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Seymur S. ALIYEV

WEIGHTED MORREY A PRIORI ESTIMATES FOR

POISSON EQUATION

Abstract

Let Ω a bounded domain in Rn with ∂Ω ∈ C2 and let u be a solution of the
classical Poisson problem in Ω; i.e.,

{ −4u = f in Ω,

u = 0 on ∂Ω,

where f ∈ Mp,κ(Ω, w), 1 ≤ p < ∞, 0 ≤ κ < 1 and ω is a weight in Ap.
The main goal of this paper is to prove the following a priori estimate

‖u‖W 2
p,κ(Ω,w) ≤ C‖f‖Mp,κ(Ω,w),

and to give some applications for weights given by powers of the distance to the
boundary.

1. Introduction

We will use the standard notation for Sobolev spaces and for derivatives, namely, if

α is a multi-index, α = (α1, α2, ..., αn) ∈ Zn
+ we denote |α| =

n∑
j=1

αj , Dα = ∂α1
x1
···∂αn

xn

and
W k

p (Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω), ∀ |α| ≤ k}.
Let Γ be the standard fundamental solution of the Laplacian operator, namely,

Γ(x) =

{
1
2π log |x|−1 n = 2,

1
n(n−2)ωn

|x|2−n n ≥ 3,

with ωn the area of the unit sphere in Rn.
Given a function f ∈ C∞

0 (Rn), it is a classic result that the potential u given by

u(x) =
∫

Γ(x− y)f(y)dy

is a solution of −4u = f in Rn and satisfies the estimate

‖u‖W 2
p (Rn) ≤ C‖f‖Lp(Rn) (1.1)

for 1 < p < ∞. Indeed, this estimate is a consequence of the Calderón-Zygmund
theory of singular integrals (see for example [18]).

Since the work by Komori and Shirai [12], many results on weighted Morrey
estimates for maximal functions and singular integral operators have been obtained.
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In particular, generalizations of (1.1) to weighted Morrey norms are known to hold
for weights in the class Ap (see for example [19]).

On the other hand, a priori estimates like (1.1) for solutions of the Dirichlet
problem {

−4u = f in Ω,

u = 0 on ∂Ω,
(1.2)

on smooth bounded domains Ω are also well known (see for example the classic paper
by Agmon, Douglis and Nirenberg [3] where a priori estimates for general elliptic
problems are proved).

Therefore, it is a natural question whether weighted a priori estimates are valid
also for the solution of the Dirichlet problem (1.2). In this paper we give a positive
answer to this question, namely, we prove that

‖u(x)‖W 2
p,κ(Ω,w) ≤ C‖f‖Mp,κ(Ω,w),

for ω ∈ Ap, 1 < p < ∞, 0 ≤ κ < 1, where the constant C depends only on Ω and on
the weight ω.

As an application we obtain weighted Morrey a priori estimates for weights given
by powers of the distance to ∂Ω. Estimates of this type are of interest in the analysis
of some non-linear problems and were derived using different arguments (see [20]).

2. Preliminaries on weighted Morrey spaces

In the study of local properties of solutions to of partial differential equations,
together with weighted Lebesgue spaces, Morrey spaces Mp,λ(Rn) play an important
role, see [10], [16], introduced in 1938 by C. Morrey [17].

Let Ω a bounded domain in Rn and d = diamΩ. For x ∈ Rn and r > 0, let
B(x, r) denote the open ball centered at x of radius r.

Definition 2.1. Let 1 ≤ p < ∞ and 0 ≤ λ < n. We denote by Mp,λ(Ω) the
Morrey space as the set of locally integrable functions f(x), x ∈ Ω with the finite
norm

‖f‖Mp,λ(Ω) = sup
x∈Ω, 0<r≤d

(
r−λ

∫

B(x,r)∪Ω
|f(x)|pdx

)1/p

.

We recall the definition of the Ap class for 1 < p < ∞. A non-negative locally
integrable function ω belongs to Ap if there exists a constant C such that

(
1
|Q|

∫

Q
ω(x)dx

)(
1
|Q|

∫

Q
ω(x)−1/(p−1)dx

)p−1

≤ C

for any cube Q ⊂ Rn.
Definition 2.2. Let 1 ≤ p < ∞, 0 ≤ κ < 1 and w be a weight function.

We denote by Lp,κ(Ω, w) the weighted Morrey space as the set of locally integrable
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functions f(x), x ∈ Ω with the finite norm

‖f‖Mp,κ(Ω,w) = sup
Q

(
1

w(Q)κ

∫

Q∪Ω
|f(x)|pw(x)dx

)1/p

,

where the supremum is taken over all cubes Q in Rn.
Remark 2.1. Alternatively, we could define the weighted Morrey spaces with

balls instead of cubes. Hence we shall use these two definitions of weighted Morrey
spaces appropriate to calculation.

Remark 2.2. (1) If w ≡ 1 and κ = λ/n with 0 < λ < n, then Mp,κ(Rn, w) =
Mp,λ(Rn), the classical Morrey spaces.

(2) Let w ∈ ∆2. If κ = 0, Mp,0(Rn, w) = Lp,w. If κ = 1,Mp,1(Rn, w) = L∞,w(Rn)
by the Lebesgue differentiation theorem with respect to w (see [16]).

(3) In the one-dimensional case, let a weight w(x) = |x|α for some −1/2 < α < 0
and a function f(x) = χ(0,1)(x)|x|−1/2. Then f ∈ M

1,
α+1

2
α+1

(Rn, w)\L2(α+1),w(Rn).

Lemma 2.1. Let 0 < κ < 1, 0 < p < ∞, q = p/(1− κ) and w weight functions.
Then

Lq,w(Rn) ↪→ Mp,κ(Rn, w).

Proof. Let t = q
p ≥ 1. Then 1

t + 1
t′ = 1, t = 1

1−κ and t′ = 1
κ . Therefore

‖f‖Mp,w,κ = sup
Q

(
1

w(Q)κ

∫

Q
|f(x)|pw(x)dx

)1/p

= sup
Q

w(Q)−κ/p

(∫

Q
|f(x)|pw(x)1/tw(x)1/t′dx

)1/p

≤ sup
Q

w(Q)−κ/p

(∫

Q
|f(x)|ptw(x)dx

)1/pt (∫

Q
w(x)dx

)1/pt′

= sup
Q

w(Q)−κ/pw(Q)1/pt′
(∫

Q
|f(x)|qw(x)dx

)1/q

= sup
Q

(∫

Q
|f(x)|qw(x)dx

)1/q

= ‖f‖Lq,w .

Let f ∈ Lloc
1 (Rn). The maximal operator M is defined by

Mf(x) = sup
t>0

|B(x, t)|−1

∫

B(x,t)
|f(y)|dy,

where |B(x, t)| is the Lebesgue measure of the ball B(x, t).
Let T be a singular integral Calderon-Zygmund operator, briefly a Calderon-

Zygmund operator, i. e., a linear operator bounded from L2(Rn) in L2(Rn) taking
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all infinitely continuously differentiable functions f with compact support to the
functions Tf ∈ Lloc

1 (Rn) represented by

Tf(x) =
∫

Rn

K(x, y)f(y) dy a. e. on suppf.

Here K(x, y) is a continuous function away from the diagonal which satisfies the
standard estimates: there exist c1 > 0 and 0 < ε ≤ 1 such that

|K(x, y)| ≤ c1|x− y|−n

for all x, y ∈ Rn, x 6= y, and

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ c1

( |x− x′|
|x− y|

)ε

|x− y|−n,

whenever 2|x− x′| ≤ |x− y|. Such operators were introduced in [6].
The operators M and T play an important role in real and harmonic analysis

and applications (see, for example [18] and [19]).
F. Chiarenza and M. Frasca [5] studied the boundedness of the maximal operator

M in these spaces. Their results can be summarized as follows:
Theorem 2.1. Let 1 ≤ p < ∞ and 0 ≤ λ < n. Then for p > 1 the operator M

is bounded in Mp,λ(Rn) and for p = 1 M is bounded from L1,λ(Rn) to WL1,λ(Rn).
G.D.Fazio and M.A.Ragusa [11] studied the boundedness of the Calderón-Zygmund

singular integral operators in Morrey spaces, and their results imply the following
statement for Calderón-Zygmund operators T .

Theorem 2.2. Let 1 ≤ p < ∞, 0 < λ < n. Then for 1 < p < ∞ Calderón-
Zygmund singular integral operator T is bounded in Mp,λ(Rn) and for p = 1 T is
bounded from L1,λ(Rn) to WL1,λ(Rn).

Note that in the case of the classical Calderón-Zygmund singular integral opera-
tors Theorem 2.2 was proved by J. Peetre [13]. If λ = 0, the statement of Theorem
2.2 reduces to the aforementioned result for Lp(Rn).

In the paper [12] was proved the boundedness of classical operators in harmonic
analysis, that is, the Hardy-Littlewood maximal operator, a Calderon-Zygmund
operator, the fractional integral operator, etc.

Theorem 2.3 ([12], Theorem 3.2]). If 1 < p < ∞,0 < κ < 1 and w ∈ Ap,
then the Hardy-Littlewood maximal operator M is bounded on Mp,κ(Rn, w).

If p = 1, 0 < κ < 1 and w ∈ A1, then for all t > 0 and any cube Q,

w({x ∈ Q : Mf(x) > t}) ≤ C

t
‖f‖M1,w,κw(Q)κ.

Theorem 2.4 ([[12], Theorem 3.3]). If 1 < p < ∞, 0 < κ < 1 and w ∈ Ap,
then a Calderon-Zygmund operator T is bounded on Mp,κ(Rn, w).

If p = 1,0 < κ < 1 and w ∈ A1, then for all t > 0 and any cube Q,

w({x ∈ Q : Tf(x) > t}) ≤ C

t
‖f‖M1,w,κw(Q)κ.
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3. Weighted Morrey a priori estimates

We consider the Dirichlet problem (1.2) in bounded domains Ω. From now on
we will assume that ∂Ω is of class C2. The solution of this problem is given by

u(x) =
∫

Ω
G(x, y)f(y)dy, (3.1)

where G(x, y) is the Green function, which can be written as

G(x, y) = Γ(x− y) + h(x, y)

with h(x, y) satisfying, for each fixed y ∈ Ω,
{
4xh(x, y) = 0 x ∈ Ω,

h(x, y) = −Γ(x− y) x ∈ ∂Ω.

If P (y, Q) is the Poisson kernel, h(x, y) is given by

h(x, y) = − 1
(n− 2)ωn

∫

∂Ω

1
|x−Q|n−2

P (y,Q)dS(Q)

where dS denotes the surface measure on ∂Ω.
In what follows the letter C will denote a generic constant, not necessarily the

same at each occurrence. It is known that the Green function satisfies the following
estimates (see [21]),

G(x, y) ≤
{

C log |x− y| if n = 2,

C|x− y|2−n if n ≥ 3,

and
|DxiG(x, y)| ≤ C|x− y|1−n.

Therefore
Dxiu(x) =

∫

Ω
DxiG(x, y)f(y)dy.

To obtain the second derivatives of u from the representation (3.1) we will use
the following lemma. We denote with d(x) the distance to the boundary, namely,
d(x) = inf

Q∈∂Ω
|x−Q|.

Lemma 3.2. Given α ∈ Zn
+ (|α| > 0 if n = 2) there exists a constant C

depending only on n and α such that

|Dαh(x, y)| ≤ Cd(x)2−n−|α|.

It follows from this lemma that for each x ∈ Ω, Dxixjh(x, y) is bounded uniformly
in a neighborhood of x and so

Dxixj

∫

Ω
h(x, y)f(y)dy =

∫

Ω
Dxixjh(x, y)f(y)dy.
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On the other hand, since |DxjΓ(x)| ≤ C|x|1−n we have

Dxj

∫

Ω
Γ(x− y)f(y)dy =

∫

Ω
DxjΓ(x− y)f(y)dy.

However, DxixjΓ is not an integrable function and we cannot interchange the order
between second derivatives and integration. A known standard argument shows that

Dxi

∫

Ω
DxjΓ(x− y)f(y)dy = Kf(x) + c(x)f(x)

where c is a bounded function and

Kf(x) = lim
ε→0

∫

|x−y|>ε
DxixjΓ(x− y)f(y)dy.

Here and in what follows we consider f defined in Rn extending the original f by
zero.

The operator K is a Calderón-Zygmund singular integral operator. Indeed, since
DxjΓ ∈ C∞(Rn \ {0}) and it is a homogeneous function of degree 1 − n, it follows
that DxixjΓ(x− y) is homogeneous of degree −n and has vanishing average on the
unit sphere (see Lemma 11.1 in [2], page 152). Then, it follows from the general
theory given in [5] that K is a bounded operator in Lp(Rn) for 1 < p < ∞.

Moreover, the maximal operator

K̃f(x) = sup
ε>0

∣∣∣∣∣
∫

|x−y|>ε
DxixjΓ(x− y)f(y)dy

∣∣∣∣∣
is also bounded in Lp(Rn) for 1 < p < ∞.

We can now state and prove our main result.
Theorem 3.5. Let Ω ⊂ Rn be a bounded C2 domain. If 1 < p < ∞, 0 ≤ κ < 1,

ω ∈ Ap, f ∈ Mp,κ(Ω, w) and u is the solution of problem (1.2), then there exists a
constant C depending only on n, ω and Ω such that

‖u‖W 2
p,κ(Ω,w) ≤ C‖f‖Mp,κ(Ω,w). (3.2)

Proof. We will need the following estimate for the Green function. This estimate
has been proved by A. Dall’Acqua and G. Sweers in [7], however they assume that
the domain is more regular than C2.

Let Ω be a bounded C2 domain and G(x, y) be the Green function of problem
(1.2) in Ω. There exists a constant C depending only on n and Ω such that for
(x, y) ∈ Ω× Ω

|DxixjG(x, y)| ≤ C
d(x)

|x− y|n+1
.

Our result follows from the following inequalities (see [8]).
There exists a constant C depending only on n and Ω such that, for any x ∈ Ω,

|u(x)|+ |Dxiu(x)| ≤ CMf(x), (3.3)

|Dxixju(x)| ≤ C
(
K̃f(x) + Mf(x) + |f(x)|

)
. (3.4)

By Theorems 2.3 and 2.4 implies that the operators M and K̃ are bounded in
Mp,κ(Ω, w). Therefore (3.2) follows immediately from inequalities (3.3) and (3.4).
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4. Application to weights of the form d(x)β

In this section we show how the weighted Morrey estimate proved in the previous
section can be used to obtain some of the a priori estimates given in [20]. Moreover,
our arguments allows us to prove a new estimate which was not contained in the
results in [20].

We will also make use of some imbedding theorems for weighted Sobolev spaces
which, as we will show, can be proved in a simple way by using an argument of
Buckley and Koskela [4].

Theorem 4.6. Let Ω ⊂ Rn be a bounded C2 domain, f ∈ Lp,κ(Ω, dγ) and u be
the solution of problem (1.2). If 0 ≤ κ < 1 and −1 < γ < p− 1, then there exists a

constant C depending only on κ, γ, p, n and Ω such that

‖u‖W 2
p,κ(Ω,dγ) ≤ C‖f‖Lp,κ(Ω,dγ). (4.1)

Proof. In [8] proven that if Ω ⊂ Rn be a bounded C2 domain and d(x) the
distance from x to ∂Ω, then, d(x)β ∈ Ap for −1 < β < p−1. For the particular case
of Ω being a ball, it was shown in [14]. Therefore from Theorem 3.5 we get (4.1).

Acknowledgements. Author want to express his thanks to supervisor prof.
V.S.Guliyev for the statement of the problem and many helpful conversations.
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[16]. Kufner A., John O. and Fuçik S. Function Spaces, Noordhoff International
Publishing: Leyden, Publishing House Czechoslovak Academy of Sciences: Prague,
1977.

[17]. Morrey C.B. On the solutions of quasi-linear elliptic partial differential
equations, Trans. Amer. Math. Soc. 1938, 43, pp.126-166.

[18]. Stein E.M. Singular Integrals and Differentiability Properties of Functions,
Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J.,
1970.

[19]. Stein E.M. Harmonic Analysis: Rreal-variable Methods, Orthogonality, and
Oscillatory Integrals, Princeton Mathematical Series, vol. 43, Princeton University
Press, Princeton, NJ, 1993.

[20]. Souplet P. A survey on Lp,δ spaces and their applications to nonlinear
elliptic and parabolic problems, Nonlinear Partial Differential Equations and Their
Applications, Gakuto Internat. Ser. Math. Sci. Appl., vol. 20, Gakkotosho, Tokyo,
2004, pp.464-479.

[21]. Widman K.O. Inequalities for the Green function and boundary continuity
of the gradient of solutions of elliptic differential equations, Math. Scand. 1967, 21,
pp.17-37.

Seymur S. Aliyev
Institute of Mathematics and Mechanics of NAS of Azerbaijan.
9, F. Agayev str., AZ-1141, Baku, Azerbaijan.
Tel.: (+99412) 439-47-20 (off.) .

Received March 15, 2010; Revised June 03, 2010.


