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Tofiq I. NAJAFOV

nz-PLANE, nz-ANALYTIC FUNCTIONS
Abstract

The notion of nz-plane, nz-derivative, nz-analytic functions generalizing
the appropriate notion of complex analysis are introduced. Some of their basic
properties are reduced.

Necessity to solve some elliptic systems by functional-analytic methods reduced
to generalization of classic notion of complex numbers, analytic functions and etc.
in the appropriate direction. Apparently, these ideas take its origin from the papers
of I.N.Vekua [1], L.Bers [2], A.Douglis [3]. Aterwards, these ideas were developed
in the papers of A.V.Bitsadze [4], I.N.Vekua [5], G.N.Nile [6] and in several papers
of A.P.Soldatov [7-10]. The authors of the papers [11-14] successfully used the
similar method for solving Sobolev type non-classic differential equations. Desire
for writing the solutions of such elliptic systems in the form of series or applying the
Fourier method to the system of equations containing time derivatives in addition
to the elliptic part, compels to study basis properties of special systems that is a
generalization of the classic system of exponents in appropriate spaces.

In this paper, the notion of nz - plane, nz -monogeneity and etc. and the Cauchy
theory is taken for this case. The notion of the system from nz-exponents is intro-
duced and its basic properties are studied.

1. nz- plane. nz-derivative. Accept the following standard denotation. N
are natural numbers; Z are integers; C is a complex plane; L (X) is an algebra of
bounded operators acting from the Banach space X to X; n is a class of Nilpotent
operators from L (X).

Take a pair of nilpotent operators (n1;n2) ∈ n × n. To each complex number
z = x+ iy ∈ C associate an operator nz = zI +xn1 + iyn2, where I ∈ L (X) is a unit
operator. It is obvious that nz1 + nz2 = nz1+z2 , n0 = 0 ∈ L (X) is a zero operator.
The mapping n : C → L (X) is not holomorphic.

It follows directly from nz = z
(
I + xn1+iyn2

z

)
that for z 6= 0 the operator nz is

invertible. The set {n2 : z ∈ C} is said to be nz -plane.
2. Let f : C ⊃ Df → X be some function, where z0 ∈ Df with some vicinity. f

is said be nz - differentiable in Z0 if there exists a limit in X

lim
∆z→0

n−1
∆z∆f , where ∆z = z − z0, ∆f = f (z)− f (z0) .

This limit will be called nz - derivative of the function f and denote it by df
dnz

;

df

dnz
= lim

∆z→0
n−1

Mz∆f. (1)

It is easy to see that d
dnz

possesses the properties:

d (λf)
dnz

= λ
df

dnz
;

d (f1 + f2)
dnz

=
df1

dnz
+

df2

dnz
(2)

3. Let f : C ⊃ Df → L (X) be some mapping and z0 ∈ Df . The derivative
df

dnz
is similarly determined by formula (1), where naturally, the convergence at this

time is understood in L (X). In addition to (2), the df
dnz

possesses the property

d (f1f2)
dnz

=
df1

dnz
f2 + f1

df2

dnz
.
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If limit (1) exists at the point z = z0, the appropriate mapping will be called
monogeneous in z0. The monogeneous mapping in some vicinity of the point z = z0

is said to be analytic in z0.
Let

n∆z = ∆zI + ∆xn1 + i∆yn2.

Assuming ∆y = 0, we have
n∆z = ∆xI + ∆xn1

n−1
∆z = (∆xI + ∆xn1)

−1 = (I + n1)
−1 (∆x)−1

Consequently,
df

dnz
= (I + n1)

−1 ∂f

∂x
.

Similarly, for ∆x = 0 we have:

n∆z = i∆yI + i∆yn2,

n−1
∆z = −i (I + n2)

−1 (∆y)−1 ,

df

dnz
= −i (I + n2)

−1 ∂f

∂y
.

Thus,

(I + n1)
−1 df

dx
= −i (I + n2)

−1 ∂f

∂y
. (3)

So, if f is an nz-differentiable mapping, it satisfies relation (3). Conversely, let
(3) hold. The mapping f is said to be nz -differentiable if

∆f = ∆xZ + ∆yB +
=
o (n∆z) ,

where A;B are the mappings independent of ∆x, ∆y mapping and
∥∥∥n−1

∆z

=
o (n∆z)

∥∥∥ →
0 as ∆x, ∆y → 0. If is nz - differentiable, then it is clear that ∂f

∂x = A; ∂f
∂y = B.

Consequently
(I + n1)

−1 A = −i (I + n2)
−1 B.

We have
n∆z = ∆x (I + n1) + i∆y (I + n2) .

(I + n2) A = −i (I + n1) B,

(I + n2)∆f = ∆x (I + n2) A + ∆y (I + n2) B + (I + n2)
=
o (∆x; ∆y) =

= −i∆x (I + n1) B + ∆y (I + n2) B + (I + n2)
=
o (∆x;∆y) =

= i [∆x (I + n1) + i∆y (I + n2)]B + (I + n2)
=
o (∆x;∆y) =

= −in∆z + (I + n2)
=
o (∆x;∆y) .

Thus,
n−1

∆z∆f = − (I + n2)
−1 B + n−1

∆z

=
o (∆x;∆y) .

Hence, it directly follows that

df

dn2
= −i (I + n2)

−1 B = (I + n1)
−1 A. (4)
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So, the following theorem is true.
Theorem 1. If f is an nz - monogeneous mapping in z, then (3) is valid.

Conversely, if it is nz - differentiable in z and (3) holds , then f is nz - monogeneous
mapping in z and (4) is valid.

Now, let Γ ⊂ C be a pieccewise-smooth curve and Γ ⊂ Df be a domain of
definition of the mapping f : Df → X (or L (X)). As usual, we divide Γ into n
parts by the points {zk}n

0 ⊂ Γ and consider

S ({zk}) =
∑

k

n−1
∆zk

f (ξk) ,

where ξk ∈
∪

zkzk+1 is an arch of Γ. The limit (if it exists)
∫

Γ

dnzf (z)
def≡ lim

max
k
|∆zk|→0

S ({zk}) , (5)

will be called an nz - integral. Let T ∈ L (X) be an operator commuting with the
nz- operator. Then it is clear that

∫

Γ

dnz (Tf (z)) = T

∫

Γ

dnzf (z) .

nz -integral possesses all ordinary properties (additivity with respect to f and Γ).
Assume that Φ is nz-differentiable and dΦ

dnz
= f , i.e. dΦ = fdnz. Let Γ be a

pieccewise-smooth curve with the ends a a and b. Take partitioning of Γ into parts
by the points {zk}n

0 ⊂ Γ.
We have

Φ (b)− Φ (a) = Φ (zn)− Φ(z0) =

= [Φ (zn)− Φ(zn−1)] + [Φ (zn−1)− Φ(zn−2)] + ... + [Φ (z1)− Φ(z0)] =

= ∆Φ (zn−1) + ... + ∆Φ (z0) =
∑

k

[
∆xkAk + ∆ykBk +

=
o (n∆zk

)
]
. (6)

Assume that the expression
∥∥∥n−1

∆z

=
o (n∆z)

∥∥∥ uniformly converges to zero on Γ we
have

∆xA + ∆yB = ∆x (I + nz) (I + n1)
−1 A + ∆y (I + n2) (I + n2)

−1 B =

= (?) = −i [∆x (I + n1) + i∆y (I + n2)] (I + n2)
−1 B =

= −in∆z (I + n2)
−1 B = n∆z

dΦ
dnz

= n∆zf (z) .

Taking this into account this relation in (6), we get:

Φ (b)− Φ(a) =
∑

k

n∆zk
f (zk) +

∑

k

=
o (n∆zk

) .

Hence we directly get ∫

Γ

dnzf (z) = Φ (b)− Φ(a) . (7)
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This is an analogy of Newton-Leibnits formula.
And we prove
Statement 1. Let Φ : C ⊃ Γ → L (X) be continuosly-differentiable, dΦ

dnz
= f (z)

and n−1
∆z

=
o (n∆z) ⇒ 0 uniformly on Γ, where

∆Φ = ∆xA + ∆yB +
=
o (n∆z) ,

then the Newton-Leibnitz nz - formula (7) is valid. If Γ is closed and Φ is continuous
on Γ, then it holds the Cauchy theorem:

∫

Γ

dnzf (z) = 0.

This formula follows directly from (7).
We can prove the Cauchy theorem under other assumptions. For that at first we

establish analogy of the Green-Ostrogradskiy formula.
4. Let n1; n2 ∈ L (X) be nilpotent operators. To each (x; y) ∈ R2 we associate

(nx; ny) ∈ L (X) × L (X), where nx = xI + xn1; ny = yI + yn2. We call a linear
space

{
(nx; ny) : (x; y) ∈ R2

}
with coordinatewise linear operations R2

n - plane. f :
R2 → L (X) (or X) is called n-differentiable in (x; y) if ∃A; B ∈ L (X) (or X):

∆f = n∆xA + n∆yB +
=
o (ρ) , as ρ → 0,

where ρ =
√

∆x2 + ∆y2. It is easy to see that ρ → 0 is equivalent to√
‖n∆x‖2 + ‖n∆y‖2 → 0. Assume

df = dnxA + dnyB.

Similar to the classic case we define

∂f

∂nx
= A,

∂f

∂ny
= B.

In the same way we determined the double integrals
∫ ∫

D

dnxdnyf (x; y) ;
∫ ∫

D

dnydnxf (x; y) ,

as limits of the sums
∑

i,j

n∆xin∆yjf
(
ξi; ηj

)
;
∑

i,j

n∆yin∆xjf
(
ξi; ηj

)
.

We define in the same way the curvilinear integral
∫

L

dnxf (x; y) + dnyg (x; y) ,

where f ; g : C → L (X) (or X).
The proof of the Green formula of the classic case is suitable in this case as well,

i.e. it is valid
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Theorem 2. Let f ; g : D ⊂ C → L (X) (or X) be continuous in D and have
continuous partial derivatives in D. If there exists the integral

I =
∫ ∫

D

dnxdny

(
∂g

∂nx
− ∂f

∂ny

)
,

it is valid Green’s n-formula
∫ ∫

D

dnxdny

(
∂g

∂nx
− ∂f

∂ny

)
=

∮
L

dnxf + dnyg,

where L = ∂D.
Indeed, at first we see that the relations

dnx = dx (I + n1) ;
∂f

∂nx
= (I + n1)

−1 ∂f

∂x

are valid.
The similar relations are valid also with respect to the variable y. Assume

f̃ (x; y) = (I + n1) f (x; y), g̃ (x; y) = (I + n2) g (x; y). It is easy to see that it holds

I =
∫ ∫

D

(
∂g̃

∂x
− ∂f̃

∂y

)
dxdy.

Take ∀ϑ ∈ (L (X))∗ (or ϑ ∈ X∗) and consider

Jϑ = ϑ (I) = I =
∫ ∫

D

(
∂gϑ

∂nx
− ∂fϑ

∂ny

)
dxdy, (8)

where gϑ = ϑ (g̃), fϑ = ϑ
(
f̃
)
. For the functions gϑ and fϑ all the conditions of the

Green classic theorem are fulfilled. Therefore, the Green formula

Jϑ =
∮
L

fϑdx + gϑdy = ϑ

(∮
L

f̃dx + g̃dy

)
(9)

is valid. From (8) and (9) we get:

I =
∮
L

f̃dx + g̃dy =
∮
L

(I + n1) dxf + (I + n2) dyg =
∮
L

dnxf + dnyg.

The theorem is proved
Now, assume that the expression dnxf + dnyg is the exact differential in D, i.e.

∃F : D → L (X) (or X): dF = dnxf + dnyg and so ∂F
∂nx

= f , ∂F
∂ny

= g. If F is
continuous on L, it is clear that

∫ ∫

D

dnxdny

(
∂g

∂nx
− ∂f

∂ny

)
= 0.

Now, let Φ be an nz - analytic function in D. Consider
∮
L

dnzf =
∮
L

(dnx + idny) f, (10)
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since it is easy to see that dnz = dnx + idny. Applying to (10) the Green nx,y-
formula, we get

∮
L

dnzf =
∫ ∫

D

dnxdny

(
i

∂f

∂nx
− ∂g

∂ny

)
.

Hence, from (3)we directly get ∮
L

dnzf = 0.

Thus, we proved
Theorem 3. Let f be nz− differentiable in D. Then it holds the formula

∮
L

dnzf = 0.
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