we get
/ |u|” dzdt < Cy. 9)
Hl,oo

Then, for each T, there exists such a point (x¢,t.) € II1._1 7. 41 and such C that

c
e, 1) < 5 / (| dadt — 0 (10)

M, 17041

as T, — +oo0.

This is easily proved by contradiction. Using this, prove that u (xz,t) — 0 as
t — oo.

If u (x,t) is a solution of equation (1), then v = —u is a solution of equation
v + Av + |v]7 = 0. (11)
Write it as follows

v + Av + 0|7 signo - v = 0.
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Denote ¢ (x,t) = |v|” ! signv. Since |v| = |u| < C, then |q (z,t)| < C1. Consider
the function )
W (z,t) = v (z,t) + Cot o1 (12)

If follows from (8) that W (z,t) > 0.
W (z,t) satisfies the equation

th + AW + q (.’L’,t) W = —Coit
Then by the Harnack inequality [see 4] we have:

HTIEIIa:’I}E+1W (1.7 t) S Cl / W (x7 t) + CQ : Hf||Lq/2(HT,2,T+2) S
Ir_1,741

<Cp- inf W (z,t) 4+ Cax
Mr_1,741
2
qa/2 !
2 1
« / |20t Ve oo e | <
(c—1)
Mr_2 142

2
q

<Cp- inf W (z,t)+Cy-Cs / t oL dt —0asT — oo,
Mr_1,741
Mr_2 742

by (10) and (12).

Hence it follows that u = —v = Cj - t_% — W — 0 ast — 4o0. This proves
lemma 2. )

Now, prove that u (z,t) = O <t_ﬁ>. If w(z,t) is a non-negative solution, this
is obvious.

Make the substitution v = —u.

Then

v + Av + [v|7 = 0. (13)

Since u < C-t_%, then v > — (-t 7-1. Denote h (t) = —C’-t_%, z=v—h(t).
Then, z > 0 and
zi + Av + ’Z + h‘a = hyy.

Write it as follows

|7+ 2|7 — [
z

20 20
2+ Az + zzcl.t*ﬁ+02-t*ﬁ:o(fm).

Hence,
20

2+ Az+ B(x,t)z=C-t o1, (14)

where B () =C -t~ 2 + @ tends to zero as z — 0.

Since z > 0, applying the Harnack inequality to (14), we get:

max |z (z,t)| <Cy_min |z (x,t)|+Co-||fll,

Mr_1,741 Mr_1,741

q>n+1.

a/2lr—2,742) "
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Let at first T'=t.. Then by the Harnack inequality we have:
2

2
max |z (z,t)| < Cite 7'+ Co - =
Mr_1,741

2
o7 = Oy (te+ 1+t —1) 70 = Cy (te +1) 71

__2
— o—1
21 <1 te 1)

<O(T+1) 70 < Cyt 71,
fT—1<t<T+1. So,

2 (2, t)| < Cy-t 71, if T—1<t<T+1.

Having taken successively T'=t. + 1,t. + 2 and etc., we get
2 (z,8)] < C -t 71, for t > Tp.
Then ,
o] =lz4+h| <|z|+ b <C-t o1
2
u| = Jv] = O (t a—l) .

|t =0 (t7?).

The following theorem is the basic result.
Theorem.
negative in Il,, a > 0.

(z,6) =0 (t777).

I. For any o > 1 there is no solution of equation (1) satisfying condition (2),
II. Let u(x,t) > 0 be a solution of equation (1) satisfying condition (2). Then,

ITI. Let u(x,t) be a solution of equation (1) satisfying condition (2) that changes
of u(x,t).

sign at each domain 1l,, a > 0. Then, u(z,t) = O (e_ht), where h is independent
Proof.

Above we proved I and II. Prove ITI. Write equation (1) in the form

uy + Au—q(z,t)u=0,
where ¢ (z,t) = |u|”"" - signu.

(15)
Since tlim lu (x,t)| = 0, there exist such tq that for any ¢t > to, |u(z,1)|” ' < e
— 00
Take 6 (t) € C* such that 6(t) = 1 fort > to+ 1, 6(t) = 0 for t < ¢y and
0<0(t)<1.
Assume

v(x,t) =0(t) u(zx,t).
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The function v (z,t) satisfies the equation

vy + Av —q(z,t)v = F (z,1) (16)
and boundary conditions
gz =0onT, (17)
where .
¢ (2.1) = { |ul . sign u ff(‘g)rrttgzt?’—i— 1,

F(.fU,t) = (9t ‘U)t +0t * Ug.

Obviously, the function F'(x,t) has a compact support.
Show that |v (z,t)| < C - exp{—ht}, C = const. It follows from the theory of
linear equations [see 4.5] that problem (16), (17) has the solution vy (x,t) such that

0 (e_ht) ast — 400

vt (z,t) = { at+b+0 (eht) as t — —oo. (18)
The function w (z,t) = v (x,t) — v (z,t) satisfies the equation
wit + Aw —q(z,)w =0 (19)

and boundary condition

gZ:O on I,

w(z,t) > 0ast— +oo and w =at +b+ O (e") as t — —o0.

It we prove w = 0, then this will prove theorem. Show a = 0, b = 0. Assume
a>0. So, w(z,t) <0 for t < —T, where T} is a sufficiently large positive number.
Prove that w < 0 for ¢ > —T1. Since ¢ (z,t) = |u|” ' sign u for t > to + 1, then
q(z,t) =0 (t72) for t — +oo.

Denote k = Maxw (z,t) and W (z,t) = (w — k)*, where T is a sufficiently large
positive number. Obviously, W (x,t) =0 for t =T} and for t =T

It is obvious that

W (z,t) € Wy (Qn1)-

Then, from the definition of the solution we have:

/|wt|2dxdt+ / 9e|? dudt = —/q(ﬂc,t)w(w—k)+ dardt, (20)

k

where A = {(z,t),W > 0}.
Estimate the right hand side using the inequality [see 3],

ull 2. < Cll9ullyq. (21)
where C is a constant independent of the dimension of n. Then,

—/q(w,t)w(w—k)"‘dmdtﬁ / lg (z,0)] (w—k+ k) (w—k)dzdt =

+ +
Ay Ay
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:/\q(a:,t)\-]w—k|2dxdt+k/]q(a;,t)]~\w—k\dmdt§
AF AF

k

< / g (2,8)] - |w — K| dadt + k/ g (2,0 - |w — K| dadt. (22)
A Al
t>t t>t

At first we estimate the first summand

ol
=

2 2(nt1)
B = / g (z,t)| - |w — k|” dodt < /|q(x,t)| w1 dadt x

Af Al
t>tg t>tg
2
nt n—1
n+1
n+1 2(n+1)
X /|q(x,t)| 2 dadt < / lw — k| =T dadt X
AEf Ak+mQT1vT2
t>tg
n—2 2
2 2(n+1)
n+1
n+1 2(n+1)
X /|q(m,t)| 2 dxdt < / lw— k| =T dxdt X
t>to AFOQr, 1
2
n+1
ntl
« / (@, ) F dedt | < / V(0 — k)2 dadt | - I, (23)
Afn{t>to} AZHQTI’TQ
2
n+1
ntl
where I = | lg(z,t)| 2 dxdt
Afn{t>to}
Now, estimate I5.
2 2
n+1 n+1
ol —(n+1)
I = lg (z,t)| 2 dxdt <Ci- t dxdt <
Afn{t>to} Afn{t>to}
2
v gy A
<0 - / =D gt < Cy- ( > =
-n
to

Afn{t>to}

T  ty™\ "t 2

—n n
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_2n_
take to so that |u (z,t)| < e and C3-t, """ < 5. Then, we get

1
L < —.
=04
Then from (23) we get
1
< 1 / IV (w — k)|* dzdt. (24)
A:mQTLTz

Estimate the second summand in the right hand side of (22)

1

P1

Fg—k-/\q(m,t)\-]w—k]dxdtgk- /\q(:r,t)]pldxdt «

Al Al

n—1 H
2(n+1)

2(n+1) _9

X lw— k| T dxdt <k-C t—Pdt X
AF thf’
2
l H
2
1
X /\V(w—k)\Qda:dt §4/]V(w—k)\2d:cdt+k2.02 /t2p1dt , (25)
AF AF t>tg

+
Ak

1 -1 _
herep—l—km—l.

Hence p; =1+ Z—_T_é Combining (24) and (25), we get

1
/|wt|2d1:dt+/!Vw|2d1:dt§ 2/|wt|2dmdt+
A+ A+ A+

7 o
+;/ \Vw|* dzdt + k2 - Cy /tQpldt
Af to
As a result, for n > 1 we have
7 o
;/wt|2d:cdt+;-/|Vw\2da:dt§k2~02 /t2p1dt . (26)
A+ A+ to

T
From k(T) — 0 as T — 0 and from the convergence of the integral [t~2Pidt we

to

obtain mesAz =0.
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So, w — k < 0. Having taken T sufficiently large, we get that k£ tends to zero.
Hence, it follows that w < 0.

We can similarly prove that if a < 0 then w (z,t) > 0.

Show that a = b = 0. Assume a > 0. So, w(z,t) < 0 for t > ¢;. The function
w1 = —t? will be a supersolution of equation (9) for sufficiently large in modulus
negative (.

Indeed:

L=wiy+Aw —q(z,t)wr =3B -1)t72 +q(z,t)t" =
=—t"2(B(B-1)—qt™?) <0.

Let to be sufficiently great. Take A such small positive number that —At’g >
w (z,t2).
Then, from W = w (x,t2) + Atg <0, w(x,t)+ AtP — 0 as t — 400 and

LW > 0.

As above, we can prove
w(z,t) + AP0 as t > .

Consider a points set, where v = u < 0, for them we have
—A-tP > w(x,t) > v — Cre ™.

This contradiction shows that a may not be positive. Similarly, we can show
that a may not be negative and that b = 0. So, w — +00 as w = 0 and consequently
w=0.
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