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Abstract

In the paper, an optimal control problem described by a system of Volterra
type two-dimensional difference equations is studied. A necessary optimality
condition is obtained in the form of Pontryagin’s discrete maximum principle.
In the case of convexity of controls domain the necessary optimality condition
in the form of linearized maximum principle is proved. Analogy of the Euler
equation is introduced under the assumption of openness of the controls domain.

Introduction. Various difference equations representing difference analogies of
differential, integro-differential, integral equations and also the equations of math-
ematical physics (see for example [1-6] are oftenly used while modeling many real
processes of military matters, production, economy, dynamics of population and etc.

To the present time the optimal control problems described by ordinary differ-
ential equations and equations of mathematical physics (see for example [7-14] have
been studied enough.

The suggested paper is devoted to investigation of an optimal control problem
described by a system of two-dimensional difference equations of Volterra type rep-
resenting a difference analogy of hyperbolic type integro- difference equation with
the Goursat boundary conditions. Different necessary optimality conditions of first
order are obtained. Necessary and sufficient optimal condition is proved in one
special case. Notice that the optimal control problems described by Volterra type
integral equations have been studied in the papers [5-21] and others. Notice that
such a problem is studied for the first time.

1. Problem Statement. Assume that the controlled problem is described by
the following system of Volterra type difference equations:

z(t + 1, x + 1) =
t∑

τ=t0

x∑
s=x0

f(t, x, τ , s, z(τ , s), u(τ , s)),

t ∈ T = {t0, t0 + ,...,t1 − 1} , x ∈ X = {x0, x0 + ,...,x1 − 1}
(1.1)

with boundary conditions

z(t0, x) = α(x), x ∈ X ∪ x1,

z(t, x0) = b(t), t ∈ T ∪ t1, a(x0) = b(t0) = a0.
(1.2)

Here, z(t, x) is an n dimensional state vector, a(x), b(t) are the given n−dimensional
discrete vector-functions, t0, t1, x0, x1 are given, the differences t1 − t0, x1 − x0
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are natural numbers, f(t, x, τ , s, z, u) is a given n−dimensional vector-function dis-
crete with respect to (t, x, τ , s) and continuous with respect to (z, u) together with
fz(t, x, τ , s, z, u), u(t, x) is an r dimensional vector of control actions with the values
from the given non-empty and bounded set U ⊂ Rr, i.e.

u(t, x) ∈ U ⊂ Rr, (t, x) ∈ T ×X. (1.3)

The control functions satisfying these restrictions are called admissible controls.
On the solutions of problem (1.1) − (1.2) generated by all possible admissible

controls define the functional

S(u) = ϕ(z(t1, x1)). (1.4)

Here ϕ(z) is a given continuously differentiable scalar function.
The problem is to find the minimum of the functional (1.4) under restrictions

(1.4)-(1.3).
The admissible control u(t, x) delivering minimum to the functional (1.4) un-

der restrictions (1.1-1.3) is said to be an optimal control, the appropriate process
(u(t, x), z(t, x) an optimal process.

2. Increment formula of the quality test. Let u(t, x) be a fixed admissible
control. Consider an arbitrary admissible control u(t, x) = u(t, x) + ∆u(t, x) and
by z(t, x), z(t, x) = z(t, x)+∆z(t, x) denote appropriate solutions of problem (1.1)-
(1.2).

It is clear that the increment ∆z(t, x) of the state vector will be a solution of
the problem

∆z(t + 1, x + 1) =
t∑

τ=t0

x∑
s=x0

f(t, x, τ , s, z(τ , s), u(τ , s))−

−f(t, x, τ , s, z(τ , s), u(τ , s))] ,

(2.1)

∆z(t0, x) = 0, x ∈ X ∪ x1,

∆z(t, x0) = 0, t ∈ T ∪ t1.
(2.2)

Write the increment formula of the quality test

∆S(u) = S(u)− S(u) = ϕ(z(t1, x1))− ϕ(z(t1, x1)). (2.3)

Multiplying scalarly the both hand sides of identity (2.1) from the left by the vector-
function ψ(t, x) unknown to the present time and summing over t from t0 to t1 − 1
and over x from x0 to x1 − 1, we get

t1−1∑
t=t0

x1−1∑
x=x0

ψ′(t, x)∆z(t + 1, x + 1) =

=
t1−1∑
t=t0

x1−1∑
x=x0

[
t∑

τ=t0

x∑
s=x0

ψ′(t, x) [f(t, x, τ , s, z(τ , s), u(τ , s))−

−f(t, x, τ , s, z(τ , s), u(τ , s))]] .

(2.4)
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It is easy to prove that

t1−1∑
t=t0

x1−1∑
x=x0

ψ′(t, x)∆z(t + 1, x + 1) = ψ′(t1 − 1, x1 − 1)∆z(t1, x1)−

−ψ′(t1 − 1, x0 − 1)∆z(t1, x0)− ψ′(t0 − 1, x1 − 1)∆z(t0, x1)+

+ψ′(t0 − 1, x0 − 1)∆z(t0, x0) +
x1−1∑
x=x0

ψ′(t1 − 1, x1 − 1)∆z(t1, x)−

−
x1−1∑
x=x0

ψ′(t0 − 1, x− 1)∆z(t0, x) +
t1−1∑
t=t0

ψ′(t− 1, x1 − 1)∆z(t, x1)−

−
t1−1∑
t=t0

ψ′(t− 1, x0 − 1)∆z(t, x0) +
t1−1∑
t=t0

x1−1∑
x=x0

ψ′(t− 1, x− 1)∆z(t, x). (2.5)

Reduce the discrete analogy of Foubini’s two-dimensional theorem.
Lemma 2.1. Let L(t, x, τ , s) and M(t, x, τ , s) be the given (n × n) matrix

functions. Then, the following identity is valid

m∑
t=t0

∑̀
x=x0

[
t∑

τ=t0

x∑
s=x0

L(m, `, t, x)M(t, x, τ , s)

]
=

=
m∑

t=t0

∑̀
x=x0

[
m∑

τ=t0

∑̀
s=x0

L(m, `, t, x)M(τ , s, t, x)

]
.

The lemma is proved by the scheme, for example from [22].
Further, using this two-dimensional analogy of the discrete analogy of Foubini’s

formula ([23-24]), we get

t1−1∑
t=t0

x1−1∑
x=x0

[
t∑

τ=t0

x∑
s=x0

ψ′(t, x) [f(t, x, τ , s, z(τ , s), u(τ , s))−

−f(t, x, τ , s, z(τ , s), u(τ , s))]] =

=
t1−1∑
t=t0

x1−1∑
x=x0

[
t1−1∑
τ=t

x1−1∑
s=x

ψ′(τ , s) [f(τ , s, t, x, z(τ , s), u(τ , s))−

−f(τ , s, t, x, z(τ , s), u(τ , s))]] (2.6)

Introducing the Hamilton-Pontryagin’s functions in the following way:

H(t, x, z(t, x), u(t, x), ψ(t, x)) =
t1−1∑
τ=t

x1−1∑
s=x

ψ′(τ , s)f(τ , s, t, x, z(τ , x), u(τ , s)).

and taking into account the identities (2.1), (2.2), (2.4), (2.5), (2.6), the increment
formula (2.3) of the quality test (1.4) is written in the form

∆S(u) = ψ′z(z(t1, x1))∆z(t1, x1) + 01(‖∆z(t1, x1)‖)+
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+ψ′(t1 − 1, x1 − 1)∆z(t1, x1) +
x1−1∑
s=x0

ψ′(t1 − 1, x− 1)∆z(t1, x)+

+
t1−1∑
t=t0

ψ′(t− 1, x1 − 1)∆z(t, x1) +
t1−1∑
t=t0

x1−1∑
x=x0

ψ′(t− 1, x− 1)∆z(t1, x)−

−
t1−1∑
t=t0

x1−1∑
x=x0

[H(t, x, z(t, x), u(t, x)ψ(t, x))−H(t, x, z(t, x), u(t, x)ψ(t, x))]−

−
t1−1∑
t=t0

x1−1∑
x=x0

[Hz(t, x, z(t, x), u(t, x)ψ(t, x))−Hz(t, x, z(t, x), u(t, x), ψ(t, x)]′×

×∆z(t, x)−
t1−1∑
t=t0

x1−1∑
x=x0

H ′
z(t, x, z(t, x), u(t, x), ψ(t, x)∆z(t, x)−

−
t1−1∑
t=t0

x1−1∑
x=x0

02 (‖∆z(t, x)‖) . (2.7)

Assume that the vector-function ψ(t, x) is a solution of the problem

ψ(t− 1, x− 1) = Hz(t, x, z(t, x), u(t, x), ψ(t, x)), (2.8)

ψ(t1 − 1, x− 1) = 0, x ∈ X,

ψ(t− 1, x1 − 1) = 0, t ∈ T,

ψ(t1 − 1, x1 − 1) = −ϕz(z(t1, x1)).
(2.9)

The problem (2.8)-(2.9) is said to be a conjugate problem (or a system) in prob-
lem (1.1)-(1.4). Therewith, the increment formula accepts the form

∆S(u) = −
t1−1∑
t=t0

x1−1∑
x=x0

[H(t, x, z(t, x), u(t, x)ψ(t, x))−

− H(t, x, z(t, x), u(t, x)ψ(t, x))] + 01 (‖∆z(t1, x1)‖)−
t1−1∑
t=t0

x1−1∑
x=x0

02 (‖∆z(t, x)‖)

−
t1−1∑
t=t0

x1−1∑
x=x0

[Hz(t, x, z(t, x), u(t, x)ψ(t, x)) −

−Hz(t, x, z(t, x), u(t, x), ψ(t, x)]′∆z(t, x) (2.10)

3. Necessary optimality condition. Suppose that the set

f(t, x, τ , s, z(τ , s), U) = {α:α = f(t, x, τ , s, z(τ , s), ν), ν ∈ U} (3.1)

is convex for all (t, x, τ , s).
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Then a special increment of the admissible control u(t, x) may be determined by
the formula

∆uε(t, x) = νε(t, x)− u(t, x), (t, x) ∈ T ×X. (3.2)

Here, ε ∈ [0, 1] is an arbitrary number, νε(t, x) ∈ U, (t, x) ∈ T ×X is an arbitrary
admissible control such that

f(t, x, τ , s, z(τ , s), νε(τ , s))− f(t, x, τ , s, z(τ , s), u(τ , s)) =

= ε [f(t, x, τ , s, z(τ , s), ν(τ , s))− f(t, x, τ , s, z(τ , s), u(τ , s))] .

Here ν(t, x) ∈ U, (t, x) ∈ T ×X is an arbitrary admissible control.
By ∆zε(t, x) we’ll denote a special increment of the state vector z(t, x) responding

to increment (3.2) of the control u(t, x).
Passing to the norm, after some transformations from (2.1) we get

‖∆z(t + 1, x + 1)‖ ≤
t1−1∑
τ=t0

x1−1∑
s=x0

‖f(t1, x1, τ , s, z(τ , s), u(τ , s))−

−f(t1, x1, τ , s, z(τ , s), u(τ , s))‖+ L1

t∑
τ=t0

x∑
s=x0

‖∆z(τ , s)‖ ,

where L1 = const > 0.

Applying a discrete analogy of Gronwall-Bellman lemma to this inequality (see
[11, 24, 25]), we get

‖∆z(t, x)‖ ≤ L2

t1−1∑
τ=t0

x1−1∑
s=x0

‖f(t1, x1, τ , s, z(τ , s), u(τ , s))−

−f(t1, x1, τ , s, z(τ , s), u(τ , s))‖ ,

(3.3)

(L2 = const > 0), (t, x) ∈ (T ∪ t1)× (X ∪ x1).

Inequality (3.3) yields the validity of the estimation

‖∆zε(t, x)‖ ≤ L3ε, (t, x) ∈ (T ∪ t1)× (X ∪ x1). (3.4)

The expansion
Sε(u) = S(u + ∆uε)− S(u) =

−ε

t1−1∑
t=t0

x1−1∑
x=x0

[H(t, x, z(t, x), ν(t, x), ψ(t, x))−H(t, x, z(t, x), u(t, x), ψ(t, x))] + 0(ε).

follows from the increment formula (2.10) allowing for (3.2), (3.4).
This means that the inequality

−ε

t1−1∑
t=t0

x1−1∑
x=x0

[H(t, x, z(t, x), ν(t, x), ψ(t, x))−

−H(t, x, z(t, x), u(t, x), ψ(t, x))] + 0(ε) ≥ 0.
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is fulfilled along the optimal process (u(t, x), z(t, x).
Hence, by arbitrariness of ε ∈ [0, 1] we have

t1−1∑
t=t0

x1−1∑
x=x0

[H(t, x, z(t, x), ν(t, x), ψ(t, x))−H(t, x, z(t, x), u(t, x), ψ(t, x))] ≤ 0.

Formulate the obtained result.
Theorem 3.1. If the set (3.1) is convex, then for the optimality of the admissible

control u(t, x) in problem (1.1)-(1.4) the inequality (3.5) should be fulfilled for all
ν(t, x) ∈ U, (t, x) ∈ T ×X.

The inequality (3.5) is an analogy of discrete maximum condition in the consid-
ered problem.

The following statement is a direct Corollary of theorem 3.1.
Theorem 3.2. While fulfilling the conditions of theorem 3.1. for optimality of

the admissible control u(t, x) in problem (2.1)-(2.4), the relation

max
w∈U

H(θ, ξ, z(θ, ξ), w, ψ(θ, ξ)) = H(θ, ξ, z(θ, ξ), u(θ, ξ), ψ(θ, ξ))

should be fulfilled for all (θ, ξ) ∈ T ×X.

For proving theorem 3.2. it suffices to determine the admissible control ν(t, x)
in (3.5) by the formula

ν(t, x) =

{
w, (t, x) ∈ T ×X,

u(t, x), (t, x) 6= (θ, ξ).

One can show that (see [26]) theorem 3.1. and 3.2. are equivalent. But the state-
ment of theorem 3.2. is easily verified.

4. The maximum principle as necessary and sufficient optimality con-
dition. Choose a class of problems for which the discrete maximum principle is not
only a necessary but also sufficient optimality condition.

Let in problem (1.1)-(1.4)

f(t, x, τ , s, z, u) = A(t, x, τ , s)z + g(t, x, τ , s, u), (4.1)

ϕ(z) = c′z. (4.2)

Here A(t, x, τ , s) is a given (n×n) discrete matrix function, c is a given n−dimen-
sional constant vector, g(t, x, τ , s, u) is a given discrete with respect to (t, x, τ , s) and
continuous with respect to u, n−dimensional vector-function.

Let by the definition

M(t, x, u(t, x), λ(t, x) =
t1−1∑
τ=t

x1−1∑
s=x

λ′(τ , s)g(τ , s, t, x, u(t, x)),
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where λ(t, x) is a solution of the problem

λ(t− 1, x− 1) =
t1−1∑
τ=t

x1−1∑
s=x

A′(τ , s, t, x)λ(τ , s),

λ(t1 − 1, x− 1) = 0, x ∈ X ∪ x1,

λ(t− 1, x1 − 1) = 0, t ∈ T ∪ t1,

λ(t1 − 1, x1 − 1) = −c.

Then, the increment of the quality test S(u) = c′z(t1, x1) is written in the form

∆S(u) = −
t1−1∑
t=t0

x1−1∑
x=x0

[M(t, x, u(t, x), λ(t, x))−M(t, x, u(t, x), λ(t, x))] . (4.3)

By means of (4.3) we prove
Theorem 4.1. For optimality of the admissible control u(t, x) in problem (1.1)−

(1.4), (4.1), (4.2) it is necessary and sufficient that the relation

max
ν∈U

M(θ, ξ, ν, λ(θ, ξ)) = M(θ, ξ, u(θ, ξ), λ(θ, ξ)) (4.4)

be fulfilled for all (θ, ξ) ∈ T ×X.

Proof. Necessity. Suppose that u(t, x) is an optimal control. Then, it follows
from (4.3) that

t1−1∑
t=t0

x1−1∑
x=x0

[M(t, x, u(t, x), λ(t, x))−M(t, x, u(t, x), λ(t, x))] ≤ 0, (4.5)

for all u(t, x) ∈ U, (t, x) ∈ T ×X.

Let

u(t, x) =

{
ν, (t, x) = (θ, ξ) ∈ T ×X,

u(t, x), (t, x) 6= (θ, ξ).
(4.6)

Here, ν ∈ U is an arbitrary vector, and (θ , ξ) ∈ T ×X is an arbitrary point.
Taking into account (4.6) in (4.5) be arrive at relation (4.4).
Sufficiency. Let relation (4.4) be fulfilled. This means that for any (θ , ξ) ∈

T ×X, ν(θ, ξ) ∈ U.

M(θ, ξ, ν(θ, ξ), λ(θ, ξ))−M(θ, ξ, u(θ, ξ), λ(θ, ξ)) ≤ 0.

Hence, we get

t1−1∑

θ=t0

x1−1∑

ξ=x0

[M(θ, ξ, ν(θ, ξ), λ(θ, ξ))−M(θ, ξ, u(θ, ξ), λ(θ, ξ))] ≤ 0.

Consequently

S(ν)− S(u) = −
t1−1∑

θ=t0

x1−1∑

ξ=x0

[M(θ, ξ, ν(θ, ξ), λ(θ, ξ))−M(θ, ξ, u(θ, ξ), λ(θ, ξ))] ≥ 0.
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Thus, we proved that for any admissible control ν(t, x)

S(ν) ≥ S(u).

This proves sufficiency of optimality condition (4.4)

5. Pontryagin’s linearized maximum principle. Assume that in prob-
lem (1.1)-(1.4) the set U is convex, f(t, x, τ , s, z, u) for all fixed (t, x, τ , s) has also
continuous derivatives fu(t, x, τ , s, z, u), fz(t, x, τ , s, z, u).

By analogy with (2.7), the increment of the quality test is written in the form

∆S(u) = ϕ′z(z(t1, x1))∆z(t1, x1) + ψ′(t1 − 1, x1 − 1)∆z(t1, x1)+

+
x1−1∑
x=x0

ψ′(t1 − 1, x− 1)∆z(t1, x) +
t1−1∑
t=t0

ψ′(t− 1, x1 − 1)∆z(t, x1)+

+
t1−1∑
t=t0

x1−1∑
x=x0

ψ′(t1 − 1, x− 1)∆z(t1, x)−
t1−1∑
t=t0

x1−1∑
x=x0

[H(t, x, z(t, x), u(t, x), ψ(t, x))−

−H(t, x, z(t, x), u(t, x), ψ(t, x))] + 01 (‖∆z(t1, x1)‖) . (5.1)

Hence, using the Taylor formula and taking into account that the vector-function
ψ(t, x) is a solution of problem (2.8)-(2.9), we get the relation

∆S(u) = −
t1−1∑
t=t0

x1−1∑
x=x0

H ′
u(t, x, z(t, x), u(t, x), ψ(t, x))∆u(t, x) + 01 (‖∆z(t1, x1)‖)−

−
t1−1∑
t=t0

x1−1∑
x=x0

03 (‖∆z(t, x)‖+ ‖∆u(t, x)‖) . (5.2)

Further, in (2.1) passing to the norm and using the Lipschitz condition, we get

‖∆z(t + 1, x + 1)‖ ≤
t1−1∑
τ=t0

x1−1∑
s=x0

‖∆u(τ , s)‖+ L3

t−1∑
τ=t0

x−1∑
s=x0

‖∆z(τ , s)‖ . (5.3)

Here L3 = const > 0.

Applying it to inequality (5.3), we get validity of the estimation

‖∆z(t, x)‖ ≤ L4

t1−1∑
τ=t0

x1−1∑
s=x0

‖∆u(τ , s)‖ , (t, x) ∈ (T ∪ t1)× (X ∪ x1), (5.4)

L4 = const > 0.

By convexity of the set , U we can define the increment of the admissible control
(u(t, x) by the formula

∆u(t, x; ε) = ε [ν(t, x)− u(t, x)] , (t, x) ∈ T ×X. (5.5)
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Here, ν(t, x) ∈ U, (t, x) ∈ T ×X is an arbitrary admissible control, ε ∈ [0, 1] is
an arbitrary number.

By ∆z(t, x;ε) we denote a special increment of the state vector z(t, x) corre-
sponding to the special increment (5.5) of the admissible control u(t, x).

Allowing for (5.5), it directly follows from estimation (5.4) that

‖∆u(t, x; ε)‖ ≤ εL5, (t, x) ∈ (T ∪ t1)× (X ∪ x1) . (5.6)

Allowing for estimation (5.6) and formula (5.5), the following expansion follows
from increment formula (5.2).

∆Sε(u(t, x)) = S(u(t, x) + ∆u(t, x:ε))− S(u(t, x)) =

= −ε

t1−1∑
t=t0

x1−1∑
x=x0

H ′
u(t, x, z(t, x), u(t, x), ψ(t, x))(ν(t, x)− u(t, x)) + 0(ε).

(5.7)

By arbitrariness of ε ∈ [0, 1], it follows form expansion (5,7) that

t1−1∑
t=t0

x1−1∑
x=x0

H ′
u(t, x, z(t, x), u(t, x), ψ(t, x))(ν(t, x)− u(t, x)) ≤ 0. (5.8)

Formulate the following result.
Theorem 5.1. If the problem (1.1)-(1.4) the set U is convex, and f(t, x, τ , s, z, u)

for all (t, x, τ , s) is continuous with respect to (z, u) together with partial derivatives
(z, u), then for optimality of the admissible control u(t, x) the inequality (5.8) should
be fulfilled for all ν(t, x) ∈ U, (t, x) ∈ T ×X.

Inequality (5.8) is a discrete analogy of Pontryagin’s linearized maximum prin-
ciple (see [5-7,11, 26]). It can be written in the following equivalent form

H ′
u(θ, ξ, z(θ, ξ), u(θ, ξ), ψ(θ, ξ))(w − u(θ, ξ)) ≤ 0

for all w ∈ U and (θ, ξ) ∈ T ×X.

Finally, let’s consider the case of open control domain.

6. The case of open control domain. Assume that in problem (1.1)-(1.4)
the set U is open. Then the special increment of the admissible control may be
defined by the formula

∆uµ(t, x) = µδu(t, z), (t, x) ∈ T ×X. (6.1)

Here, δuµ(t, x) ∈ Rr, (t, x) ∈ T × X is an arbitrary r-dimensional bounded
vector-function, µ is an arbitrary, sufficiently small number in absolute value.

By ∆zµ(t, x) denote a special increment of the state responding to increment
(6.1) of the control u(t, x).

Allowing for (6.1) and (5.4), the validity of the following expansion follows from
increment formula (5.2),

∆Sµ(u) = S(u + ∆uµ)− S(u) =
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= −µ

t1−1∑
t=t0

x1−1∑
x=x0

H ′
u(t, x, u(t, x), ψ(t, x))δu(t, x) + 0(µ).

This expansion means that the along the process (u(t, x), z(t, x)) the first variant
(in the classic sense) of the functional S(u) is of the form

δ1S(u:δu) =
t1−1∑
t=t0

x1−1∑
x=x0

H ′
u(t, x, u(t, x), ψ(t, x))δu(t, x).

Hence, as the first variation of the minimized functional along the optimal process
equals zero, it follows that

Hu(θ, ξ, z(θ, ξ), u(θ, ξ), ψ(θ, ξ)) = 0 (6.2)

for all (θ, ξ) ∈ T ×X.

Relation (6.2) is the analogy of the Euler equation for the considered problem.
Theorem 6.1. If the set U is open, then for optimality of the admissible control

u(t, x) in problem (1.1)-(1.4), relation (6.2) should be fulfilled for all (θ, ξ) ∈ T ×X.

The authors thank to the reviewer for very useful remarks that improved the
first variant of the paper.
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