Togrul R. MURADOV, Saud FARAHANI

ON BASISITY OF SOME PERTURBED SYSTEM OF EXPONENTS IN L_p

Abstract

A perturbed system of exponents whose phase has asymptotic with piecewise principal part is considered in this paper. Basisity criterion of this system in the Lebesgue space L_p is established.

Consider the following system of exponents

$$\left\{e^{i\lambda_n(t)\,t}\right\}_{n\in\mathbb{Z}}\quad (\mathbb{Z} \text{ is integers set}) \tag{1}$$

where $\lambda_n(t)$ has the asymptotic

$$\lambda_n(t) = (n + \alpha \operatorname{sign} n \cdot \operatorname{sign} t) t + \underline{0} \left(\frac{1}{|n|^{\gamma}} \right) \qquad n \to \infty,$$
(2)

 $\alpha, \gamma \in \mathbb{R}$. Specific case of system (1) is $\left\{ e^{i\lambda_n^0(t)} \right\}_{n \in \mathbb{Z}}$, where

$$\lambda_n^0(t) \equiv \begin{cases} \lambda_n^+ t, & 0 < t < \pi \\ \lambda_n^- t, & -\pi < t < 0 \end{cases}$$

 $\{\lambda_n^{\pm}\}\$ has appropriate asymptotics. The system $\{e^{i\lambda_n^0(t)t}\}_{n\in\mathbb{Z}}\$ is a collection of eigen functions of the first order ordinary discontinuous differential operator Lu = u' on $(-\pi, 0) \bigcup (0, \pi)$, that is understood in V.I. Il'in's sense [1]. Under the domain of definition of the operator L we understand a Cartesian product $W_p^1(-\pi, 0) \times W_p^1(0,\pi)$, $1 . By these and other reasons, it is urgent to study basis properties of such type of systems. Many papers beginning with Paley-Wiener basic result [2] have been devoted to these problems. Basicity problems of system (1) in <math>L_p(-\pi,\pi)$, $1 , in the case <math>\lambda_n(t) = n + \alpha sign n$, $n \in \mathbb{Z}$, have been completely studied in the papers [3,4]. Discontinuous but unperturbed case has been considered in the papers [5,6]. In this paper, we study basicity problems of system (1) in $L_p \equiv L_p(-\pi,\pi)$, 1 when asymptotics (2) holds.

Necessary notion and facts. Further, we will need some notion and results from the theory of close basis. We will accept the following denotation.

B- space, is a Banach space; X^* is a space conjugated to X; f(x) is the value of the functional $f \in X^*$ in $x \in X$.

Definition 1. The system $\{x_n\}_{n\in\mathbb{N}} \subset X$ in B-space X is said to be ω -linearly independent if from $\sum_{n=1}^{\infty} a_n x_n = 0$ it follows that $a_n = 0, \forall n \in \mathbb{N}$.

The following Lemma is valid.

Transactions of NAS of Azerbaijan

130 ______ [T.R.Muradov,S.Farahani]

Lemma 1. Let X be a B-space with a basis $\{x_n\}_{n \in \mathbb{N}} \subset X$, $F : X \to X$ be a Fredholm operator. Then the following properties of the system $\{y_n = Fx_n\}_{n \in \mathbb{N}}$ in X are equivalent.

- 1. $\{y_n\}_{n \in \mathbb{N}}$ is complete;
- 2. $\{y_n\}_{n \in \mathbb{N}}$ is minimal;
- 3. $\{y_n\}_{n \in \mathbb{N}}$ is ω -linearly independent;
- 4. $\{y_n\}_{n \in \mathbb{N}}$ is a basis isomorphic to $\{x_n\}_{n \in \mathbb{N}}$.

Accept following definitions.

Definition 2. The systems $\{x_n\}_{n\in\mathbb{N}}$ and $\{y_n\}_{n\in\mathbb{N}}$ in the *B*-space, *X* with the norm $\|\cdot\|$ are called p-close if $\sum_{n} \|x_n - y_n\|^p < +\infty$.

Definition 3. The system $\{x_n\}_{n \in N}$ with conjugated $\{x_n^*\}_{n \in N} \subset X^*$ minimal in the B-space X is said to be p-system if for $\forall x \in X : \{x_n^*(x)\}_{n \in \mathbb{N}} \in l_p, \text{ where } l_p$ is an ordinary space of sequences. In the case of basisity, such system will be called p-basis.

The following lemma is also valid.

Lemma 2. Let X be a B-space with q-basis $\{x_n\}_{n\in\mathbb{N}}$ and the system $\{y_n\}_{n\in\mathbb{N}}\subset$ X be p-close to it, where $\frac{1}{p} + \frac{1}{q} = 1$, $1 \le p < +\infty$. Then the expression $Fx = \sum_{n} x_{n}^{*}(x) y_{n}$ generates a Fredholm operator in X.

Concerning these and other results, we can consider for example the papers [7-10].

2. Basic results

Before to formulate the basic results we cite some arguments that we will need. So, let X be a B- space with a basis $\{x_n\}_{n\in N}$ and $\{x_n^*\}_{n\in N} \subset X^*$ be a conjugated system. Let $\{y_n\}_{n \in \mathbb{N}} \subset X$ be a some what defective system.

Assume, that $\exists \chi \in N$ such that for $\forall m \geq \chi$ the system $\{x_k\}_1^m \bigcup \{y_k\}_{k \geq m+1}$ forms a basis in X. By $\{\vartheta_k\}_{k\in \mathbb{N}} \subset X^*$ we denote a system conjugated to $\{x_k\}_1^{\chi} \cup$ $\{y_k\}_{k>\chi+1}$. It is obvious that the following properties of the system $\{y_k\}_{k\in\mathbb{N}}$ are equivalent:

a) $\{y_k\}_{k \in N}$ is complete ;

b) $\{y_k\}_{k \in \mathbb{N}}$ is minimal;

forms a basis. c) $\{y_k\}_{k \in N}$

Expand y_k , $k = \overline{1, m}$, by the basis $\{x_k\}_1^m \bigcup \{y_k\}_{k \ge m+1}$:

$$y_k = a_{k1}x_1 + \dots + a_{km}x_m + y_k^m, \quad k = \overline{1, m},$$

where y_k^m belongs to the closure of the linear system $\{y_k\}_{k \ge m+1}$ and we denote this closure by Y^m .

Consequently, fulfilment of the condition det $(a_{ij})_{i,j=\overline{1,m}} \neq 0$ is equivalent to the properties a)-c).

Transactions of NAS of Azerbaijan

[On basisity of some perturbed system]

Thus, the condition

$$\det \left(a_{ij}\right)_{i,j=\overline{1,m}} \neq 0,\tag{3}$$

is fulfilled for $\forall m \geq \chi$. By n_0 we denote min { χ : satisfying (3)}. If $n_0 = 1$, it is clear that the system $\{y_k\}_{k\in N}$ forms a basis. For $n_0 > 1$ the defect d of the system $\{y_k\}_{k\in N}$ satisfies $1 \leq d \leq n_0 - 1$. By Y_m we denote a linear span of the system $\{y_k\}_{k=1}^m$. It is clear that if the system $\{y_k\}_1^\infty$ forms a basis then dim $Y_m = m$. For dim $Y_m = m$ it forms a basis iff $Y_m \cap Y^m = 0$.

Now state the basic results. Consider the system (1).

Assume $\mu_n(t) = (n + \alpha \operatorname{signn} \cdot \operatorname{signt}) t, \ n \in \mathbb{Z}.$

Let $\delta_n(t) = \lambda_n(t) - \mu_n(t)$.

Using the obvious relation $|e^{i\lambda_n(t)} - e^{i\mu_n(t)}| = |e^{i\delta_n(t)} - 1|$, and asymptotics (2), we can establish

$$\left|e^{i\lambda_n(t)} - e^{i\mu_n(t)}\right| = \left|\sum_{k=1}^{\infty} \frac{\delta_n^k}{k!}\right| \le \sum_{k=1}^{\infty} \frac{\left|\delta_n\right|^k}{k} \le c \left|n\right|^{\gamma}, \quad \forall n \neq 0,$$
(4)

where c is some constant. From the results of the paper [5] we get that the system $\{e^{i\mu_n(t)}\}_{n\in\mathbb{Z}}$ forms a basis in $L_p(-\pi,\pi)$, $1 , for <math>\forall \alpha \in \mathbb{R}$.

By the denotation of this paper we have $\beta(t) = -\alpha |t|$, $\alpha(t) = \alpha |t|$ and so $\theta(t) = \beta(t) - \alpha(t) = -2\alpha |t|$. $\theta(t)$ does not have discontinuity points in $(-\pi, \pi)$. Since $\theta(-\pi) - \theta(\pi) = 0$, then the required one directly follows from theorem 1 of the paper [5].

Then as it follows from the results of the paper [11], the system $\{e^{i\mu_n(t)}\}_{n\in\mathbb{Z}}$ is isomorphic in L_p to the classic system of exponents $\{e^{int}\}_{n\in\mathbb{Z}}$. Hence it follows that Hausdorff-Young type theorem is valid for the system $\{e^{i\mu_n(t)}\}_{n\in\mathbb{Z}}$ i.e. let $\{e_n\}_{n\in\mathbb{Z}} \subset L_q$ be a space orthogonal to it $(\frac{1}{p} + \frac{1}{q} = 1)$.

Let $f \in L_p$. By $\{f_n\}_{n \in \mathbb{Z}}$ we denote biorthogonal coefficients of the function f by the system $\{e^{i\mu_n(t)}\}_{n \in \mathbb{Z}}$: $f_n = \int_{-\pi}^{\pi} f(t) \overline{e_n(t)} dt$, $\forall n \in \mathbb{Z}$, where $(\bar{\cdot})$ is a complex conjugation. The following Theorem is valid.

Theorem 1. The following statements hold:

1. $1 , <math>f \in L_p$. Then $\{f_n\}_{n \in \mathbb{Z}} \in l_q$, moreover $\|\{f_n\}_{n \in \mathbb{Z}}\|_{l_q} \leq M_p \|f\|_p$, where $\|.\|_{l_q} (\|.\|_p)$ is an ordinary norm in l_q , (in $L_p(-\pi,\pi)$), M_p is a constant dependent only on p.

2. p > 2, $\{f_n\}_{n \in \mathbb{Z}} \in l_q$. Then $\exists f \in L_p$ such that $\{f_n\}_{n \in \mathbb{Z}}$ are its biorthogonal coefficients by the system $\{e^{i\mu_n(t)}\}_{n \in \mathbb{Z}}$, moreover

$$||f||_{p} \leq M_{p} ||\{f_{n}\}_{n \in \mathbb{Z}}||_{l_{q}},$$

 \tilde{M}_p is a constant dependent only on p.

Consider these different cases.

1) $1 \frac{1}{p}.$

In this case, by Theorem 1, the system $\{e^{i\mu_n(t)}\}_{n\in\mathbb{Z}}$ forms a *q*-basis in L_p . It directly follows from estimation (4) that the systems $\{e^{i\mu_n(t)}\}_{n\in\mathbb{Z}}$ and (1) are *p*-close

131

in L_p . Then by lemma 2, the expression

$$Ff = \sum_{n} f_n e^{i\lambda_n(t)}$$

generates a Fredholm operator $F: L_p \to L_p$. It is clear that

$$F[e^{i\mu_n(t)}] = e^{i\lambda_n(t)}, \ \forall n \in \mathbb{Z}.$$

2) $2 \frac{1}{q}.$

In this case, the systems (1) and $\{e^{i\mu_n(t)}\}_{n\in\mathbb{Z}}$ are q-close in L_p . Taking into attention Theorem 1, we obtain

$$\|\{f_n\}_{n\in\mathbb{Z}}\|_{l_q} \le \tilde{M}_p \|f\|_q \le C_p \|f\|_p, \ \forall f\in L_p.$$

Thus, the system $\{e^{i\mu_n(t)}\}_{n\in\mathbb{Z}}$ forms a *p*-basis in L_p . Similar to the previous case, we understand that the operator $F: L_p \to L_p$ determined by the expression Ff = $\sum_{n \in \mathbb{Z}} f_n e^{i\lambda_n(t)}$, is Fredholm and

$$F[e^{i\mu_n(t)}] = e^{i\lambda_n(t)}, \ \forall n \in \mathbb{Z}.$$

As a result, from lemma 1 we establish the following theorem.

Theorem 2. Let asymptotics (2) hold and $\gamma > \max\left\{\frac{1}{p}, \frac{1}{q}\right\}$. Then in L_p , 1 < 1 $p < +\infty$ the following properties of system (1) are equivalent:

- 1. (1) is complete in L_n ;
- 2. (1) is minimal in L_p ;
- 3. (1) forms a basis in L_p isomorphic to the classic system of exponents $\{e^{int}\}_{n\in\mathbb{Z}}$.

Remark. When the principal part of asymptotics (2) has a linear function (i.e. in (2) there is no multiplier sign t) then basisity in L_p of system (1) takes another pattern. In this case, basisity holds not for arbitrary $\alpha \in R$. For basicity, a p dependent inequality type condition is imposed on α . Furthermore, in this case, using N. Levinson's one result [12], the completeness of system (1) in L_p under natural conditions $\lambda_i(t) \neq \lambda_j(t)$, $i \neq j$, and at the same time the basisity of the same system in L_p is easily established. Our case is a more complicated one. In order to demonstrate what has been explained, we consider the following example.

Example. Consider the system of exponents

$$\left\{e^{i\lambda_n(t)}\right\}_{n\in\mathbb{Z}},\tag{5}$$

where $\lambda_n(t) = nt, \quad \forall n \neq 0;$

$$\lambda_o(t) \equiv \begin{cases} \lambda t, & 0 < t < \pi \\ -\mu t, & -\pi < t < 0 \end{cases},$$

Transactions of NAS of Azerbaijan ______ [On basisity of some perturbed system]

where $\lambda; \mu \neq 0$. Expand the function $e^{i\lambda_0(t)}$ in the basis $\{e^{int}\}_{n \in \mathbb{Z}}$:

$$e^{i\lambda_0(t)} = a_0 + \sum_{n \neq 0} a_n e^{int},$$

where $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\lambda_0(t)} dt$.

From the above mentioned arguments we understand that for basicity of system (5) in L_p it is necessary and sufficient to fulfill the condition $a_0 \neq 0$. We have

$$2\pi a_0 = \int_0^{\pi} e^{i\lambda t} dt + \int_{-\pi}^0 e^{-i\mu t} dt = \frac{1}{i\lambda} \left(e^{i\lambda\pi} - 1 \right) + \frac{1}{i\mu} \left(e^{i\mu\pi} - 1 \right).$$

Assume $\omega(\lambda) = \frac{1}{\lambda} (e^{i\lambda\pi} - 1)$. Thus, for the basicity of system (5) in L_p it is necessary and sufficient that λ and μ satisfy the condition $\omega(\lambda) + \omega(\mu) \neq 0$. In principle, this is an analogy of Levinson's conditions.

References

[1]. Il'in V.A. Necessary and sufficient conditions of basicity and equiconvergence with trigonometric series of spectral expansions. Diff.Uravn. 1980, vol.16, No 5, pp. 771-794 (Russian).

[2]. Wiener N, Paley R. Fourier transformation in complex domain. M. Nauka, 1964 (Russian).

[3]. Sedletskii A.M. Biorthogonal expansions in series of exponents on real axis intervals. Usp.mat.nauk, 1982, vol.37, issue 5, pp. 51-95 (Russian).

[4]. Moiseev E.I. Basicity of a system of exponents, cosines and sines in L_p . DAN SSSR, 1984, vol.275, No 4, pp.794-798 (Russian).

[5]. Bilalov B.T. Basicity of some systems of exponents, cosines and sines. Diff.Uravn., 1990, vol. 26, No 1, pp. 10-16 (Russian).

[6]. Bilalov B.T. Basis properties of some systems of exponents, cosines and sines. Sib. mat. zh. 2004, v.45, No 2, pp. 264-273 (Russian).

[7]. Young R.M. An introduction to nonharmonic Fourier series, AP NYLTSSF, 1980, 246 p.

[8]. Singer I. Bases in Banach spaces, I. Springer-Verlag, Berlin and New York, 1970.

[9]. Singer I. Bases in Banach spaces, II. Springer - Verlag, Berlin and New York, 1980.

[10]. Bilalov B.T. Bases from exponents, cosines and sines that are eigen functions of differential operators. Diff. Uravn., 2003, v.39, No 5, pp. 1-5 (Russian).

[11]. Bilalov B.T. On isomorphism of two bases in L_p . Fundamentalnaya and prikladnava matematica, 1995, vol.1, is.4, pp.1091-1094 (Russian).

133

 $\frac{134}{[T.R.Muradov,S.Farahani]}$

[12]. Levin B.Ya. Distrubution of the roots of entire functions. M. GITTL, 1956, 632p.

Togrul R. Muradov, Saud Farahani

Institute of Mathematics and Mechanics of NAS of Azerbaijan. 9, F. Agayev str., AZ-1141, Baku, Azerbaijan. Tel.: (+99412) 439-47-20 (off.).

Received January 05, 2010; Revised March 31, 2010.