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NIYAZI A. ILYASOV

ESTIMATIONS OF THE SMOOTHNESS MODULES
OF DERIVATIVES OF CONVOLUTION OF TWO
PERIODIC FUNCTIONS BY MEANS OF THEIR

BEST APPROXIMATIONS IN Lp(T)

Abstract

In the paper the upper estimations of smoothness modules ωk

(
h(s); δ

)
r

of
derivative h(s) of order s of the convolution h = f∗g of two 2π periodic functions
f ∈ Lp(T) and g ∈ Lq(T) are obtained by means of expression containing the
product En−1(f)pEn−1(g)q of the best approximations of these functions in
the metrics of Lp(T) and Lq(T) respectively, where k, s ∈ N, p, q ∈ [1,∞],
1/r = 1/p+ 1/q− 1 ≥ 0, T = (−π, π]. It is proved in the case p, q ∈ (1,∞) that
the obtained estimations are exact in the sense of order on classes of convolutions
with given majorants of sequences of the best approximations of f and g under
some regularity of these majorants.

In what follows we use the following notation.
• Lp(T), 1 ≤ p < ∞, is the space of all measurable 2π periodic functions

f : R → C with finite Lp−norm ‖f‖p =
(
(2π)−1

∫
T |f(x)|p dx

)1/p
<∞.

• C(T) ≡ L∞(T) is the space of all continuous 2π periodic functions with uniform
norm ‖f‖∞ ≡ max {|f(x)| : x ∈ T} .

• W s
p (T), s ∈ N, p ∈ [1,∞), is the class of functions f ∈ Lp(T) having an ab-

solutely continuous derivative of order s− 1 and f (s) ∈ Lp(T).
• Cs(T) ≡ W s

∞(T), s ∈ N, is the class of functions f ∈ C(T) having an ordinary
derivative f (s) ∈ C(T).

• En(f)p is the best approximation of a function f in the metric of Lp(T) by
the trigonometric polynomials of order ≤ n ∈ Z+.

• Sn(f ; ·) is the partial sum of order n ∈ Z+ of the Fourier-Lebesque series of a

function f ∈ L1(T) : Sn(f ;x) =
n∑

|ν|=0

cν(f)eiνx, x ∈ T.

• ωk(f ; δ)p is the smoothness module of order k of a function f ∈ Lp(T) :

ωk(f ; δ)p = sup
{∥∥∆k

t f
∥∥

p
: t ∈ R, |t| ≤ δ

}
, k ∈ N, δ ∈ [0,∞), where ∆k

t f(x) =
n∑

ν=0
(−1)k−ν

(
k
ν

)
f(x+ νt), x ∈ R.

• M0 is the class of all sequences λ = {λn}∞n=1 ⊂ R such that 0 < λn ↓ 0
(n ↑ ∞) .

• Ep [λ] = {f ∈ Lp(T) : En−1(f)p ≤ λn, n ∈ N} for p ∈ [1,∞] and λ ∈M0.
The convolution h = f ∗ g of f ∈ L1(T) and g ∈ L1(T) is defined by the formula:

h(x) = (f ∗ g) (x) = 1/(2π)
∫

T f(x − y)g(y)dy; it is known (see f.e. [1], v.1, §2.1,
pp.64-65; [2], v.1, §3.1, pp.65-66) that the function h is defined almost everywhere,
2π periodic, measurable and ‖h‖1 ≤ ‖f‖1 ‖g‖1 (whence it follows in particular that
h = f ∗ g ∈ L1(T)). The last statement is a particular case of the following result
known as the W.Young’s inequality (see f.e. [1], v. 1, Theorem (1.15), pp. 67-68;
[2], v.2, Theorem 13.6.1, pp. 176-177; [2], v.1, Theorem 3.1.4, p. 70, Theorem 3.1.6,
p.72). Given p ∈ [1,∞], let p′ = p/(p − 1) be the exponent conjugate to p. As
usual, we assume that p′ = 1 for p = ∞ and p′ = ∞ for p = 1. If p, q ∈ [1,∞] and
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1/r = 1/p + 1/q − 1 ≥ 0, then r = pq/(p + q − pq) and r ∈ [1,∞) for 1/r > 0 and
r = ∞ for 1/r = 0 (in this case 1/p+ 1/q = 1, so that q = p′).

Theorem A. Let p, q ∈ [1,∞], f ∈ Lp(T) and g ∈ Lq(T), h = f ∗ g,
1/r = 1/p+ 1/q − 1 ≥ 0. Then

• If 1/r > 0 then h belongs to Lr(T) and ‖h‖r ≤ ‖f‖p ‖g‖q .

• If 1/r = 0 then h belongs to C(T) ≡ L∞(T) and ‖h‖∞ ≤ ‖f‖p ‖g‖p′.
Recall that the Fourier coefficients cn(h) of h = f ∗ g of two arbitrary functions

f ∈ L1(T) and g ∈ L1(T) are calculated by the formula (see [1], v.1, Theorem (1.5),
p.64; [2], v.1, p.66, formula (3.1.5)) cn(h) = cn (f ∗ g) = cn(f) ·cn(g) for every n ∈ Z.

We use also the following obvious inequalities (see f.e. [3], Lemma 1, pp. 18-19):
let f ∈ Lp(T), p ∈ [1,∞], k ∈ N and f = Re f + i Im f ; then

(i) max {En(Re f)p, En(Im f)p} ≤ En(f)p ≤
≤ En(Re f)p + En(Im f)p ≤ 2En(f)p, n ∈ Z+.

(ii) max {ωk(Re f ; δ)p, ωk(Im f ; δ)p} ≤ ωk(f ; δ)p ≤
≤ ωk(Re f ; δ)p + ωk(Im f ; δ)p ≤ 2ωk(f ; δ)p, δ ∈ [0,∞).

The following statement be so called the inverse theorem ”with derivatives” of
the approximation theory of periodic functions in Lp(T).

Theorem B. Let p ∈ [1,∞], f ∈ Lp(T), θ = θ(p) = min{2, p} for p ∈ [1,∞) and
θ(∞) = 1, s ∈ N, k ∈ N and

∞∑
n=1

nθs−1Eθ
n−1(f)p <∞. (1)

Then f ∈W s
p (T) (more precisely, f almost everywhere equal to some function from

W s
p (T) for p <∞ and f ∈ Cs(T) for p = ∞) and the following estimation holds:

ωk

(
f (s);π/n

)
p
≤ C1(k, s, p)


( ∞∑

ν=n+1

νθs−1Eθ
ν−1(f)p

)1/θ

+

+n−k

(
n∑

ν=1

νθ(k+s)−1Eθ
ν−1(f)p

)1/θ
 , n ∈ N, (2)

where C1(k, s, p) is a positive constant depending only on parameters k, s and p.
The implication (1)=⇒ f ∈ W s

p (T) for p = ∞ was proved by S.N.Bernstein
[4], § 2.14 and § 2.17 (see also [5], Theorem 10 and Corollary 10.1, pp. 236-237).
Theorem B independly was prowed by S.B.Stechkin [5], Theorem 11, p.238, for
p = ∞, and by A.F.Timan [6] for p = ∞ and p = 1 (see also [7], § 1, p.490; [8],
§ 6.1.3, p.346-349). In the case p ∈ (1,∞) Theorem B in an equivalent form was
obtained by O.V.Besov [9], Theorem 2, p.16, which amplify the corresponding result
of M.F.Timan [10], Theorem 2, p.126 (see also [11], Theorem 3, p.109). With respect
to Theorem B follow also to note the review of A.A.Andrienko [12], §3, p.220-224,
and monograph of A.F.Timan [8], § 6.1.3-6.1.5, p.346-359. At last we denote that
the first estimation is lake to (2) was obtained by Ch.J.-E. de la Vallée Poussin [13], §
39, for k = 1, p = ∞ and by E.S.Quade [14], Theorem 1, p.532, for k = 1, 1 ≤ p <∞
(see [14], pp.531-535).

Inequality (2) is exact in the sense of order on the class Ep [λ] for all p ∈ [1,∞] ,
namely

sup
{
ωk

(
f (s);π/n

)
p

: f ∈ Ep [λ]
}
�
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( ∞∑
ν=n+1

νθs−1λθ
ν

)1/θ

+ n−k

(
n∑

ν=1

νθ(k+s)−1λθ
ν

)1/θ

, n ∈ N, (3)

under condition that
∞∑

n=1
nθs−1λθ

n <∞. Note that the convergence of the last series

is necessary and sufficiently for validity of the imbedding Ep [λ] ⊂W s
p (T). The suffi-

ciency of denote condition follows from implication (1)=⇒ f ∈W s
p (T) (see Theorem

B). The statement about necessity was anonced by the author [15], Theorem 2, point
(2.2), p. 1302, and the proof was given in [16], Theorem 2, point (2.2), p. 133 (see
also [17], p.39, the statement (2)).

The upper estimation in (3) immediately follows from inequality (2). The lower
estimation in (3) is realized by means of individual functions in Ep [λ] ; more precisely,
for every p ∈ [1,∞] and for arbitrary λ ∈ M0 there exists a function f0 (·; p;λ) ∈
Lp(T) with En−1(f0)p ≤ λn, n ∈ N, such that

(i) f0 ∈W s
p (T) ⇐⇒

∞∑
n=1

nθs−1λθ
n <∞;

(ii) if the series in (i) converge, then ωk

(
f

(s)
0 ;π/n

)
p
≥

≥ C2(k, s, p)


( ∞∑

ν=n+1

νθs−1λθ
ν

)1/θ

+ n−k

(
n∑

ν=1

νθ(k+s)−1λθ
ν

)1/θ
 , n ∈ N.

The statement (i) and estimation (ii) was anonced by the author [15], Lemma
2, pp. 1302-1303, and the proof was given in [16], Lemma 3.7, p.75 (see also [17],
Lemmas 3, 4 and 8; [18], Lemma 2, p.46).

Note also that the proof of ordering equality (3) in the case p ∈ [1,∞] was given
by author in [17], p. 35. Later V.V.Geit [19], Theorem 3, p.25, by other method
proved (3) in the case p = ∞.

Theorem 1. Let p, q ∈ [1,∞], 1/r = 1/p + 1/q − 1 ≥ 0, θ = θ(r) = min {2, r}
for r ∈ [1,∞) and θ(∞) = 1, f ∈ Lp(T), g ∈ Lq(T), h = f ∗ g, s ∈ N, k ∈ N and

∞∑
n=1

nθs−1Eθ
n−1(f)pE

θ
n−1(g)q <∞. (4)

Then h ∈W s
r (T) and the following estimation holds:

ωk

(
h(s);π/n

)
r
≤ C3(k, s, r)


( ∞∑

ν=n+1

νθs−1Eθ
ν−1(f)pE

θ
ν−1(g)q

)1/θ

+

+n−k

(
n∑

ν=1

νθ(k+s)−1Eθ
ν−1(f)pE

θ
ν−1(g)q

)1/θ

, n ∈ N. (5)

Proof. Since f ∈ Lp(T) and g ∈ Lq(T) we have that h ∈ Lr(T) for 1/r > 0 and
h ∈ C(T) ≡ L∞(T) for 1/r = 0 by Theorem A. We need the following estimation
(see [20], the inequality (2) in the proof of Theorem 1, p.41)

En−1(f ∗ g)r ≤ En−1(f)pEn−1(g)q, n ∈ N, r ∈ [1,∞]. (6)
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Taking into account (4) and by inequality (6) we have that

∞∑
n=1

nθs−1Eθ
n−1(h)r ≤

∞∑
n=1

nθs−1Eθ
n−1(f)pE

θ
n−1(g)q <∞,

whence it follows that (1) hold for h. Therefore h ∈ W s
r (T) by Theorem B and

applying the inequalities (2) for h(s) ∈ Lr(T) and (6), we obtain (5). Theorem 1 is
proved.

Corollary. Let under conditions of Theorem 1 En−1(f)p ≤ n−α, En−1(g)q ≤
n−β, n ∈ N, where α, β ∈ (0,∞) and ρ = α + β − s > 0. Then h ∈ W s

r (T) and the
estimations holds:

(i) ωk

(
h(s);π/n

)
r
≤ C3(k, s, r)C4(k, ρ, θ)


n−ρ for ρ < k;
n−k(ln(en))1/θ for ρ = k;
n−k for ρ > k.

(ii) ωk+1

(
h(s);π/n

)
r
≤ C3(k + 1, s, r)C5(k, θ)n−k for ρ = k.

Proof. We have that
∞∑

n=1

nθs−1Eθ
n−1(f)pE

θ
n−1(g)q ≤

∞∑
n=1

n−θρ−1 ≤ 1 + (θρ)−1,

whence h ∈W s
r (T) by Theorem 1 and

(i) ωk

(
h(s);π/n

)
r
≤ C3(k, s, r)

{( ∞∑
ν=n+1

ν−θρ−1

)1/θ

+ n−k

(
n∑

ν=1
νθ(k−ρ)−1

)1/θ
}
≤

≤ C3(k, s, r)

(θρ)−1/θn−ρ + n−kC6(k, ρ, θ)

 nk−ρ for ρ < k;
(ln(en))1/θ for ρ = k;
1 for ρ > k,



≤ C3(k, s, r)C4(k, ρ, θ)


n−ρ for ρ < k;
n−k(ln(en))1/θ for ρ = k;
n−k for ρ > k,

where C4(k, ρ, θ) = (θρ)−1/θ + C6(k, ρ, θ), C6(k, ρ, θ) = 1 for ρ = k, C6(k, ρ, θ) =(
1 + (θ(ρ− k))−1

)1/θ
for ρ > k, C6(k, ρ, θ) = 2k−ρ (θ(k − ρ))−1/θ for ρ < k and

θ(k − ρ) ≥ 1, C6(k, ρ, θ) = (θ(k − ρ))−1/θ for ρ < k and θ(k − ρ) ≤ 1.
(ii) ωk+1

(
h(s);π/n

)
r
≤

≤ C3(k + 1, s, r)


( ∞∑

ν=n+1

ν−θk−1

)1/θ

+ n−(k+1)

(
n∑

ν=1

νθ−1

)1/θ
 ≤

≤ C3

{
(θk)−1/θn−k + n−(k+1)n

}
= C3

(
(θk)−1/θ + 1

)
n−k = C3C5(k, θ)n−k.

For further exposition we need preliminary lemmas.
Lemma 1. Let 1 < r ≤ 2, s ∈ Z+, k ∈ N, ψ ∈ W s

r (T) and have the Fourier
series ψ(x) ∼

∑
n∈Z

cn(ψ)einx, x ∈ T. Then

(i) n−k

(
n∑

ν=1
νrk+r−2 |cν(ψ)|r

)1/r

≤ C7(k, r)ωk (ψ;π/n)r , n ∈ N;
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(ii)
( ∞∑

n=1
nrs+r−2 |cn(ψ)|r

)1/r

≤ C8(r)
∥∥∥ψ(s)

∥∥∥
r
;

(iii)
( ∞∑

ν=n+1
νrs+r−2 |cν(ψ)|r

)1/r

≤ C9(k, r)ωk

(
ψ(s);π/n

)
r
, n ∈ N.

Proof. The inequality (i) was proved in [3], Lemma 2, pp.19-20. In the case
s = 0 the inequality (ii) immediately follows from the first part of Hardy-Littlewood
Theorem (see [1], v. 2, Theorem 12.3.19, p.165; [2], v. 2, Theorem 13.11.1, p.215):( ∞∑

n=1

nr−2 |cn(ψ)|r
)1/r

≤

 ∞∑
|n|=0

(|n|+ 1)r−2 |cn(ψ)|r
1/r

≤ C8(r) ‖ψ‖r .

Since in the case s ∈ N ψ(s)(x) ∼
∞∑

|n|=1

(in)scn(ψ)einx, x ∈ T, then cn(ψ(s)) =

(in)scn(ψ), whence
∣∣∣cn(ψ(s))

∣∣∣ = ns |cn(ψ)| and therefore

( ∞∑
n=1

nrs+r−2 |cn(ψ)|r
)1/r

=

( ∞∑
n=1

nr−2
∣∣∣cn(ψ(s))

∣∣∣r)1/r

≤ C8(r)
∥∥∥ψ(s)

∥∥∥
r
.

At last, applying the estimation (ii) to the difference ψ(s)(x) − Sn

(
ψ(s);x

)
by

the known M.Riesz inequality (see f.e. [8], Section 5.11, Inequality (6), p. 339; [21],
Section 8.20, p. 594; [1], v. 1, Section 7.6, p.423, [2], v. 2, Section 12.10, p. 120):

‖f(·)− Sn(f ; ·)‖r ≤ C10(r)En(f)r, r ∈ (1,∞), f ∈ Lr(T), n ∈ Z+, (7)

and by the Lr−analoque of known D.Jackson–S.B.Stechkin inequality (see [5], The-
orem 1, p.226; [8], Section 5.11, p.338, Inequality (1), and references therein):

En−1(f)r ≤ C11(k)ωk(f ;π/n)r, r ∈ [1,∞], f ∈ Lr(T), n ∈ N, (8)

we obtain that( ∞∑
ν=n+1

νrs+r−2 |cν(ψ)|r
)1/r

=

( ∞∑
ν=n+1

νr−2
∣∣∣cν(ψ(s))

∣∣∣r)1/r

≤

≤ C8(r)
∥∥∥ψ(s)(·)− Sn

(
ψ(s); ·

)∥∥∥
r
≤ 2C8(r)C10(r)En(ψ(s))r ≤

≤ 4C8(r)C10(r)C11(k)ωk

(
ψ(s);π/(n+ 1)

)
r
≤ C9(k, r)ωk

(
ψ(s);π/n

)
r
,

whence it follows the estimation (iii) with constant C9(k, r) = 4C8(r)C10(r)C11(k).
Lemma 1 is proved.

Lemma 2. Let s ∈ N, k ∈ N, ψ ∈W s
2 (T) and have the Fourier series

ψ(x) ∼
∞∑

n=0
cn(ψ)einx, x ∈ T. Then

(i) n−k

(
n∑

ν=1
ν2k−1E2

ν−1(ψ)2

)1/2

≤ (2−k + 2C11(k))ωk (ψ;π/n)2 , n ∈ N;

(ii)
( ∞∑

n=1
n2s−1E2

n−1(ψ)2

)1/2

≤
∥∥∥ψ(s)

∥∥∥
2
;
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(iii)
( ∞∑

ν=n+1
ν2s−1E2

ν−1(ψ)2

)1/2

≤ En(ψ(s))2 ≤ 2C11(k)ωk

(
ψ(s);π/n

)
2
, n ∈ N;

(iv) En−1(ψ)2 ≤ n−sEn−1(ψ(s))2 ≤ 2C11(k)n−sωk

(
ψ(s);π/n

)
2
, n ∈ N.

Proof. The inequality (i) was proved in [3], Lemma 3, pp. 20-21. We have

E2
n−1(ψ)2 = ‖ψ(·)− Sn−1(ψ; ·)‖2

2 =
∞∑

ν=n
|cν(ψ)|2 by the Parseval equality, whence

∞∑
n=1

n2s−1E2
n−1(ψ)2 =

∞∑
n=1

n2s−1
∞∑

ν=n

|cν(ψ)|2 =
∞∑

ν=1

|cν(ψ)|2
ν∑

n=1

n2s−1 ≤

≤
∞∑

ν=1

ν2s |cν(ψ)|2 =
∞∑

ν=1

∣∣∣cν(ψ(s))
∣∣∣2 =

∥∥∥ψ(s)
∥∥∥2

2
.

Furthermore, taking into account the inequality (8), we have that

∞∑
ν=n+1

ν2s−1E2
ν−1(ψ)2 =

∞∑
ν=n+1

ν2s−1
∞∑

µ=ν

|cµ(ψ)|2 =
∞∑

µ=n+1

|cµ(ψ)|2
µ∑

ν=n+1

ν2s−1 ≤

≤
∞∑

µ=n+1

µ2s |cµ(ψ)|2 =
∞∑

µ=n+1

∣∣∣cµ(ψ(s))
∣∣∣2 =

∥∥∥ψ(s)(·)− Sn

(
ψ(s); ·

)∥∥∥2

2
=

= E2
n(ψ(s))2 ≤

(
2C11(k)ωk

(
ψ(s);π/(n+ 1)

)
2

)2
≤ (2C11(k))

2 ω2
k

(
ψ(s);π/n

)
2
.

At last by Parseval equality and by (8) we obtain that

E2
n−1(ψ)2 =

∞∑
ν=n

|cν(ψ)|2 =
∞∑

ν=n

ν−2sν2s |cν(ψ)|2 =
∞∑

ν=n

ν−2s
∣∣∣cν(ψ(s))

∣∣∣2 ≤
≤ n−2s

∞∑
ν=n

∣∣∣cν(ψ(s))
∣∣∣2 = n−2sE2

n−1

(
ψ(s)

)
2
≤ n−2s (2C11(k))

2 ω2
k

(
ψ(s);π/n

)
2
.

Lemma 2 is proved.
Lemma 3. Let s ∈ Z+, k ∈ N, ψ ∈ Cs(T) and have the Fourier series ψ(x) ∼

∞∑
n=1

cn(ψ)einx, x ∈ T, with cn(ψ) ≥ 0 for every n ∈ N. Then

(i) n−æ
n∑

ν=1
νæcν(ψ) ≤ 2−kωk (Reψ;π/n)∞ , n ∈ N,

where æ = k + (1− (−1)k)/2 = {k for even k; k + 1 for odd k} .
(ii) n−æ

n∑
ν=1

νæcν(ψ) ≤ 2−(k+1)πωk (Imψ;π/n)∞ , n ∈ N,

where æ = k + (1 + (−1)k)/2 = {k + 1 for even k; k for odd k} .

(iii)
∞∑

n=1
nscn(ψ) ≤


∥∥∥Reψ(s)

∥∥∥
∞

for s = 0, 2, 4, · · · ;∥∥∥Imψ(s)
∥∥∥
∞

for s = 1, 3, · · · .

(iv)
∞∑

ν=n+1
νscν(ψ) ≤ 2k+2C11(k)

 ωk

(
Reψ(s);π/n

)
∞

for s = 0, 2, 4, · · · ;

ωk

(
Imψ(s);π/n

)
∞

for s = 1, 3, · · · .
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Proof. The inequalities (i) and (ii) was proved in [3], Lemma 4, pp.21-23. We
proof now the inequalities (iii) and (iv). First we consider the case s = 0. It is
clear that if ψ belongs to C(T) then so do Reψ and Imψ. Hence, since cn(ψ) ≥ 0
for every n ∈ N, Fourier series of Reψ and Imψ (and ψ, respectively) uniformly
converge everywhere on T by Paley’s Theorem (see [21], Section 4.2, p.277), so that

ψ(x) =
∞∑

n=1
cn(ψ)einx =

∞∑
n=1

cn(ψ) cosnx + i
∞∑

n=1
cn(ψ) sinnx = Reψ(x) + i Imψ(x),

x ∈ T, whence it follows that
∞∑

n=1
cn(ψ) = Reψ(0) ≤ ‖Reψ‖∞ ≤ ‖ψ‖∞ . Further by

virtue of N.K.Bari inequality ([22], see the proof of Theorem 4, p.293):
∞∑

ν=2n
cν(f) ≤

4En(f)∞, n ∈ N, where f ∈ C(T), f(x) =
∞∑

n=1
cn(f) cosnx and cn(f) ≥ 0, n ∈ N,

and by inequality (8) we have that ([t]−entire part of t ∈ R)

∞∑
ν=n+1

cν(ψ) ≤
∞∑

ν=2[(n+1)/2]

cν(ψ) ≤ 4E[(n+1)/2] (Reψ)∞ ≤

≤ 4C11(k)ωk (Reψ;π/ ([(n+ 1)/2] + 1))∞ ≤ 4C11(k)ωk (Reψ; 2π/(n+ 1))∞ ≤

≤ 4C11(k)2kωk (Reψ;π/(n+ 1))∞ ≤ 2k+2C11(k)ωk (Reψ;π/n)∞ .

Consider now the case s > 0. Since ψ ∈ Cs(T), then Reψ, Imψ ∈ Cs(T) and
ψ(s) = (Reψ)(s) + i (Imψ)(s) = Reψ(s) + i Imψ(s).

For even s we have that ψ(s)(x) ∼
∞∑

n=1
(in)scn(ψ)einx = (−1)s/2

∞∑
n=1

nscn(ψ)einx,

whence

Reψ(s)(x) ∼ (−1)s/2
∞∑

n=1

nscn(ψ) cosnx, Imψ(s)(x) ∼ (−1)s/2
∞∑

n=1

nscn(ψ) sinnx.

By Paley’s Theorem above mentioned, Fourier series of (−1)s/2 Reψ(s)(x) and
(−1)s/2 Imψ(s)(x) (and (−1)s/2ψ(s)(x), respectively) uniformly converge everywhere
on T, whence it follows that

ψ(s)(x) = (−1)s/2
∞∑

n=1

nscn(ψ)einx = (−1)s/2
∞∑

n=1

nscn(ψ) cosnx+

+i(−1)s/2
∞∑

n=1

nscn(ψ) sinnx = Reψ(s)(x) + i Imψ(s)(x), x ∈ T,

and therefore we obtain that
∞∑

n=1

nscn(ψ) = (−1)s/2 Reψ(s)(0) ≤
∥∥∥Reψ(s)(·)

∥∥∥
∞
≤
∥∥∥ψ(s)

∥∥∥
∞
.

Further by virtue of Bari inequality and (8) we have that (see the proof (iv) for
s = 0)

∞∑
ν=n+1

νscν(ψ) ≤
∞∑

ν=2[(n+1)/2]

νscν(ψ) ≤ 4E[(n+1)/2]

(
(−1)s/2 Reψ(s)

)
∞
≤
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≤ 4C11(k)2kωk

(
Reψ(s);π/(n+ 1)

)
∞
≤ 2k+2C11(k)ωk

(
Reψ(s);π/n

)
∞
.

For odd s we have that

ψ(s)(x) ∼
∞∑

n=1

(in)scn(ψ)einx =

= (−1)(s+1)/2
∞∑

n=1

nscn(ψ) sinnx+ i(−1)(s+1)/2+1
∞∑

n=1

nscn(ψ) cosnx,

whence

Reψ(s)(x) ∼ (−1)(s+1)/2
∞∑

n=1

nscn(ψ) sinnx,

Imψ(s)(x) ∼ (−1)(s+1)/2+1
∞∑

n=1

nscn(ψ) cosnx.

The arguments using above in considered the case of even s give the following esti-
mations

∞∑
n=1

nscn(ψ) = (−1)(s+1)/2+1 Imψ(s)(0) ≤
∥∥∥Imψ(s)(·)

∥∥∥
∞
≤
∥∥∥ψ(s)

∥∥∥
∞
,

∞∑
ν=n+1

νscν(ψ) ≤ 4E[(n+1)/2]

(
(−1)(s+1)/2+1 Imψ(s)

)
∞
≤

≤ 4C11(k)2kωk

(
Imψ(s);π/(n+ 1)

)
∞
≤ 2k+2C11(k)ωk

(
Imψ(s);π/n

)
∞
.

Lemma 3 is proved.
Given α ∈ (0,∞), let M0(α) be the set of all sequences λ = {λn}∞n=1 ∈M0 such

that nαλn ↓ (n ↑).
Lemma 4. Let p, q ∈ (1,∞), r = pq/(p+ q − pq) ∈ (1,∞], θ = θ(r) = min {2, r}

for r ∈ (1,∞) and θ(∞) = 1, k ∈ N, s ∈ N, λ = {λn}∞n=1 ∈M0(α) and ε = {εn}∞n=1 ∈
M0(β) for some α, β ∈ (0,∞). Then there are functions f0 (·; p;λ) ∈ Lp(T) and
g0 (·; q; ε) ∈ Lq(T) such that

(i) En−1(f0)p ≤ C12(p, α)λn, En−1(g0)q ≤ C12(q, β)εn, n ∈ N;

(ii) h0 = f0 ∗ g0 ∈W s
r (T) ⇐⇒

∞∑
n=1

nθs−1λθ
nε

θ
n <∞;

(iii) if the series in (ii) converge, then( ∞∑
ν=n+1

νθs−1λθ
νε

θ
ν

)1/θ

+ n−k

(
n∑

ν=1

νθ(k+s)−1λθ
νε

θ
ν

)1/θ

≤

≤ C13(k, s, r)ωk

(
h

(s)
0 ;π/n

)
r
, n ∈ N.

Proof. First we consider the case 1 < r ≤ 2. For p, q ∈ (1,∞)
(
p′ = p/(p− 1),

q′ = q/(q − 1)
)
, let

f0(x; p;λ) =
∞∑

n=1

n−1/p′λne
inx, g0(x; q; ε) =

∞∑
n=1

n−1/q′εne
inx, x ∈ T.
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Since λ ∈M0(α) and ε ∈M0(β), in virtue of Lemma 1 [23] we have f0 ∈ Lp(T),
En−1(f0)p ≤ C12(p, α)λn and g0 ∈ Lq(T), En−1(g0)q ≤ C12(q, β)εn, n ∈ N.

If the series in (ii) converge, then by (i) we have that

∞∑
n=1

nrs−1Er
n−1(f0)pE

r
n−1(g0)q ≤ (C12(p, α)C12(q, β))r

∞∑
n=1

nrs−1λs
nε

s
n <∞,

whence h0 = f0 ∗ g0 ∈ W s
r (T) by Theorem 1. On the other hand, if h0 ∈ W s

r (T),
then taking into account cn(h0) = cn(f0) · cn(g0) = n−(1/p′+1/q′)λnεn and r − 1 −
r (1/p′ + 1/q′) = 0, we have by (ii) of Lemma 1 that( ∞∑

n=1

nrs−1λr
nε

r
n

)1/r

=

( ∞∑
n=1

nr−2nrs−r(1/p′+1/q′)λr
nε

r
n

)1/r

=

=

( ∞∑
n=1

nrs+r−2 |cn(h0)|r
)1/r

≤ C8(r)
∥∥∥h(s)

0

∥∥∥
r
<∞.

Further applying the inequality from (iii) of Lemma 1 and taking into account
the estimation from (ii) of Lemma 1 [23] (for estimation of the second summand)
we obtain that( ∞∑

ν=n+1

νrs−1λr
νε

r
ν

)1/r

+ n−k

(
n∑

ν=1

νr(k+s)−1λr
νε

r
ν

)1/r

≤ C9(k, r)ωk

(
h

(s)
0 ;π/n

)
r
+

+C14(k + s, r)nsωk+s (h0;π/n)r ≤ (C9(k, r) + πsC14(k + s, r))ωk

(
h

(s)
0 ;π/n

)
r
,

whence the estimation (iii) follows in the case 1 < r ≤ 2.
Consider now the case 2 < r <∞. Put

f0(x;λ) =
∞∑

ν=0

λ2νei2
νx, g0(x; ε) =

∞∑
ν=0

ε2νei2
νx, x ∈ T.

Since λ ∈M0(α) and ε ∈M0(β), then by Lemma 1 [23] (see the case 2 < r <∞)
we have that f0 ∈ Lp(T), En−1(f0)p ≤ C12(p, α)λn and g0 ∈ Lq(T), En−1(g0)q ≤
C12(q, β)εn, n ∈ N, for every p, q ∈ (1,∞), whence it follows that h0 = f0∗g0 ∈ Lr(T)
for all r ∈ (1,∞] by Theorem A.

If the series in (ii) converge, then by (i) we have that

∞∑
n=1

n2s−1E2
n−1(f0)pE

2
n−1(g0)q ≤ (C12(p, α)C12(q, β))2

∞∑
n=1

n2s−1λ2
nε

2
n <∞,

whence by Theorem 1 we obtain that h0 = f0 ∗ g0 ∈W s
r (T) for all r ∈ (1,∞] and in

the sense of convergence in Lr(T)

h
(s)
0 (x) = (f0 ∗ g0)(s) (x) =

∞∑
ν=0

(i2ν)sλ2νε2νei2
νx, x ∈ T.

On the other hand if h0 = f0 ∗ g0 ∈ W s
r (T) for r ∈ (1,∞] and since 2 < r < ∞

thereafter assumption, then h0 ∈ W s
2 (T), and therefore h(s)

0 ∈ L2(T). Clearly we
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have that E2
0(h0)2 =

∞∑
ν=0

λ2
2νε22ν ≥ λ2

1ε
2
1, E

2
2j (h0)2 =

∞∑
ν=j+1

λ2
2νε22ν ≥ λ2

2j+1ε22j+1 for

j ∈ Z+.
Taking into account these estimations, we obtain that

(
C15(s) = (2s)−1

(
22s − 1

))
∞∑

n=1

n2s−1λ2
nε

2
n =

∞∑
j=0

2j+1−1∑
n=2j

n2s−1λ2
nε

2
n ≤ C15(s)

∞∑
j=0

22sjλ2
2jε

2
2j =

= C15(s)

λ2
1ε

2
1 + 22sλ2

2ε
2
2 +

∞∑
j=1

22s(j+1)λ2
2j+1ε

2
2j+1

 ≤

≤ C15(s)

E2
0 (h0)2 + 22sE2

1 (h0)2 +
∞∑

j=1

22s(j+1)E2
2j (h0)2

 ≤

≤ C15(s)

E2
0 (h0)2 + 22sE2

1 (h0)2 + (C15(s))
−1 24s

∞∑
j=1

2j∑
ν=2j−1+1

ν2s−1E2
ν (h0)2

 =

= C15(s)

{
E2

0 (h0)2 + 22sE2
1 (h0)2 + (C15(s))

−1 24s
∞∑

ν=2

ν2s−1E2
ν (h0)2

}
≤

≤ C16(s)
∞∑

ν=1

ν2s−1E2
ν−1 (h0)2 ,

whence we have by (ii) of Lemma 2 and for r ∈ (2,∞) that( ∞∑
n=1

n2s−1λ2
nε

2
n

)1/2

≤ (C16(s))
1/2

( ∞∑
ν=1

ν2s−1E2
ν−1 (h0)2

)1/2

≤

≤ (C16(s))
1/2
∥∥∥h(s)

0

∥∥∥
2
≤ (C16(s))

1/2
∥∥∥h(s)

0

∥∥∥
r
<∞.

It follows from this estimation that (ii) holds for r ∈ (2,∞).
We proof now the estimation in point (iii). We have that

∞∑
ν=n+1

ν2s−1λ2
νε

2
ν =

4n−1∑
ν=n+1

ν2s−1λ2
νε

2
ν +

∞∑
ν=4n

ν2s−1λ2
νε

2
ν = σ1 + σ2.

For σ1 we obtain that

σ1 ≤ λ2
n+1ε

2
n+1

4n−1∑
ν=n+1

ν2s−1 ≤ (2s)−1
(
42s − 1

)
n2sλ2

n+1ε
2
n+1.

Since for every n ∈ N there exists m ∈ N such that 2m−1 ≤ n < 2m, we have
that (see above the proof of necessity in point (ii))

σ2 ≤
∞∑

ν=2m+1

ν2s−1λ2
νε

2
ν =

∞∑
j=m+1

2j+1−1∑
ν=2j

ν2s−1λ2
νε

2
ν ≤ C15(s)

∞∑
j=m+1

22sjλ2
2jε

2
2j =
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= C15(s)

22s(m+1)λ2
2m+1ε

2
2m+1 +

∞∑
j=m+1

22s(j+1)λ2
2j+1ε

2
2j+1

 ≤

≤ C15(s)

22s(m+1)E2
2m (h0)2 +

∞∑
j=m+1

22s(j+1)E2
2j (h0)2

 ≤

≤ C15(s)

{
22s(m+1)E2

2m (h0)2 + (C15(s))
−1 24s

∞∑
ν=2m+1

ν2s−1E2
ν (h0)2

}
≤

≤ C15(s)24s

{
n2sE2

n (h0)2 + (C15(s))
−1

∞∑
ν=n+1

ν2s−1E2
ν (h0)2

}
.

Taking into account the estimations for σ1 and σ2, the inequalities in (iii) and
(iv) of Lemma 2 and (8) we have that( ∞∑

ν=n+1

ν2s−1λ2
νε

2
ν

)1/2

≤ (2s)−1/2
(
42s − 1

)1/2
nsλn+1εn+1+

+22s (C15(s))
1/2

nsEn−1 (h0)2 + (C15(s))
−1/2

( ∞∑
ν=n+1

ν2s−1E2
ν−1 (h0)2

)1/2
 ≤

≤ (2s)−1/2 (42s − 1
)1/2

nsλn+1εn+1 +22s (C15(s))
1/2En−1

(
h

(s)
0

)
2
+22sEn

(
h

(s)
0

)
2
≤

≤ C17(k, s)ωk

(
h

(s)
0 ;π/n

)
2
+ C18(s)nsλn+1εn+1,

where C17(k, s) = 22s+1C11(k)
(
1 + (C15(s))

1/2
)
, C18(s) = (2s)−1/2

(
42s − 1

)1/2
.

In virtue of estimation in (ii) of Lemma 1 [23] (the case 2 < r <∞) we have the
estimation for second summand in right part of the last inequality:

nsλn+1εn+1 ≤ nsλnεn ≤ (2(k + s))1/2 n−k

(
n∑

ν=1

ν2(k+s)−1λ2
νε

2
ν

)1/2

≤

≤ (2(k + s))1/2C14 (k + s, 2)nsωk+s (h0;π/n)r ≤

≤ (2(k + s))1/2C14 (k + s, 2)πsωk

(
h

(s)
0 ;π/n

)
r
,

and by this we obtain that( ∞∑
ν=n+1

ν2s−1λ2
νε

2
ν

)1/2

≤ C19(k, s)ωk

(
h

(s)
0 ;π/n

)
r
,

where C19(k, s) = C17(k, s) + C18(s) (2(k + s))1/2C14 (k + s, 2)πs.
By last estimation and estimation in (ii) of Lemma 1 [23] (the estimation of the

second summand for 2 < r <∞) we have that( ∞∑
ν=n+1

ν2s−1λ2
νε

2
ν

)1/2

+ n−k

(
n∑

ν=1

ν2(k+s)−1λ2
νε

2
ν

)1/2

≤
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≤ C19(k, s)ωk

(
h

(s)
0 ;π/n

)
r
+ C14 (k + s, 2)nsωk+s (h0;π/n)r ≤

≤ {C19(k, s) + C14 (k + s, 2)πs}ωk

(
h

(s)
0 ;π/n

)
r
,

whence the estimation (iii) follows in the case 2 < r <∞.
At last we consider the case r = ∞. In this case 1/p + 1/q = 1, that is q = p′,

and therefore 1/p′ + 1/q′ = 1. Let f0 (·; p;λ) and g0 (·; q; ε) be functions such as in
the case 1 < r ≤ 2, and h0 = f0 ∗ g0. If the series in (ii) converge, then by (i) we
have that

∞∑
n=1

ns−1En−1 (f0)pEn−1 (g0)q ≤ C12(p, α)C12(q, β)
∞∑

n=1

ns−1λnεn <∞,

whence h0 ∈ W s
∞(T) ≡ Cs(T) by Theorem 1. On the other hand, if h0 ∈ Cs(T),

then by inequality in (iii) of Lemma 3 we have that (1/p′ + 1/q′ = 1)

∞∑
n=1

ns−1λnεn =
∞∑

n=1

nsn−(1/p′+1/q′)λnεn =
∞∑

n=1

nscn(h0) ≤
∥∥∥h(s)

0

∥∥∥
∞
.

Further, applying the inequality (iv) of Lemma 3 and taking into account the
estimation in (ii) of Lemma 1 [23] (the estimation of the second summand in the
case r = ∞) we obtain that

∞∑
ν=n+1

νs−1λνεν + n−k
n∑

ν=1

νk+s−1λνεν ≤

≤ 2k+2C11(k)ωk

(
h

(s)
0 ;π/n

)
∞

+ C14 (k + s,∞)nsωk+s (h0;π/n)∞ ≤

≤
{

2k+2C11(k) + πsC14 (k + s,∞)
}
ωk

(
h

(s)
0 ;π/n

)
∞
,

whence the estimation (iii) follows in the case r = ∞.
Lemma 4 is proved.
Given p, q ∈ [1,∞] and λ, ε ∈M0, put

Ep[λ] ∗ Eq[ε] = {h = f ∗ g : f ∈ Ep[λ], g ∈ Eq[ε]} .

The following theorem shows that estimation (5) of Theorem 1 is exact in the
sense of order on classes Ep[λ] ∗Eq[ε] in the case p, q ∈ (1,∞) under conditions that
λ ∈M0(α) and ε ∈M0(β), for some α, β ∈ (0,∞).

Theorem 2. Let p, q ∈ (1,∞), r = pq/(p+q−pq) ∈ (1,∞], θ = θ(r) = min {2, r}
for r ∈ (1,∞) and θ(∞) = 1, k ∈ N, s ∈ N, λ = {λn} ∈ M0(α), ε = {εn} ∈ M0(β)
for some α, β ∈ (0,∞), and

∞∑
n=1

nθs−1λθ
nε

θ
n <∞. (9)

Then
sup

{
ωk

(
h(s);π/n

)
r

: h ∈ Ep[λ] ∗ Eq[ε]
}
�
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�

( ∞∑
ν=n+1

νθs−1λθ
νε

θ
ν

)1/θ

+ n−k

(
n∑

ν=1

νθ(k+s)−1λθ
νε

θ
ν

)1/θ

, n ∈ N.

Proof. Indeed, the upper estimation for every p, q ∈ [1,∞] and for arbitrary
λ, ε ∈M0 immediately follows by inequality (5) of Theorem 1. The lower estimation
is realized by function

h0 (·; p, q;λ, ε) = (C12(p, α))−1 f0 (·; p;α) ∗ (C12(q, β))−1 g0 (·; q; ε) ∈ Ep[λ] ∗ Eq[ε]

in virtue of (iii) of Lemma 4.
Remark. The condition convergence of the series (9) it is necessary and suffi-

ciently for imbedding Ep[λ] ∗Eq[ε] ⊂W s
r (T). The sufficiency for arbitrary λ, ε ∈M0

immediately follows from the first part of the statement of Theorem 1. The neces-
sity under conditions λ ∈ M0(α) and ε ∈ M0(β) follows from the statement (ii) of
Lemma 4.

Given p, q ∈ [1,∞] and α, β ∈ (0,∞) we denote

Ep,α = Ep

[{
n−α

}∞
n=1

]
, Eq,β = Eq

[{
n−β

}∞
n=1

]
.

Theorem 3. Let p, q ∈ (1,∞), r = pq/(p+q−pq) ∈ (1,∞], θ = θ(r) = min {2, r}
for r ∈ (1,∞) and θ(∞) = 1, k ∈ N, s ∈ N, α, β ∈ (0,∞), ρ = α + β − s > 0. Then
for δ ∈ (0, π]

(i) sup
{
ωk

(
h(s); δ

)
r

: h ∈ Ep,α ∗ Eq,β

}
�

�
{
δρ for ρ < k; δk (ln (πe/δ))1/θ for ρ = k; δk for ρ > k

}
.

(ii) sup
{
ωk+1

(
h(s); δ

)
r

: h ∈ Ep,α ∗ Eq,β

}
� δk for ρ = k.

Proof. First note the following. For every δ ∈ (0, π] there exists an n ∈ N such
that π/(n+ 1) < δ ≤ π/n, whence we have the following estimations:

2−kωk

(
h(s);π/n

)
r
≤ ωk

(
h(s); δ

)
r
≤ ωk

(
h(s);π/n

)
r
;

2−ρ (π/n)ρ < δρ ≤ (π/n)ρ for every ρ ∈ (0,∞);

δk (ln(πe/δ))1/θ ≤ (π/n)k (ln(e(n+ 1)))1/θ =

= πkn−k (1 + ln(n+ 1))1/θ ≤ 31/θπkn−k (ln(n+ 1))1/θ ;

n−k (ln(en))1/θ ≤ (2/π)k (π/(n+ 1))k (ln(πe/δ))1/θ < (2/π)k δk (ln(πe/δ))1/θ .

Upper estimations. For every function h ∈ Ep,α∗Eq,β we have that h = f∗g for
some f ∈ Lp(T) and g ∈ Lq(T) with En−1(f)p ≤ n−α and En−1(g)q ≤ n−β, for every

n ∈ N. Hence we obtain by Corollary that
(
C20(k, s, r, ρ, θ) = C3(k, s, r)C4(k, ρ, θ),

C21(k, s, r, θ) = C3(k + 1, s, r)C5(k, θ)
)

C−1
20 ωk

(
h(s); δ

)
r
≤ C−1

20 ωk

(
h(s);π/n

)
r
≤ n−ρ < (2/π)ρδρ for ρ < k,

C−1
20 ωk

(
h(s); δ

)
r
≤ C−1

20 ωk

(
h(s);π/n

)
r
≤ n−k (ln(en))1/θ < (2/π)kδk (ln(πe/δ))1/θ

for ρ = k;

C−1
20 ωk

(
h(s); δ

)
r
≤ C−1

20 ωk

(
h(s);π/n

)
r
≤ n−k ≤ (2/π)kδk for ρ > k;
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C−1
21 ωk+1

(
h(s); δ

)
r
≤ C−1

21 ωk+1

(
h(s);π/n

)
r
≤ n−k ≤ (2/π)kδk for ρ = k.

It follows from these inequalities that the upper estimations in (i) and (ii) of
Theorem 3 hold.

Lower estimations. We have by (i) of Lemma 4 that

(C12(p, α))−1 f0 (·; p;λ) ∈ Ep,α and (C12(q, β))−1 g0 (·; q; ε) ∈ Eq,β

for λ = {n−α}∞n=1 and ε =
{
n−β

}∞
n=1

, whence

h0 = (C12(p, α))−1 f0 ∗ (C12(q, β))−1 g0 ∈ Ep,α ∗ Eq,β .

So, we have by (iii) of Lemma 4 that (ρ = α+ β − s > 0)

C13(k, r, s)·C12(p, α)·C12(q, β)ωk

(
h

(s)
0 ;π/n

)
r

= C13(k, r, s)ωk

(
(f0 ∗ g0)(s) ;π/n

)
r
≥

≥

( ∞∑
ν=n+1

ν−θρ−1

)1/θ

+ n−k

(
n∑

ν=1

νθ(k−ρ)−1

)1/θ

.

Taking into account the following inequalities( ∞∑
ν=n+1

ν−θρ−1

)1/θ

≥ (θρ)−1/θ(n+ 1)−ρ ≥ (θρ)−1/θ2−ρn−ρ;

n−k

(
n∑

ν=1

νθ(k−ρ)−1

)1/θ

≥ ϕn(k − ρ; θ), where ϕn(k − ρ; θ) =

= (θ(k − ρ))−1/θ n−ρ for ρ < k, θ(k − ρ) ≥ 1, ϕn(k − ρ; θ) =

= 2k−ρ−1/θn−ρ for ρ < k, θ(k − ρ) ≤ 1, ϕn(k − ρ; θ) = n−k (ln(n+ 1))1/θ

for ρ = k and ϕn(k − ρ; θ) = n−k for ρ > k, we obtain that (C22 = C13(k, r, s)×
×C12(p, α)C12(q, β))

2kC22ωk

(
h

(s)
0 ; δ

)
r
≥ C22ωk

(
h

(s)
0 ;π/n

)
r
≥
{

(θρ)−1/θ2−ρ + (θ(k − ρ))−1/θ
}
n−ρ ≥

≥
{

(θρ)−1/θ2−ρ + (θ(k − ρ))−1/θ
}
π−ρδρ for ρ < k, θ(k − ρ) ≥ 1;

2kC22ωk

(
h

(s)
0 ; δ

)
r
≥ C22ωk

(
h

(s)
0 ;π/n

)
r
≥
{

(θρ)−1/θ2−ρ + 2k−ρ−1/θ
}
n−ρ ≥

≥
{

(θρ)−1/θ2−ρ + 2k−ρ−1/θ
}
π−ρδρ for ρ < k, θ(k − ρ) ≤ 1;

2kC22ωk

(
h

(s)
0 ; δ

)
r
≥ C22ωk

(
h

(s)
0 ;π/n

)
r
≥ (θρ)−1/θ2−ρn−ρ + n−k (ln(n+ 1))1/θ =

=
{

(θk)−1/θ2−k + (ln(n+ 1))1/θ
}
n−k ≥ n−k(ln(n+ 1))1/θ ≥

≥ 3−1/θπ−kδk (ln (πe/δ))1/θ for ρ = k,

2kC22ωk

(
h

(s)
0 ; δ

)
r
≥ C22ωk

(
h

(s)
0 ;π/n

)
r
≥ (θρ)−1/θ2−ρn−ρ + n−k ≥
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≥ n−k ≥ π−kδk for ρ > k.

At last, by (iii) of Lemma 4 we have that (the case ρ = k)

2k+1C22ωk+1

(
h

(s)
0 ; δ

)
r
≥ C22ωk+1

(
h

(s)
0 ;π/n

)
r

=

= C13 (k + 1, r, s)ωk+1

(
(f0 ∗ g0)(s);π/n

)
r
≥

( ∞∑
ν=n+1

ν−θk−1

)1/θ

+

+n−(k+1)

(
n∑

ν=1

νθ−1

)1/θ

≥ (θk)−1/θ2−kn−k + n−(k+1)θ−1/θn =

=
{

(θk)−1/θ2−k + θ−1/θ
}
n−k ≥

{
(θk)−1/θ2−k + θ−1/θ

}
π−kδk.

It follows from these inequalities that the lower estimations in (i) and (ii) of
Theorem 3 hold.
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