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KILLED MARKOV DECISION PROCESSES ON
FINITE TIME INTERVAL FOR COUNTABLE

MODELS

Abstract

In this article we consider killed Markov decision processes for countable
models on finite time interval. Existence of a uniform ε-optimal policy is proved.
We showed correctness of the fundamental equation. Optimal control problem is
reduced to a similar problem for derived model. We receive optimality equation
and method for simple optimal policies constructing. Sufficient of simple policies
for countable models is proved. We show correctness of the Markovian property.
Additionally dynamic programming principle is considered.

1. Introduction
Markov decision processes arise in different areas of economics, in particular for

economic work planning of separate business, economic sector or entire economics.
At the beginning of each period we can build the plan for the next period knowing
the last achieved state. The system development can be described mathematically
as deterministic process if we assume that the system state at the end of each period
is uniquely defined by the state at the end of period and by a plan for this period.

But it is necessary to consider the influence of such factors as meteorological
conditions, demographic transition, demand fluctuations, the imperfection of the
compound production processes coordination, scientific discoveries and inventions
etc. Stochastic models are better able to take into account these factors: if we
know the state at the beginning of the period and a plan, we can only calculate
the probability distribution for the next period. Therefore, leaving aside the system
states in the past periods we come to the idea of Markov decision process (”the
future depends not on the past, but only on the present”).

The Markov decision processes are well described in [1]: the definition of Markov
decision process is given, the concept of ”model” Zµ is presented, the definition of
policy π is given, the assessment of policy - ω(π) and ν - assessment of process Zµ

are defined, the existence of a uniform ε-optimal policy is proved, the optimality
equation and method for simple optimal policies constructing are presented, the
sufficient of simple policies for countable models is proved, the correctness of the
Markovian property is shown and dynamic programming principle is considered.

In [1] the model does not take into account the risk factor, namely the probability
of bankruptcy at some determined moment of time. As a result, we come to the idea
of killed Markov decision process where the business can crash with some nonzero
probability at every moment of time, with the exception of the initial state. The
basic ideas about killing of Markov processes is given in [3].

The concept of killed Markov decision process brings us closer to the real eco-
nomic system which is not typical without such risk.
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2. Killed Markov decision process
Let Xt(t = m, . . . , n) and let At(t = m+1, . . . , n) be countable or finite sets and

at least one of them is countable. ∀a ∈ At compares with a probability distribution
p(·|a) = P(xt = x|at = a, xt−1) on Xt.

Remark. All definitions and basic ideas of killed Markov decision process are
given according to [1] and [2].

Definition. Function p which defines the law of transition from At to Xt is
called transition function.

Definition. The point x∗ = xm ∈ Xt is called killed state, and p(x∗|a) -
probability of kill if P(xt+1 = x∗|at = a) = P(xt+1 = xm|at = a) ≡ p(x∗|a), xm ∈
Xm.

Remark. In other words, the system transits into the initial(home) state when
it hits a killed state(process is killed).

From the definition of killed state it follows:

∀a ∈ At ∃x∗ ∈ Xt : p(x∗|a) = 1−
∑

x∈Xt\x∗
p(x|a) > 0.

Definition [Killed Markov decision process]. A killed Markov decision
process on a time interval [m,n] is defined through the following objects:

1. Sets Xm, . . . , Xn(spaces of states);
2. Sets Am+1, . . . , An(spaces of actions);

3. The projection mapping j : A → X where A =
n⋃

t=m+1
At, X =

n⋃
t=m

Xt:

j(At) = Xt−1 \ {x∗}, x∗ ∈ Xt−1, (t = m + 2, . . . , n) and j(Am+1) = Xm;
4. Probability distribution p(·|a) = P(xt = x|at = a, xt−1) on Xt with killed states

P(xt+1 = x∗|at = a) = P(xt+1 = xm|at = a) ≡ p(x∗|a) > 0;

5. Function q on A (reward function);
6. Function r on Xn (terminal reward);

7. Function c (crash function), defined on killed states c(x∗) = −
t∑

i=m+1
max
ai∈Ai

q(ai),

x∗ ∈ Xt, t = m + 1, . . . , n (function c ensures a total bankruptcy - total loss of accu-
mulated capital or more);

8. Initial distribution µ on Xm.
A stochastic process defined through (1-8) is called killed Markov decision

process or model and is denoted by Z∗µ. If the initial distribution µ is concentrated
in the point x, we shall write Z∗x.

Definition. The trajectory l = xmam+1xm+1 . . . anxn is called way. The set of
all ways we’ll denote L = X × (X ×A)n.

Our goal is to find a decision method which maximizes the mathematical expec-
tation of way l assessment :

I(l, x∗) =
n∑

t=m+1

[q(at) + c(x∗t )] + r(xn), (2.1)

where:
x∗ = (x∗m+1, . . . , x

∗
n) - vector of killed states;
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l = xmam+1, . . . , anxn - way.
The decision method is meant to be some policy.

3. Policies
Definition. Let A(x) ⊂ A is the set of all available actions at state x ∈ X.

ϕ(x) : X → A(x) is called simple policy if ϕ(xt−1) = at ∀xt - not killed points with
probability distributions p(·|at)(m < t ≤ n) and xm with the initial distribution µ.

Remark. When we use simple policy ϕ(x) we get the way l = xmam+1, . . . , anxn.
Definition. The mapping π : H → π(·|h ∈ H) is called killed policy, where

π(·|h ∈ H) - probability distribution on A(xt−1) and H = X×(A×X)t−1 - the space
of histories up to epoch m ≤ t− 1 ≤ n (h ∈ H ⇔ h = xmam+1, . . . , at−1xt−1).

Remark. xt−1 6= x∗.
Definition. Killed policy π(·|h) is called Markov policy if π(·|h) = π(·|xt−1).
The next conceptions wont be well-defined without assumption:
Assmption. The reward function q and terminal reward function r have the

supremum, ∃ sup
a∈A

q(a) and ∃ sup
x∈Xn

r(x).

Definition. Let p(·|a) is the transition function and let π(·|h) is a policy. ∀µ -
initial distribution is compared with probability distribution P ∗ in space L which has
such notation:

P ∗(l, x∗) = P ∗(xmam+1, . . . , anxn, x∗m+1, . . . , x
∗
n) = µ(xm)π(am+1|xm)×

×p(xm+1|am+1)p(x∗m+1|am+1) · . . . · π(an|hn−1)p(xn|an)p(x∗n|an) (3.1)

Remark. After the definition of measure P ∗ the way l can be interpreted as
stochastic process. Additionally this process is called Markov process if policy π is
a Markov policy.

For all function ξ from space L the mathematical expectation of ξ is

E∗(ξ) =
∑

l∈L

ξ(l)P ∗(l, x∗) (3.2)

The assessment (2.1) of the way l is example of such function. And we denote
its expectation ω:

ω = E∗I(l, x∗) = E∗[
n∑

t=m+1

[q(at) + c(x∗t )] + r(xn)] (3.3)

Definition [Assessment of policy]. The value ω from (3.3) is called assess-
ment of policy π and is for a killed Markov decision process Z∗µ the function of
variable π (ω = ω(π)).

The goal of research is the maximization of function ω(π).
Definition [Assessment of process]. ν ≡ sup

π
ω(π) is called assessment of

killed Markov decision process Z∗µ or assessment of initial distribution µ.
Remark. ν(x∗) = c(x∗).
Definition [ε-optimal policy]. Killed policy π is called ε-optimal for Z∗µ if

∀ε > 0 : ω(µ, π) ≥ ν(µ)− ε.
Definition [Uniform ε-optimal policy]. A Killed policy is called uniform

ε-optimal or ε-optimal for process Z∗ if π is ε-optimal for Z∗µ for all µ - initial
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distribution.

4. Existence of uniform ε-optimal policy
Let πx is ε-optimal policy for process Z∗x. Its existence follows from the definition

of supremum.
We want to build the one killed policy π which is ε-optimal for model Z∗ by

using a sequence of killed policies πx.
It’s natural to use the policy πx when x is a starting point. Formally,

π̄(·|h) = πx(h)(·|h) (4.1)

where x(h) - the initial state of history h. It’s clear that formula (4.1) defines some
policy π̄ and this policy will be ε-optimal. That means ∀ε ≥ 0 : ω(x, π̄) = ω(x, πx) ≥
ν(x)− ε,∀x ∈ Xm.

Proposition [Existence of uniform ε-optimal killed policy]. Every killed
policy π̄ from (4.1) which is ε-optimal:

∀ε ≥ 0 : ω(x, π̄) ≥ ν(x)− ε, (x ∈ Xm)

is uniform ε-optimal, that means ∀µ,∀ε ≥ 0 : sup
π

ω(µ, π) ≤ ω(µ, π̄) + ε.

Proof. From (3.1)-(3.3) it follows that ∀π:

ω(µ, π) =
∑

l∈L

I(l, x∗)P ∗(l, x∗) =
∑

Xm

µ(x)ω(x, π). (4.2)

Hence it appears

ω(µ, π) =
∑

Xm

µ(x)ω(x, π) ≤
∑

Xm

µ(x)ν(x) ≤
∑

Xm

µ(x)[ω(x, π̄) + ε] = ω(µ, π̄) + ε.

From received inequalities it follows:

sup
π

ω(µ, π) ≤
∑

Xm

µ(x)ν(x), (4.3)

ω(µ, π̄) ≥
∑

Xm

µ(x)ν(x)− ε. (4.4)

According to arbitrariness of ε > 0 we get now from (4.3) and (4.4)

sup
π

ω(µ, π) =
∑

Xm

µ(x)ν(x) ≤ ω(µ, π̄) + ε. (4.5)

So policy π̄ is uniform ε-optimal. Proposition 1 is proved.
Corollary 1. For all initial distribution µ:

ν(µ) = µν. (4.6)

Proof. It follows from ν(µ) =
∑
Xm

µ(x)ν(x) = µν.

Remark. Formulas (4.2) and (4.6) allow to reduce the analysis of processes Z∗µ
for all µ to the analysis of processes Z∗x, ∀x ∈ Xm.
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Policy π is built of sequence πx, (x ∈ Xm) and has following property (1):
For all initial distribution of state x ∈ Xm the probability distributions in space

L which accord with the policies π and πx from (3.1) are equal.
Definition. If π̄ satisfies the property (1) then π̄ is called combination of

policies πx.

5. Derived model and fundamental equation
The decision process is a quite number of consecutive steps. The first step

is the choice of probability distribution on Am+1 which depends on initial state.
Since the choice is taken every initial distribution µ on Xm accords with probability
distribution µ́ on Xm+1. Now we consider µ́ as initial distribution in moment of
time m + 1.

As a result, we divide our maximization problem into two problems:
1. We must choose the optimal policy for the next moments of time for every

initial distribution on Xm+1;
2. We must choose the first step according to maximum reward and maximum

value of the optimal policy assessment in the next time moments for initial distrib-
ution µ́.

Definition [Derived model]. The model that builds of model Z∗ by deletion
Xm and Am+1 is called derived model and it denotes Ź∗.

Proposition [Fundamental equation].

ω(x, π) =
∑

A(x)

π(a|x)
(
q(a) + ώ(pa, πa)

)
, (5.1)

where pa = p(·|a), πa(·|h́) = π(·|yah́),
a ∈ Am+1, y = j(a), h́ - history in model Ź∗.
Equation(5.1) is called fundamental and expresses the assessment ω of random

policy π in model Z∗ in terms of the assessment ώ of some policies in model Ź∗.
Proof. According to (4.2) we get

ώ(pa, πa) =
∑

Xm+1

p(y|a)ώ(y, πa) (5.2)

Let consider spaces of ways L and Ĺ in models Z∗ and Ź∗. Let P ∗ is probability
distribution on L according to initial state x and policy π and let P ∗

a is probability
distribution on Ĺ according to initial distribution pa and policy πa.

In according to (2.1) and (3.1) ∀ĺ ∈ Ĺ we get

I(xaĺ, x∗) = q(a) + I(ĺ, x∗−1) (5.3)

P ∗(xaĺ, x∗) = π(a|x)P ∗
a (ĺ, x∗−1) (5.4)

a ∈ A(x), x∗−1 = (x∗m+2, . . . , x
∗
n), (x∗m+1, x

∗
−1) = x∗.

Under authority of (3.2) and (3.3) we get

ω(x, π) =
∑

L

P ∗(l, x∗)I(l, x∗) (5.5)
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ώ(pa, πa) =
∑

Ĺ

P ∗
a (ĺ, x∗−1)I(ĺ, x∗−1) (5.6)

Measure P ∗(l, x∗) is nonzero only for ways which have the starting point x (that’s
for ways xaĺ). That’s why by substituting in (5.5) the expression of I(l, x∗) from (5.3)
and the expression of P ∗(l, x∗) from (5.4), and according to (5.6) we get fundamental
equation (5.1). Proposition 2 is proved.

Remark. The fundamental equation is correct even without Assumption 1.

6. Reducing the problem of optimal decision to analogical problem
for derived model. From fundamental equation (5.1) it follows the valuation:

ω(x, π) ≤ sup
A(x)

[q(a) + ώ(pa, πa)] ≤ sup
A(x)

[q(a) + ν́(pa)] (6.1)

∀x ∈ Xm and ∀π (ν́ - assessment of model Ź∗).
We’ll denote u(a) = q(a) + ν́(pa), (a ∈ Am+1) and call this value - assessment

of action a.
According to (4.3) and ν(x∗) = c(x∗) we get u = Uν́ where operator U transforms

functions on not killed states on X to the functions on A and follows the formula:

Uf(a) = q(a) +
∑

y

p(y|a)f(y) +
∑

y∗
p(y∗|a)c(y∗) (6.2)

where y - not killed states, y∗ - killed states.
Let operator V transforms functions on A to functions on not killed and not

terminal states on X and follows the formula:

V g(x) = sup
a∈A(x)

g(a) (6.3)

Let write the inequation (6.1) by using operator V :

ω(x, π) ≤ V u(x).

Then we consider sup
π

of right and left parts of ω(x, π) ≤ V u(x) and we get

ν ≤ V u. (6.4)

Remark. Later we’ll show the conditions which assure the equality in (6.4).
Definition [Product of policies]. Let π́ be a killed policy in model Ź∗ and

any x ∈ Xm is compared with some probability distribution γ(·|x) on Am+1 which is
concentrated on A(x). When we choose on the first step an action a and on all other
steps we use the killed policy π́ then we get killed policy π in model Z∗. This policy
is called product of policies γ and π́ and is denoted by γπ́. It has the expression:

π(·|h) =
{

γ(·|x) for h = x ∈ Xm,

π́(·|h́) for h = xah́.

Proposition. Let π = γπ́ is a product of killed policies γ and π́. If π́ is uniform
ε′-optimal for model Ź∗ then:

ν = V u. (6.4)
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Proof. The fundamental equation (5.1) for a product of policies has the following
expression:

ω(x, γπ́) =
∑

A(x)

γ(a|x)
(
q(a) + ώ(pa, π́)

)
(6.5)

Since π́ is ε′-optimal (it exists ∀ ε′ ≥ 0 according to Proposition 1.) we get
ώ(pa, π́) ≥ ν́(pa)−ε′, and according to appearance of u equation (6.5) transforms to

ω(x, γπ́) ≥
∑

A(x)

γ(a|x)u(a)− ε′.

Let consider the set

Aχ(x) = {a : a ∈ A(x), u(a) ≥ V u(x)− χ} (x ∈ Xm).

Aχ(x) is nonempty for all χ > 0. Let γ(·|x) be a probability distribution on A(x)
which is concentrated on Aχ(x).

Then ∑

A(x)

γ(a|x)u(a) ≥ V u(x)− χ.

Since ε′ + χ ≤ ε we get

ω(x, π) ≥ V u(x)− ε, (x ∈ Xm). (6.6)

According to (6.4) and (6.6) Proposition 3 is proved.
Corollary. The assessment ν of model Z∗ is expressed in terms of assessment

ν́ of model Ź∗ in the following way:

ν = V u, u = Uν́ (6.7)

where operators U and V are defined in (6.2) and (6.3);
Corollary. For all χ > 0 exists such ψ(x) : Xm → Am+1(x):

u(ψ(x)) ≥ ν(x)− χ (6.8)

Here γ(·|x) can be the distribution concentrated in one point ψ(x) ∈ Aχ(x).
Corollary. Let ε′ and χ arbitrary nonnegative numbers. If π́ uniform ε′-optimal

for model Ź∗ and ψ such as in Corollary 3 then killed policy ψπ́ is uniform (ε′+χ)-
optimal for model Z∗.

7. Optimality equation. Method for simple optimal policies construct-
ing. Let assume that in our model Z∗ m = 0. Let consider models Z∗0 , Z∗1 , . . . , Z∗n
where Z∗ = Z∗0 and Z∗t is derived model of Z∗t−1. Let denote the assessments ν and
u of model Z∗t as νt and ut+1(νt on Xt, ut+1 on At+1). The reward function q and
transition function p we denote qt and pt.

According to the results of section 6 we get

νt−1 = V ut, ut = Uνt (1 ≤ t ≤ n) (7.1)

where

Utf(a) = qt(a) +
∑

y∈Xt

pt(y|a)f(y) + pt(y∗|a)c(y∗), (a ∈ At, y
∗ ∈ Xt),
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Vtg(x) = sup
A(x)

g(a), (x ∈ Xt−1),

and νn = r.
Equations (7.1) are called optimality equations. Let Tt = VtUt then optimality

equations transform to
νt−1 = Ttνt. (7.1′)

From (7.1),(7.1́) and condition νn = r we calculate νn, νn−1, . . . , ν0. Then we
choose the action ψt(x) : Xt−1 → At(x) for which holds

ut(ψt) ≥ νt−1 − χt. (7.2)

∀t = 1, 2, . . . , n and for all nonnegative χ1, χ2, . . . χn.
According to Corollary 3 of Proposition 3 simple policy ϕ = ψ1ψ2 . . . ψn is

uniform ε-optimal for model Z∗ = Z∗0 and ε =
n∑

i=1
χi. Equation (7.2) can be rewritten

Tψt
νt ≥ νt−1 − χt, (7.2′)

where operator Tψt
transforms functions on Xt to functions on Xt−1 in the following

way:
Tψt

f(x) = qt[ψt(x)] +
∑

Xt

p(y|ψt(x))f(y) + pt(y∗|a)c(y∗). (7.3)

Proposition. Let π is arbitrary killed policy in derived model Z∗k (k = 1, 2, . . . , n)
and let ψt : Xt−1 → At(x) (t = 1, 2, . . . , k) are arbitrary too then

ω0(x, ψ1ψ2 . . . ψkπ) = Tψ1
Tψ2

. . . Tψk
ωk(x, π), (7.4)

Proof. It follows from fundamental equation (5.1), formulas (5.2), (7.3) and
mathematical induction.

Remark. It follows from (7.4): the result will not change if we’ll kill our decision
process in moment of time k and take the terminal reward as the assessment of policy
π.

Remark. If we can choose ψt with χt = 0 in (7.2́) ∀t = 1..n then simple policy
ϕ = ψ1 . . . ψn is called uniform optimal.

8. Sufficient of simple policies for countable models
There is the question: shall we lose something by using only simple policies? The

previous result can’t give the answer. It only makes our losses indefinitely small.
Theorem [Sufficient of simple policies]. Let µ is fixed initial distribution

and let π is arbitrary killed policy then exists ϕ-simple policy such that

ω(µ, π) ≤ ω(µ, ϕ). (8.1)

Proof. It follows from Proposition 5 and Proposition 6.
Proposition. ∀µ and for all killed policy π exists Markov policy θ such that

ω(µ, θ) = ω(µ, π) (8.2)

(These two policies are called equivalent.)



Transactions of NAS of Azerbaijan
[Killed Markov decision processes on ...]

149

Proposition. For all Markov policy θ exists simple policy ϕ such that

ω(µ, ϕ) ≥ ω(µ, θ) (8.3)

(we’ll say that ϕ dominates θ uniformly).
Proof (Proposition 5). Let θ is Markov policy and

θ(a|x) = P∗{at = a|xt−1 = x} =
P∗{xt−1at = xa}
P∗{xt−1 = x} (8.4)

(a ∈ At, x ∈ Xt−1, m + 1 ≤ t ≤ n),

where P∗ - measure in space of ways L which compares with initial distribution µ
and policy π.

Remark. The expression in a right part of (8.4) makes no sense for P∗{xt−1 =
x} = 0. So, for such x(in particular for killed states) we choose instead of θ(·|x) the
arbitrary distribution on A(x).

Let Q∗ denotes probability distribution on space L which compares with initial
distribution µ and killed Markov policy θ.

The distributionQ∗ don’t match with P∗ in the general case, but it’s quite enough
for proving (8.2) if any of xm, am+1, . . . , an, xn and x∗m+1, x

∗
m+2, . . . , x

∗
n has the same

probability distribution in relation to measures P∗ and Q∗.
It follows from

ω(µ, π) =
n∑

t=m+1

P∗q(at) +
n∑

t=m+1

P∗c(x∗t ) + P∗r(xn),

ω(µ, θ) =
n∑

t=m+1

Q∗q(at) +
n∑

t=m+1

Q∗c(x∗t ) +Q∗r(xn).

We shall use the mathematical induction to prove this.
The basis: (8.2) holds for xm because P∗ = Q∗ = µ.
The induction hypothesis: let (8.2) holds for xt−1. Let’s check it for at.
Since θ - is a killed Markov policy then

Q∗{xt−1at = xa} = Q∗{xt−1 = x}θ(a|x), (a ∈ At, x ∈ Xt−1). (8.5)

Then from (8.4) and (8.5) we get

P∗{at = a} =
∑

x∈Xt−1

P∗{xt−1at = xa} =
∑

x∈Xt−1

P∗{xt−1 = x}θ(a|x) =

=
∑

x∈Xt−1

Q∗{xt−1 = x}θ(a|x) =
∑

x∈Xt−1

Q∗{xt−1at = xa} = Q∗{at = a}.

So, our proposition holds for at.
The induction hypothesis: let (8.2) holds for at. Let’s show it for xt.
From the definition of transition function we get

P∗{atxt = ax} = P∗{at = a}p(x|a), (8.6)

Q∗{atxt = ax} = Q∗{at = a}p(x|a). (8.7)
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From (8.6) and(8.7) it follows

P∗{xt = x} =
∑

a∈At

P∗{atxt = ax} =
∑

a∈At

P∗{at = a}p(x|a) =

=
∑

a∈At

Q∗{at = a}p(x|a) =
∑

a∈At

Q∗{atxt = ax} = Q∗{xt = x}, (x ∈ Xt).

Proposition 5 is proved.
Proof.(Proposition 6.) For proving this proposition we need the following lemma.
Lemma Let f is arbitrary function and let ν is arbitrary probability distribution

on countable space E.
If νf < +∞ then the set Γ = {x : f(x) ≥ νf} has positive measure ν, namely

ν(Γ) > 0

(See proof in [1]).
According to (4.2) the condition (8.3) is equal to

ω(x, ϕ) ≥ ω(x, θ), ∀x ∈ Xm.

Let’s separate killed Markov policy θ into a product of policies θ = γθ′ where γ
is the restriction of θ to Xm and θ′ is the restriction of θ to Xm+1

⋃
Xm+2 . . .

⋃
Xn.

According to fundamental equation (5.1)

ω(x, θ) = γxf,

where γx(·) = γ(·|x) is probability distribution on A(x), and f(a) = q(a)+ω′(pa, θ
′),

(a ∈ Am+1).
Since Lemma 1 for Ã(x) ⊂ A(x) it follows γx(Ã(x)) > 0 where Ã(x) = {a :

f(a) ≥ γxf = ω(x, θ)}. So, Ã(x) is nonempty. If ψ(x) is arbitrary point of Ã(x) then
f(ψ(x)) ≥ ω(x, θ). But since fundamental equation (5.1) we get f(ψ(x)) = ω(x, ψθ′)
and

ω(x, ψθ′) ≥ ω(x, θ).

Let’s assume that condition (8.3) holds for derived model Ź∗. Then exists a
simple policy ϕ′ in Ź∗ which uniformly dominates killed Markov policy θ′. According
to fundamental equation (5.1) and our assumption we get

ω(x, ψϕ′) = q(ψ(x)) + ω′(pψ(x), ϕ
′) ≥ q(ψ(x)) + ω′(pψ(x), θ

′) = ω(x, ψθ′) ≥ ω(x, θ).

In the model Z∗ simple policy ϕ = ψϕ′ dominates θ uniformly. So, (8.3) holds
for model Z∗ too.

Proposition 6. is proved.

9. Markovian property
Let 0 < k < n, let we use killed policy ρ on interval [0, k] and killed policy π on

interval [k, n]. With the analogical considerations like in Definition 15 we can say
that policy ρπ is used.

Proposition. Let L0 is the space of ways on interval [0, n], let Lk is the space of
ways on interval [k, n] and let P ∗ρπ

x is the probability distribution which compares with
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initial state x and killed policy ρπ, and analogically P ∗π
y is the probability distribution

on Lk.
Then ∀ξ = ξ(xkak+1 . . . xn) on Lk holds

E∗ρπ
x ξ = E∗ρ

x [E∗π
xk

ξ]. (9.1)

Proof. ∀l = y0b1 . . . bkykbk+1 . . . yn according to (3.1)

P ∗ρπ
x (y0b1 . . . yn) = P ∗ρ(cyk)P ∗π

yk
(ykd), (9.2)

where c = y0b1 . . . bk, d = bk+1 . . . yn. Any function ξ on the space Lk can be
interpreted on L0 like function which not depends on x0a1, . . . , ak. That’s why we
multiply the both parts of (9.2) by ξ(ykd) and summate over all ways

E∗ρπ
x ξ =

∑
cyk

P ∗ρ
x (cyk)

∑

d

P ∗π
yk

(ykd)ξ(ykd). (9.3)

But P ∗π
yk

(yd) = 0 for y 6= yk and it follows
∑

d

P ∗π
yk

(ykd)ξ(ykd) =
∑

yd

P ∗π
yk

(yd)ξ(yd) = F (yk). (9.4)

By substituting in (9.3) the expression from (9.4) and according to∑
cyk

P ∗ρ
x (cyk)F (yk) = E∗ρ

x F (xk), we get (9.1). Proposition 7 is proved.

Corollary 1 (Markovian property). Let ν(y) = P ∗ρ
µ {xk = y} (y ∈ Xk) then

∀µ
E∗ρπ

µ ξ = E∗ρ
µ [E∗π

xk
ξ].

In particular

E∗ρπ
µ ξ(xkak+1 . . . xn) = E∗π

ν ξ(xkak+1 . . . xn), (9.5)

(It follows form (9.1) and
∑

y∈Xk

ν(y)P ∗π
y ξ = E∗π

ν ξ).

The formula (9.5) shows that the probability distribution for a part of trajectory
don’t depends on distribution µ and policy ρ on interval [k, n]. Namely, the proba-
bility forecast of the ”future”(ξ) depends not on the ”past” (µ, ρ), but only on the
”present” (ν). And that’s Markovain property.

Let’s use Markovian property for the intervals [0, k] and [k, n] contribution as-

sessment of killed policy ρπ. Instead of ξ we take ξ =
n∑

t=k+1

[q(at) + c(x∗t )] + r(xn),

substitute in (9.5) and get

ω(µ, ρπ) =
k∑

t=1

E∗ρπ
µ [q(at)+c(x∗t )]+ω(ν, π) =

k∑

t=1

E∗ρ
µ [q(at)+c(x∗t )]+ω(ν, π). (9.6)

The summation in (8.6) express the assessment ω(µ, ρ) of policy ρ for a zero
terminal reward, namely, ω(µ, ρπ) = ω(µ, ρ) + ω(ν, π).

There is also another interpretation of (9.6). According to (4.2) and ν(y) =
P ∗ρ

µ {xk = y} (y ∈ Xk) we get

ω(ν, π) =
∑

y

ν(y)ω(y, π) = E∗ρ
µ ω(xk, π),
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ω(µ, ρπ) = E∗ρ
µ [

k∑

t=1

q(at) + ω(xk, π)]. (9.7)

So, the assessment of killed policy ρπ is equal to the assessment of killed policy
ρ with the terminal reward ω(·, π) in the moment of time k.

10. Dynamic programming principle
The ideas of dynamic programming principle for Markov decision processes is

given in [4]. Let Z∗ is the model on interval [0, n] and let 0 ≤ s < t ≤ n. Let’s
denote Z∗s,t[f ] - the model which takes from the model Z∗ if [0, n] is restricted to
[s, t] and we define the terminal reward f in the moment of time t. We denote
νt

s[f ]- the assessment of the model Z∗ts with the terminal reward - f . It’s clear that
νt

s[f ] = (V U)t−sf = T t−sf X.
Since ∀t ∈ [0, n] holds

νn
0 [r] = νt

0[ν
n
t [r]] on X0 (r on Xn). (10.1)

The equation (10.1) is equivalent to the optimality equations (7.1) and condition
νn = r. It is called Dynamic programming principle and means: for optimiza-
tion the decision on the interval [0, n] with terminal reward r we must first optimize
the decision on interval [t, n](with such terminal reward) and then optimize the
decision on the interval [0, t] with terminal reward νn

t [r].
In particular according to (9.1) it follows if π′′ is a uniform ε-optimal killed policy

for Z∗nt with terminal reward r and π′ is a uniform ε-optimal policy for Z∗t0 with
terminal reward νn

t [r] then killed policy π = π′′π′ has the assessment νn
0 [r] and is

uniform ε-optimal for model Z∗n0 (with terminal reward r).
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