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NIYAZI A. ILYASOV

ESTIMATIONS OF THE SMOOTHNESS MODULES
OF DERIVATIVES OF CONVOLUTION OF TWO
PERIODIC FUNCTIONS BY MEANS OF THEIR

BEST APPROXIMATIONS IN L,(T)

Abstract

In the paper the upper estimations of smoothness modules wy, (h(s); 5)r of

derivative h(®) of order s of the convolution h = fxg of two 27 periodic functions
f € L,(T) and g € Ly(T) are obtained by means of expression containing the
product E,_1(f)pEn—1(g)q of the best approximations of these functions in
the metrics of L,(T) and L,(T) respectively, where k,s € N,p,q¢ € [1,00],
1/r=1/p+1/¢q—1>0, T = (—m,x]. It is proved in the case p,q € (1, c0) that
the obtained estimations are exact in the sense of order on classes of convolutions
with given majorants of sequences of the best approximations of f and g under
some regularity of these majorants.

In what follows we use the following notation.
o L,(T), 1 < p < o0, is the space of all measurable 27 periodic functions

f:R — C with finite L,—norm [ f||, = (@m)~ L 1f(@)]P d:c)l/p < 00.

e C(T) = Loo(T) is the space of all continuous 27 periodic functions with uniform
norm || f||, = max{|f(z)|:z € T}.

e W5(T),s € N,p € [1,00), is the class of functions f € L,(T) having an ab-
solutely continuous derivative of order s — 1 and () € L,(T).

o C5(T) = W5, (T), s € N, is the class of functions f € C(T) having an ordinary
derivative f(®) € C(T).

e FE,(f)p is the best approximation of a function f in the metric of L,(T) by
the trigonometric polynomials of order < n € Z.

e S,(f;-) is the partial sum of order n € Z of the Fourier-Lebesque series of a

function f € L1(T) : Sp(f;2) = 3 c(f)e™®, x€T.
|v|=0
o wi(f;0)p is the smoothness module of order k of a function f € L,(T) :

wr(f;6)p = Sup{HAfpr:tER,|t| §5}, k € N,§ € [0,00), where AFf(z) =

S (— 1)k ( IZ >f(x+1/t), z€R.

v=0

e My is the class of all sequences A = {\,},2; C R such that 0 < X\, | 0

o E, N ={fe€LyT): Ep1(f)p < A, n €N} for p e [l,00] and A € M.

The convolution h = fxg of f € L1(T) and g € L1(T) is defined by the formula:
h(z) = (fxg)(x) = 1/(2n) [7 f(x — y)g(y)dy; it is known (see fe. [1], v.1, §2.1,
pp.64-65; [2], v.1, §3.1, pp.65-66) that the function h is defined almost everywhere,
27 periodic, measurable and ||hl|; < ||f|l; lgll; (whence it follows in particular that
h = f+*g € Li(T)). The last statement is a particular case of the following result
known as the W.Young’s inequality (see f.e. [1], v. 1, Theorem (1.15), pp. 67-68;
[2], v.2, Theorem 13.6.1, pp. 176-177; [2], v.1, Theorem 3.1.4, p. 70, Theorem 3.1.6,
p.72). Given p € [1,00], let p' = p/(p — 1) be the exponent conjugate to p. As
usual, we assume that p’ = 1 for p = oo and p/ = oo for p = 1. If p,q € [1, 0] and
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1/r=1/p+1/¢g—1>0, then r = pg/(p+ q—pq) and r € [1,00) for 1/r > 0 and
r =oc for 1/r =0 (in this case 1/p+ 1/q =1, so that ¢ = p/).
Theorem A. Let p,q € [1,00], f € Ly(T) and g € Ly(T), h = f xg,
1/r=1/p+1/q—1>0. Then
o If 1/r >0 then h belongs to L,(T) and |[h||,. < | fIl, llgll, -
o If1/r =0 then h belongs to C(T) = Loo(T) and |||, < || fIl, 9l
Recall that the Fourier coefficients ¢y, (h) of h = f * g of two arbitrary functions
f € Li(T) and g € L1(T) are calculated by the formula (see [1], v.1, Theorem (1.5),
p.64; [2], v.1, p.66, formula (3.1.5)) ¢, (h) = ¢, (f *x g) = cn(f)-cn(g) for every n € Z.
We use also the following obvious inequalities (see f.e. [3], Lemma 1, pp. 18-19):
let f e L,(T),pe[l,00],k € Nand f =Re f+iIm f; then
(1) max {E,(Re f)p, En(Im f)p} < En(f)p <
< En(Re f)p + En(Im f)y < 2B (f)ps 1 € Zs.
(11) max {wg(Re f;0)p, wr(Im f50)p} < wip(f;0)p <
<wg(Re f;9)p + wip(Im f56), < 2wi(f;0)p, 0 € [0,00).
The following statement be so called the inverse theorem
the approximation theory of periodic functions in L,(T).
Theorem B. Let p € [1,00], f € L,(T),6 = 0(p) = min{2, p} forp € [1,00) and
f(0) =1,s€N, ke N and

”

with derivatives” of

o0

Z 0s=1E0  (f)p < 0. (1)

Then f € W;(T) (more precisely, f almost everywhere equal to some function from
W3 (T) for p < oo and f € C°(T) for p = oc) and the following estimation holds:

1/0
Wk (f(s);ﬂ'/n) < Ci(k,s,p) ( Z VvSTIES (f) ) +

v=n+1

1/6
(ZV () 1E1/ 1(f)> ’ n€N7 (2)

where C1(k, s,p) is a positive constant depending only on parameters k,s and p.

The implication (1)= f € WJ(T) for p = oo was proved by S.N.Bernstein
[4], § 2.14 and § 2.17 (see also [5], Theorem 10 and Corollary 10.1, pp. 236-237).
Theorem B independly was prowed by S.B.Stechkin [5], Theorem 11, p.238, for
p = oo, and by A.F.Timan [6] for p = co and p = 1 (see also [7], § 1, p.490; [§],
§ 6.1.3, p.346-349). In the case p € (1,00) Theorem B in an equivalent form was
obtained by O.V.Besov [9], Theorem 2, p.16, which amplify the corresponding result
of M.F.Timan [10], Theorem 2, p.126 (see also [11], Theorem 3, p.109). With respect
to Theorem B follow also to note the review of A.A.Andrienko [12], §3, p.220-224,
and monograph of A.F.Timan [8], § 6.1.3-6.1.5, p.346-359. At last we denote that
the first estimation is lake to (2) was obtained by Ch.J.-E. de la Vallée Poussin [13], §
39, for k = 1,p = oo and by E.S.Quade [14], Theorem 1, p.532, for k = 1,1 < p < o0
(see [14], pp.531-535).

Inequality (2) is exact in the sense of order on the class E, [A] for all p € [1, o0],

namely
sup {wk (f(s);ﬂ/n>p cfel, [)\]} =
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~ 1/6 N 1/6
= ( Z u95—1A3> +n 7k (Z 1/9(’“+5)_1)\g> , meN, (3)
v=1

v=n+1

o0
under condition that > n?*~'A\? < co. Note that the convergence of the last series

n=1
is necessary and sufficiently for validity of the imbedding Ej, [\] C W (T). The suffi-
ciency of denote condition follows from implication (1)= f € W;(T) (see Theorem
B). The statement about necessity was anonced by the author [15], Theorem 2, point
(2.2), p. 1302, and the proof was given in [16], Theorem 2, point (2.2), p. 133 (see
also [17], p.39, the statement (2)).

The upper estimation in (3) immediately follows from inequality (2). The lower
estimation in (3) is realized by means of individual functions in E, [A] ; more precisely,
for every p € [1,00] and for arbitrary A € My there exists a function fo (:;p;A) €
Ly(T) with E,—1(fo)p < An, n € N, such that

o0

(i) fo € W(T) == 3 n* 1\ < o0;

n=1

(i) if the series in (i) converge, then wy (fés);ﬁ/n) >
P

1/6 " 1/6
> Co(k,s,p) < Z 5= 1)\9> +nF (Z z/’(’f“)—l/\ﬂ) , neN
v=1

v=n+1

The statement (i) and estimation (i7) was anonced by the author [15], Lemma
2, pp. 1302-1303, and the proof was given in [16], Lemma 3.7, p.75 (see also [17],
Lemmas 3, 4 and 8; [18], Lemma 2, p.46).

Note also that the proof of ordering equality (3) in the case p € [1, oo] was given
by author in [17], p. 35. Later V.V.Geit [19], Theorem 3, p.25, by other method
proved (3) in the case p = oco.

Theorem 1. Let p,q € [1,00],1/r =1/p+1/¢—12> 0,0 = 0(r) = min {2,7}
forr e [l,00) and 0(c0) =1, f € Ly(T),g € Ly(T),h = f*g, seN, k€ N and

Z”es LB, _()pEn-1(g9)q < oo (4)

Then h € W2(T) and the following estimation holds:

i, 1/6
k (h(s);ﬂ'/n) < Cs(k,s,71) ( Z VT B (F)pED-1(9)q > +

v=n+1

n 1/6
g (Z Ve(HS)lESl(f)pEﬁl(g)q) ; nelN (5)
v=1

Proof. Since f € L,(T) and g € Ly(T) we have that h € L,(T) for 1/r > 0 and
h € C(T) = Loo(T) for 1/r = 0 by Theorem A. We need the following estimation
(see [20], the inequality (2) in the proof of Theorem 1, p.41)

En—l(f * g)r < En—l(f)pEn—1<g)q, neN, re [1, OO] (6)
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Taking into account (4) and by inequality (6) we have that

o0

Znes "B <Zn93 LB (DB 1(9)q < oo,

whence it follows that (1) hold for h. Therefore h € WS(T) by Theorem B and
applying the inequalities (2) for A(®) € L,(T) and (6), we obtain (5). Theorem 1 is
proved.

Corollary. Let under conditions of Theorem 1 E,_1(f)p < n™% En_1(g)q <
n~ n €N, where a, 3 € (0,00) and p = a + 3 —5 > 0. Then h € W5(T) and the
estimations holds:

n= P for p<k;

() wn (KOsm/n), < Calk,s,r)Calk,p,0) & n*(ln(en) !/ for p— ks
n % for p>k.

(17) Wiyl (h(s);ﬁ/n)T < C3(k +1,8,7)Cs5(k,0)n=" for p=k.

Proof. We have that

[o.¢]
Znes "B (N)pEn_1(9)g <D T <14 (0p)7Y,

n=1

whence h € W?(T) by Theorem 1 and

(i) wi (b 7/n), < Cs(k, 5,7) {( > V9p1>1/9 <Z Ok=p)— >1/9}

v=n+1

IA

nk=P  for p<k;
< Cs(k,s,7) | (0p) P07 + 107" C4(k, p,0) { (In(en))/? for p=k;
1 for p>k,

n~? for p<k;
< C3(k, s,7)Ca(k, p,0) § n~*(In(en))/? for p=k;

n~* for p>k,

where Cy(k, p,0) = (0p)~'/% + Cs(k, p,0), Cs(k,p,0) = 1 for p = k, Cs(k,p,0) =
1/0
(1 + (Q(p—k))_1> for p > k, Cs(k,p,0) = 2k, 0k —p)) "V for p < k and

0k — p) > 1, Cs(k, p,0) = (8(k — p)) "V for p < k and 6(k — p) < 1.
(11) wit1 (h(s);w/n)r <

< Cs(k+1,s,7) ( Z Vle) 4 (D) (Z V91> <
v=1

v=n+1

< Oy {(%)—1/%—’“ T n_(k+1)n} — Oy ((ek)—W n 1) nk = CaCs(k, 0)nF

For further exposition we need preliminary lemmas.
Lemma 1. Let 1 < r < 2;s € Zy,k € Nyop € W(T) and have the Fourier

series P(x) ~ Y cp(¥)e™®, x € T. Then
nez

n 1/T
(i) nk (E yrhtr=2 \cyw)V‘) < Cr(k,m)wy, (¥;7/n), ,n € N;

v=1
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(i) (i prstT—2 |cn(¢)‘r) 1/r < Co(r) Hw(s)

)
n=1 T

00 1/r
(ii) ( >yt |cy(¢)|r> < Cy(k,rwy, (6im/n) \neN.
v=n+1 r

Proof. The inequality (i) was proved in [3], Lemma 2, pp.19-20. In the case

s = 0 the inequality (ii) immediately follows from the first part of Hardy-Littlewood

Theorem (see [1], v. 2, Theorem 12.3.19, p.165; [2], v. 2, Theorem 13.11.1, p.215):

N 1 . 1/r
(Z nr? |cn<w>\“> < (Z (1n] + 1) cnw)?") < Cs(r) [
n=1

[n|=0
Since in the case s € N z,b(s)(x) ~ > (in)*cy(¥)e™®, z € T, then cn(q/)(S)) =
In|=1

(in)®cy (), whence

Cn(ll)(s))‘ = n® |e,(10)| and therefore

T

1/r
) < () w0

00 1/r o0
(Z nrs+r—2 |Cn(w)|r) _ <Z nr—Q ’Cn(w(s))
n=1 n=1

At last, applying the estimation (ii) to the difference ) () — Sy <¢(S);x) by

the known M.Riesz inequality (see f.e. [8], Section 5.11, Inequality (6), p. 339; [21],
Section 8.20, p. 594; [1], v. 1, Section 7.6, p.423, [2], v. 2, Section 12.10, p. 120):

1F () = Su(f5 )l < Cro(r)En(f)r,m € (1,00), f € Ly(T), n € Zy, (7)

and by the L,—analoque of known D.Jackson—S.B.Stechkin inequality (see [5], The-
orem 1, p.226; [8], Section 5.11, p.338, Inequality (1), and references therein):

En—l(f)'r S Cll(k)tdk(f, 7'['/77,)7»,7“ S [1) 00]7 f S LT’(T)a nc N7 (8)
we obtain that

oo 1/r 00 , 1/r
( Z VTS+T2|CV(1/})|T> _ ( Z 2 CV(¢(S)) ) <

v=n+1 v=n+1

< Gy [0 ¢) = s (9;-)

< 4Cs(r)Cho(r)Ch (k)wi (1/)(8); 7/(n+ 1))r < Colk, r)wi (¢<S>; Tr/n)r :

whence it follows the estimation (¢i) with constant Cy(k,r) = 4Cs(r)Cio(r)Ci1 (k).
Lemma 1 is proved.
Lemma 2. Let s € Nk € N,¢p € W5(T) and have the Fourier series
[e.@]

P(x) ~ 3 en()e™, x € T. Then

n=0

n 1/2
(0 n"“(sz’“‘lEﬁl(w)a) < (2% 4 200 ())wy (¥ m/n)y . € N

v=1

< 2C% (7")010 (T)En(l/)(s))r <

(i) (;::1 n231E%_1(¢)2>1/2 < H¢(s)

)
2
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o 1/2
(i) ( 5 VQSIEEMQ) < By (69)2 < 200 (Kwy (09 7/n) n € I

v=n-+1
() Baoi($)e € n Byt (69)2 < 200 (Wn~—wi (im/n) |, neN,
Proof. The inequality (i) was proved in [3], Lemma 3, pp. 20-21. We have

E2 ()2 = |l9() = Su1(¥; )13 = 3 |en(1)|? by the Parseval equality, whence

o0

ZTLstlETZl 2_Zn25 1Z‘CV ’ _Z’cy(d})‘Qin%—lS
n=1 n=1

v=1

of - ol

<> vl )P =
v=1

Furthermore, taking into account the inequality (8), we have that

00 00 00 iz
Z 1/28 1E2 )2 — Z V2371 Z |cu(¢)‘2 _ Z |CM 2 Z V2sfl <
v=n+1 v=n+1 pu=v p=n+1 v=n+1
S i le@)P = 3 [ewO)| = |00 - su (v95)] =
p=n+1 p=n+1

= B2)s < (200 (k)ox (v 7/ (n + 1))2)2 < (201 ()} (69);m/n).

At last by Parseval equality and by (8) we obtain that

B =3 lalo)l —Zﬂs 2 o, (1) —zﬂs

v=n

<n2 i ’Cy<w(5))‘2 _ n_QSEEL—l (w(S))Z <n2 (QCll(k))zwz <¢(s)§ 7r/n>2.

Lemma 2 is proved.
Lemma 3. Let s € Zi,k € N,op € C*(T) and have the Fourier series ¢ (z) ~

o0

S en(Y)e™®, x € T, with c,(v) > 0 for every n € N. Then
n=1

() n" 32 voa () < 2 Moy (Regim/m),, m €N,
where & = k:yjl(l — (=1)%)/2 = {k for even k; k+1 for odd k}.
(@) 1S v, () < 26Dy (Imgpsw/n)_, n €N,
where & = k:—::(ll + (=1)%)/2 = {k + 1 for even k; k for odd k‘}
R |Rew® H for s=0,2,4,-
(i) ngln en($) < HImzp HU for s=1,3,-

00 Wi Rez/; ,ﬂ/n for s=0,2,4,---;
(iv) Y vie, () < 2M2C1 (k) ( )°°
v=n+1 Wi (Imw(s);ﬂ/n) for s=1,3,---.



Transactions of NAS of Azerbaijan 95
[Estimations of the smoothness modules]

Proof. The inequalities (i) and (i7) was proved in [3], Lemma 4, pp.21-23. We
proof now the inequalities (#i7) and (iv). First we consider the case s = 0. It is
clear that if ¢ belongs to C(T) then so do Ret and Im . Hence, since ¢, (¢)) > 0
for every n € N, Fourier series of Ret and Im (and 1, respectively) uniformly
converge everywhere on T by Paley’s Theorem (see [21], Section 4.2, p.277), so that

P(x) = io: cn(Y)e™® = io: cn () cosnx + i ioz cn (V) sinnx = Rey(x) + i Im(x),

n=1 n=1 n=1
oo
x € T, whence it follows that ) c¢,(1) = Rey(0) < [|[Rev||, < [|¢| - Further by
n=1
[e.e]
virtue of N.K.Bari inequality ([22], see the proof of Theorem 4, p.293): > ¢, (f) <
v=2n
o0
4E,(f)oo,n € N, where f € C(T), f(z) = >_ en(f)cosnz and ¢,(f) > 0, n € N,
n=1

and by inequality (8) we have that ([t] —entire part of ¢t € R)

Yooa@W) < > @) S4By (Rey),, <
v=n+1 v=2[(n+1)/2]

<401 (k)wi Re;m/ ([(n+1)/2] +1)) o < 4C1H(k)wi (Re;2m/(n+ 1)), <
< 4C1 (k)2 wy (Rep; m/(n + 1)), < 25F2C11 (K)wi (Re s m/n)
Consider now the case s > 0. Since ¢ € C*(T), then Ret,Imvy € C*(T) and
) = Rep)® +i (Im)® = Rep® + iTm ().
For even s we have that ¢(®)(z) ~ io: (in)3cn()e™® = (—1)%/2 Z néey(1)e™,

n=1
whence

Redj(s 8/2271 cn (V) cosnx, Im ) (z) ~ s/zzn cn () sinna.

By Paley’s Theorem above mentioned, Fourier series of (—=1)/2Re*)(z) and
(=1)*2Im ¢®) (2) (and (—1)*/2() (), respectively) uniformly converge everywhere
on T, whence it follows that

PO () = (—1)*2 Y " nlen (1) = (=1)2 > " niey (1) cosna+

1)%/2 Z n®c () sinne = Re ™ (z) + ilm ) (z), z €T,
and therefore we obtain that

i”scn&ﬁ) ~1)2Rey(0) < ||Rep ()| < [|v?)
n=1

Further by virtue of Bari inequality and (8) we have that (see the proof (iv) for
s=0)

[e.e] [e.e]

> e Y ve) < 4By (()7Revt) <

i v=2[(n+1)/2] °°
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< 4011 (k)2Fwy, (Re V) 7/ (n+ 1)) < 25200 (K)wy, (Re ) ﬂ/n)
For odd s we have that

o0

YO (@) ~ Y (in) en(v)e™ =

n=1
oo
1)(s+1)/2 E n®cp () sinnx + i(—1)T/2+1 E n’cy (1) cos nx,

whence

Re@b(s)(az) -~ (_1)(S+1)/2 Znscnw) sin nx,

Im ®) (z) ~ (—1)+H/241 Znscn(w) cos nx.

The arguments using above in considered the case of even s give the following esti-
mations

inscn(w) C1) D24 1 ) (0 HIm () H < Hw(s) ’
=1 )
i VSCV(¢) < 4E[(n+1)/2] ((_1)(S+1)/2+1 Im w(s)) <
v=n-+1 0o

< 40 (k)2Fwy, <Im¢(s); /(n+ 1)) < 2M20 (K)wy, (Im P W/n)

o0

Lemma 3 is proved.

Given « € (0,00), let Mp(a) be the set of all sequences A = {\,},2; € My such
that n®\, | (n 7).

Lemma 4. Let p,q € (1,00),7 =pq/(p+q—pq) € (1,00],0 = 6(r) = min {2,r}
forr e (1,00) and 0(o0) =1,k € Nys e NN A= {\,}02, € My(a) ande = {e,},2, €
My(B) for some o, € (0,00). Then there are functions fo(-;p;\) € Ly(T) and
90 (3q;€) € Ly(T) such that

(l) En—l(f())p < 012(11704))\717 En—l(gO)q < Cl?(‘]?ﬂ)gna ne N;

(i5) ho= foxgo€ W (T) = > n®* 1Nl < o0;

n=1
(#i7) if the series in (ii) converge, then

0o 1/6 n 1/6
< Z V@sfl )\5510/> + nfk (Z V&(kJrs)l)\?/ElH/) <
v=n+1 v=1

< Ciz(k, s, m)wy, (hés);w/n> , n€N.

r

Proof. First we consider the case 1 < r < 2. For p,q € (1, 00) (p’ =p/(p—1),
¢ =a/(a- 1>), let

o(z;p; A anl/p)\e . go(z;q;e Zn Vd'g eme 2 eT.



Transactions of NAS of Azerbaijan 97
[Estimations of the smoothness modules]

Since A € My(e) and € € My(3), in virtue of Lemma 1 [23] we have fy € L,(T),

En—1(fo)p < Cra(p, ®)An and go € Lg(T), En-1(g0)q < C12(¢; B)en, n € N.
If the series in (i7) converge, then by (i) we have that

o0

Zn” Ly 1 (fo)pEn-1(90)g < (Crz(p, @)C1a(q, B an e < oo,

n=1

whence hg = fo * go € W;?(T) by Theorem 1. On the other hand, if hy € WS(T),
then taking into account ¢,(hg) = cn(fo) - en(go) = n= /P HV\ e, and r — 1 —
r(1/p' +1/¢") = 0, we have by (ii) of Lemma 1 that

1/r

00 1/r 00
<Z nrs—1 A:L€:L> _ (Z nr2nrsr(1/p’+l/q/))\;€;) _
n=1 n=1

[e%¢) 1/r
= (Z U |cn<ho>|7") < Cs(r) ||
n=1

Further applying the inequality from (7i¢) of Lemma 1 and taking into account
the estimation from (i7) of Lemma 1 [23] (for estimation of the second summand)
we obtain that

. 1/r n 1/r
( 3 yrs—u%) +n7" <Z V“’“*s)‘lkie’;> < Colk, e (h75m/n) +
v=1

v=n+1 "

< oQ.
r

+Ca(k + s,7)n°wpts (ho;m/n), < (Co(k,r) + m°Cra(k + s,7)) wi (h(os);ﬂ/n) ,

whence the estimation (¢iz) follows in the case 1 < r < 2.
Consider now the case 2 < r < co. Put

o
/\):Z/\guei , go(x;¢) Zage Toge.
v=0

Since A € My(a) and € € My(/3), then by Lemma 1 [23] (see the case 2 < r < o)
we have that fy € Lp(T)aEnfl(fO)p < Clg(p, Oé))\n and gg € Lq(T),Enfl(go)q <
Ci2(q, B)en,n € N, for every p, q € (1, 00), whence it follows that hg = fo*xgo € L, (T)
for all r € (1, 00] by Theorem A.

If the series in (ii) converge, then by (i) we have that

ZnQS 1E2 —1 fO) n 1(90) (012(])7 )012 QJ ZnQS 1)‘262 < 00,

n=1
whence by Theorem 1 we obtain that hg = fy* go € W;(T) for all r € (1, 00] and in

the sense of convergence in L, (T)

o0

h$(2) = (fox go)® (x) = Y (12")° Aoverr e, z €.
v=0

On the other hand if hg = fo * go € W;(T) for r € (1, 00] and since 2 < r < 0o
thereafter assumption, then hg € W5(T), and therefore h(()s) € Ly(T). Clearly we
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v=j+1
j c Z+.
Taking into account these estimations, we obtain that (015(8) = (25)7" (228 - 1))
. oo 2911
ZnQSfl)\iggl —_ Z Z n2871)\i€% < 015 22283)\2]52] =
n—1 7=0 n=2J

= Ci5(s) { Afef + 2% M3e3 + 2228]“ Nyi+1€1 ¢ <

< Ci5(s) { EJ (ho)y + 22 EF (ho)y + Y 22°UFVES, (he), » <
j=1

< C15(s) Eg (h0)2 + QQSE% (ho) + (C15(s ~lots Z Z e 1E2 ho) =
Jj=1py=2i-141

= C15(s) {Eg (ho)y + 2 EF (ho)y + (Cus(s) 7T 2% Y v ' E] (hO)Q} <

v=2
< Ci6(s ZV2S LEL_ 1 (ho)y

whence we have by (ii) of Lemma 2 and for r € (2,00) that

1/2

00 1/2
<Z n251)\7216721> 016 1/2 (Z V2S 1E hO) ) <
n=1

< (o) )], < (Cro(s)2 |1

< 0.
T

It follows from this estimation that (i) holds for r € (2, c0).
We proof now the estimation in point (i7¢). We have that

[e's) In—1 0o
E 222 — E v25INZe2 4 E IV = ) 4 0.
v=n+1 v=n+1 v=4n
For o1 we obtain that
4n—1
2 2 25—1 —1 (42s 2512

01 < A4l E v < (28)7H (4% — 1) 0PN Len

v=n+1

Since for every n € N there exists m € N such that 2m~! < n < 2™, we have
that (see above the proof of necessity in point (7))

oo 20tl_1

o9 < Z V25 1)\2 2 — Z Z V2S 1)\252 <015 Z 22SJ)\23523 —

y—gm+1 j=m+1 =27 Jj=m+1
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o0
2 1)y2 2 2s(j+1)y\2 .2
= Cis5(s) 4 2 s(mt )>\2m+152m+1+ E 22U+ ))\zj+1€2j+1 <
j=m+1

< Ci5(s) 4 220"V ES, (ho Z 2PN ES, (ho), p <
j=m+1

o0
< Ci5(s) {225(m+1)E22m (ho)y + (Crs(s)) ' 2% > v»7'E] (ho)z} =

v=2m+1

§015(8)248 {HQSE,% (ho) 015 Z UQS 1E2 ho }

v=n+1

Taking into account the estimations for o1 and o9, the inequalities in (7i7) and
(iv) of Lemma 2 and (8) we have that

N 1/2
( Z 1/28_1)\,2,512,) < (25)_1/2 (428 — 1)1/2 ns)\n+15n+l+

v=n+1

1/2
225 (C5(s)) /% { n* By (ho)y + (Cis(s 1/2< Z vEIE2 ho)> <

v=n-+1

< (25)7V2 (42 = 1) 0t n aengs + 2% (Cus(5) V2 By (hgs>)2 o2 R, (hgf>) <

2
< Crr(k, s)wi (h(()s); 7r/7"b>2 + C1s(s)n* Apy1€nt1,

where Cy7(k, 5) = 22510y (k) (1 + (015(5))1/2) ,Chs(s) = (25)7V/2 (425 —1)"/2

In virtue of estimation in (iz) of Lemma 1 [23] (the case 2 < r < 00) we have the
estimation for second summand in right part of the last inequality:

1/2
ns/\n+15n+1 <nPApen < (2(k + 5 1/2 h <ZV (kts) 1)‘12/512/> <

< 2(k+ ) Cra (k + 5,2) n*wyrs (ho; m/n), <
< (2(k+ s))1/2 Cia (k + 5,2) Twy, (h(()s);ﬂ'/n) )
and by this we obtain that

- 1/2
< Z V2s_1)\12/5:2/> < Cho(k, 8)wi (h(()s);ﬂ/n) )

v=n+1

where Clg(k, S) = 017(k, S) + 018(8) (2(k + S))1/2 Ca (k + s, 2) i
By last estimation and estimation in (i7) of Lemma 1 [23] (the estimation of the
second summand for 2 < r < 0co) we have that

oo 1/2 n 1/2
( 3 y%—uggz) - <2y2<k+8>—u353) <

v=n-+1 v=1
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< Cho(k, s)wg (h(()s); ﬂ/n)r + Cra (k4 5,2) nwiys (ho;/n), <

<A{Cio(k,s) + Cra(k+ 5,2) 7} wy (hés); W/n)T ,

whence the estimation (7i7) follows in the case 2 < r < co.

At last we consider the case r = co. In this case 1/p+ 1/q = 1, that is ¢ = p/,
and therefore 1/p' +1/¢' = 1. Let fo (-;p; \) and go (+; ¢;€) be functions such as in
the case 1 < r < 2, and hg = fo * go. If the series in (ii) converge, then by (i) we
have that

Z" Ey-1(f0), En-1(90), < Cr2(p, @)Ci2(q, B Zns "Angn < o0,

n=1

whence hg € W5 (T) = C*(T) by Theorem 1. On the other hand, if hg € C*(T),
then by inequality in (i77) of Lemma 3 we have that (1/p' +1/¢' =1)

Z ns~\,e, = Zn nf(l/pwl/q/))\ngn _ Znscn(ho) < Hh((JS)
n=1 n=1 n=1

Further, applying the inequality (iv) of Lemma 3 and taking into account the
estimation in (¢7) of Lemma 1 [23] (the estimation of the second summand in the
case r = 00) we obtain that

Z Ve, +n” kZuk+s e, <

v=n+1

< 220y () (h§sm/n) + Cua (k + 5,00) nwips (hoi m/m) o, <

< {2k+2C11(k) + 7%C1a (k + s, oo)} W (hés); W/n) ,
o
whence the estimation (7i7) follows in the case r = co.
Lemma 4 is proved.
Given p, q € [1,00] and A, e € My, put

Ep[A x Egle] ={h = fxg: [ € Ep[\,g € Egle]}.

The following theorem shows that estimation (5) of Theorem 1 is exact in the
sense of order on classes E,[A] * Ey[¢] in the case p, ¢ € (1,00) under conditions that
A € My(a) and € € My(f3), for some a, § € (0, 00).

Theorem 2. Letp,q € (1,00),7 = pq/(p+q—pq) € (1,00],0 =
forr € (1,00) and (o) = 1,k € N;s € N A = {\,} € My(a),e = {en} € Mp(B)
for some a, 5 € (0,00), and

)
SN < oo, ()
n=1

Then
sup {wk (h(s);ﬂ/TL)T th e Ep[A] Eq[a]} =



Transactions of NAS of Azerbaijan 101
[Estimations of the smoothness modules]

0o 1/0 n 1/0
= ( Z 1/95—1)\25§> +nk (Z u9<’€+5)—1A353> , n€N.
v=1

v=n-+1

Proof. Indeed, the upper estimation for every p,q € [1,00] and for arbitrary
A\, € € My immediately follows by inequality (5) of Theorem 1. The lower estimation
is realized by function

ho (30 a3 A €) = (Cra(p, @) fo (5p30) = (Cra(q, 8)) ™" go (11 q5€) € Ep[] * Egle]

in virtue of (ii7) of Lemma 4.

Remark. The condition convergence of the series (9) it is necessary and suffi-
ciently for imbedding E,[A] * E4[e] C W?(T). The sufficiency for arbitrary \,e € My
immediately follows from the first part of the statement of Theorem 1. The neces-
sity under conditions A € My(a) and € € My(f) follows from the statement (ii) of
Lemma 4.

Given p,q € [1,00] and «a, 8 € (0,00) we denote

Epa=Ep [{"*a}zo:l] v Byp = [{n } }

Theorem 3. Letp,q € (1,00),7 = pg/(p+q—pq) € (1,00],0 = 0(r) = min {2, 7}
forr e (1,00) and f(c0) = 1,k € N;s € Nya, 8 € (0,00),p = +,6—8>0 Then
for ¢ € (0, 7]

(i) sup {wk (h(s); 5)T the Epqg* Eqﬂ} =
= {5” for p < k; &% (In (we/é))l/e for p = k; 6% for p > k} .

(ii) sup {wk_,_l (h(s); 5)T cheEpq* Eqﬂ} = 6% for p=k.
Proof. First note the following. For every ¢ € (0, 7] there exists an n € N such
that 7/(n+ 1) < § < m/n, whence we have the following estimations:

27 uy, (h(s);ﬂ/TL)r < wg (h(s);é)T < wg (h(s);w/n> ;

277 (m/n)f < 6 < (n/n)? for every p e (0,00);
o* (In(re/8)"" < (x/n)* (In(e(n+ 1)Y=
= 7hp~ (1 +In(n+1 ))1/9 < 3M/0gky—k (In(n + 1))1/9;

n~F (In(en))"? < (2/m)* (x/(n +1))* (In(me/8))"/? < (2/m)* ¥ (In(re/5))"/°.
Upper estimations. For every function h € E, ,*F, 3 we have that h = fxg for
some f € Ly(T) and g € L,(T) with E,,_1(f), <n % and E,,_1(g), < n~?, for every

n € N. Hence we obtain by Corollary that (C’zo(kz, s,ryp,0) = Cs(k,s,7)Cy(k, p,0),
021 (ka S, T, 0) = 03(k + 17 S, T)C5(k7 9))

Cotwi <h(5);(5> < Cogtwi (h( ,W/n) n P < (2/m)PéP for p <k,

Crlwy (h<5>; 5) < Cylwi (h<8>; ﬂ/n) < 7 (In(en))? < (2/7)%6* (In(me/5))H°
for p = k;

Oyt wi (h(s);6>T < Oytwg (h(s);ﬂ/TL)T <n k< (2/m)ks*% for p > k;
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Cyltwii (h(s); 5>T < Cxltwrn (h<5);7r/n)r <n7F < (2/n)k6* for p=k.

It follows from these inequalities that the upper estimations in (i) and (ii) of
Theorem 3 hold.
Lower estimations. We have by (i) of Lemma 4 that

(Cr2(p, )™ fo (503 0) € Epa and (Ci2(q, 8)) " g0 (1¢5€) € Egp

for A\ ={n"},", and e = {n~ 5} , whence

ho = (Cha(p, )" fo (012((175))71 90 € Epo * Eyp.

So, we have by (iii) of Lemma 4 that (p =a+ [ —s > 0)
Ciz(k, 1, 8)-Cra(p, a)-Cr2(q, B)wy, (h(()s);ﬂ/?“o)T = Cuz(k, 7, s)wy, <(f0 « g0)"*) ;7T/71>T >

oo 1/6 n 1/6
> ( Z V—@p—l) +nk (Z Vﬁ(k—p)—l) )
v=1

v=n-+1

Taking into account the following inequalities

) 1/6
(Z 9) > (0p) (n+1)70 > (0p) 02 P,

v=n-+1

n 1/6
’ <Z VO(kp)1> > @n(k P 0)7 where gpn(k P 6) =

= (0(k — p)) 070 for p<k,0(k—p)>1,0,(k—p;0) =
= 251000 for p < k,0(k —p) < 1,0,(k — p:6) =nF (ln(n + 1))/

for p = k and ¢, (k — p;0) = n=F for p > k, we obtain that (Coy = Ci3(k,r,s) ¥
xCr2(p, @)C12(q, B))

9% oy, (BY; 5)T > Chowy, (h(()s);w/n)T > {(9p)-1/92-ﬂ +(O(k — p>)—1/9} n=r >
> {07027 4 (006 = p)) O} 7007 for p < 00k~ p) = 1
9 Clypiwy ( ( )75> > Chowy (hés);ﬂ/n)T > {(Qp)fl/Gpr + 2kfp*1/9}nfp >
> {(ep)—1/92—P n 2’f—P—1/9} 7PSP for p <k, 0k —p) < 1;
2 ooy (7:5) > oo (b™sm/m) > (0p)™/°2 P~ 4™ (4 1)V* =
- {(9k)‘1/92_’“ + (In(n + 1))1/9} k> n*(n(n +1)Y0 >
> 370 ksk (In (e /6))V? for p =k,

2k0220.)k (hés); (5) Z CQQ(Uk (h(()s);ﬂ'/n) Z (6,0)*1/92*”11*” + nik Z
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>nF > xRk for p > k.

At last, by (ii7) of Lemma 4 we have that (the case p = k)

28 Oy (hés); 5)T > Coowiy1 (h(()s); W/n>r =

0o 1/6
=Ci (k41,71 8) Wi ((fo *90)(3);7T/n)r > ( > u9k1> T

v=n+1
n 1/6
_i_nf(kJrl) (Z VGl) > (ek)71/927kn7k +n*(k+1)971/9n _
v=1

_ {(ek)—1/92—k i 9—1/0} nk > {(ek)—l/GQ—k 4 9—1/9} kgk

It follows from these inequalities that the lower estimations in (¢) and (ii) of
Theorem 3 hold.
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