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Arif H. HEYDAROV

SPECTRAL ANALYSIS OF ONE-DIMENSIONAL
BIHARMONIC OPERATOR WITH δ′′ POTENTIAL

Abstract

In the given paper, the self-adjoint operator A corresponding to the dif-

ferential operator
d4

dx4
+ βδ′′ (x) is determined in the space L2 (R) . Explicit

representation of the resolvent of the operator A is found. It is shown that
σese (A) = σac (A) = [0,+∞). The negative eigen value of the operator A and
corresponding normed eigen function are found.

In the given paper, in the space L2 (R) we find a self adjoint operator corre-
sponding to the formal differential expression

d4

dx4
+ βδ′′ (x) , (1)

where δ (x) is Dirac’s function, δ′′ (x) is its generalized second order derivative,
β ∈ R = (−∞,+∞) is fixed.

It is known that while determining the operator corresponding to differential
expression (1), there arise difficulties related with strong singularity of the distri-

bution δ′′ (x). Since δ′′ (x) belongs to the Sobolev space W
− 5

2
−ε

2 (R) (ε > 0), the
known methods (see. for example [1], [2]) are not applicable for determining the
operator (1). The methods stated in these papers are not suitable for determining

the operator
d4

dx4
+ q (x) with the generalized potential q (x) ∈ W−2

2 (R).

In this paper the way for the definition of the operator (1) based on the formula
of the product of δ′′ (x) by piecewise differentiable functions f (x), for which first
and second classic derivatives have first order discontinuous at the point x = 0.

This formula is of the form ([3]):

δ′′ (x)·f (x) =
f ′′ (+0) + f ′′ (−0)

2
·δ (x)−

[
f ′ (+0) + f ′ (−0)

]
δ′ (x)+f (0) δ′′ (x) . (2)

Formula (2) allows to give sense to formal operator (1) as a self-adjoint operator
in the space L2 (R).

Let D (A) be a set of functions f ∈ W 4
2 (R\ {0})∩W 1

2 (R) satisfying the boundary
conditions:

f ′ (−0)− f ′ (+0) = βf (0) , (3)

f ′′ (+0)− f ′′ (−0) = β
[
f ′ (+0) + f ′ (−0)

]
, (4)

f ′′′ (−0)− f ′′′ (+0) =
β

2
[
f ′′ + (0) + f ′′ (−0)

]
. (5)

In the space L2 (R) determine the operator A:

Af =
d4f

dx4
+ βδ′′ (x) · f, f ∈ D (A) ,
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where the derivative
d4f

dx4
–is understood in the sense of distributions, and the product

δ′′ (x) · f is determined by formula (2).
By boundary conditions (3)-(5), the operator A is a closed symmetric operator

in the space L2 (R).
In this paper, the self-adjointness of the operator A is proved. Furthermore, the

resolvent Rz (A) is found and the structure of the spectrum of the operator A is
researched.

Theorem 1. The operator A is a self-adjoint operator in the space L2 (R).
The resolvent Rz (A) is an integral operator in L2 (R) an the integral trace formula
G (x, y; z) for z = −λ4 (λ > 0) ,−λ4 ∈ ρ (A) has the representation

G
(
x, y;−λ4

)
=

1
2λ3 e

− λ√
2
|x−y| sin

(
λ√
2
|x− y|+ π

4

)
−

− β√
2λ3

e
− λ√

2
(|x|+|y|)

{
1√

2λ + β
sin

λ√
2
x · sin λ√

2
y − 1(

2
√

2λ− β
)2

+ β2
×

×
[(

β − 2
√

2λ
)

cos
λ√
2

(|x|+ |y|) + β sin
λ√
2

(|x|+ |y|)
]}

. (6)

Proof. By closeness and symmetry of A, for proving the self-adjointness of the
operator A is suffices to show that its resolvent set contains even if one real number
([4], Corollary of theorem X.I).

In the space L2 (R) , solve the equation

Af + λ4 = g (g ∈ L2 (R) , λ > 0) .

By formula (2), we can write this equation as follows

d4f

dx4
+

β

2
[
f ′′ (+0) + f ′′ (−0)

]
δ (x)−

−β
[
f ′ (+0) + f ′ (−0)

]
δ′ (x) + βf (0) δ′′ (x) + λ4f = g. (7)

Apply the Fourier transformation F to equation (7). Then, taking into account

F

[
d4f

dx4

]
= ξ4F [f ] , F [δ (x)] = 1, F

[
δ′ (x)

]
= −iξ, F

[
δ′′ (x)

]
= −ξ2,

we get

F [f ] =
1

ξ4 + λ4 F [g]− β

2
[
f ′′ (+0) + f ′′ (−0)

]
· 1
ξ4 + λ4−

−βi
[
f ′ (+0) + f ′ (−0)

] ξ

ξ4 + λ4 + βf (0) · ξ2

ξ4 + λ4 .

Now, apply the Fourier inverse transformation F−1 and use the known formulae

F−1

[
1

ξ4 + λ4

]
=

1
2λ3 e

− λ√
2
|x| sin

(
λ√
2
|x|+ π

4

)
,
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F−1

[
ξ

ξ4 + λ4

]
=

(
− i

2λ2

)
e
− λ√

2
|x| sin

λ√
2
x,

F−1

[
ξ2

ξ4 + λ4

]
=

1
2
√

2λ
e
− λ√

2
|x|

(
cos

λ√
2
|x| − sin

λ√
2
|x|

)
=

=
1
2λ

e
− λ√

2
|x| sin

(
π

4
− λ√

2
|x|

)
,

F−1

[
1

ξ4 + λ4 F [g]
]

= F−1

[
1

ξ4 + λ4

]
∗ g = G0 ∗ g,

where

G0 = G0

(
x, y;−λ4

)
=

1
2λ3 e

− λ√
2
|x| sin

(
λ√
2
|x|+ π

4

)
.

As a result we get

f (x) = G0 ∗ g − β

4λ3

[
f ′′ (+0) + f ′′ (−0)

]
e
− λ√

2
|x| sin

(
λ√
2
|x|+ π

4

)
−

− β

2λ2

[
f ′ (+0)+f ′ (−0)

]
e
− λ√

2
|x| sin

λ√
2
|x|+ β

2λ
f (0) e

− λ√
2
|x| sin

(
π

4
− λ√

2
|x|

)
. (8)

Find the quantities f (0) , f ′ (+0) + f ′ (−0) and f
′′ (+0) + f

′′ (−0). Set x = 0 in
(8). Then

f (0) =
2
√

2λ

2
√

2λ− β
(G0 ∗ g) (0)− β

2λ2
(
2
√

2λ− β
) [

f ′′ (+0) + f ′′ (−0)
]
. (9)

Calculate the derivative f ′ (x) for x 6= 0 by formula (8) and in the obtained equality
pass to limit as x → +0 and x → −0:

f ′ (+0) = (G0 ∗ g)′x (0)− β

2
√

2λ

[
f ′ (+0) + f ′ (−0)

]
− β

2
f (0) ,

f ′ (−0) = (G0 ∗ g)′x (0)− β

2
√

2λ

[
f ′ (+0) + f ′ (−0)

]
+

β

2
f (0) ,

Summing these equalities, we get:

f ′ (+0) + f ′ (−0) =
2
√

2λ√
2λ + β

(G0 ∗ g)′x (0) . (10)

Similarly,we calculate the second derivative f ′′ (x) for x 6= 0 and pass to limit as
x → +0 and x → −0. Then we get the equalities

f ′′ (+0)=(G0 ∗ g)′′x (0)+
β

4
√

2λ

[
f ′′ (+0)+f ′′ (−0)

]
+

β

2
[
f ′ (+0)+f ′ (−0)

]
+

βλ

2
√

2λ
f (0) ,

f ′′ (−0) = (G0 ∗ g)′′x (0) +
β

4
√

2λ

[
f ′′ (+0) + f ′′ (−0)

]
−

−β

2
[
f ′ (+0) + f ′ (−0)

]
+

βλ

2
√

2λ
f (0) .
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Putting together these equalities, we get

f ′′ (+0) + f ′′ (−0) =
4
√

2λ√
2λ− β

(G0 ∗ g)′′x (0) +
2βλ2

2
√

2λ− β
f (0) .

Taking into account (9) in the last equality, after some transformations we find

f ′′ (+0) + f ′ (−0) =
4
√

2λ
(
2
√

2λ− β
)(

2
√

2λ− β
)2

+ β2
(G0 ∗ g)′′x (0) +

+
4
√

2βλ3(
2
√

2λ− β
)2

+ β2
(G0 ∗ g) (0) . (11)

Find f (0) by formulae (9)

f (0) =
2
√

2λ
(
2
√

2λ− β
)(

2
√

2λ− β
)2

+ β2
(G0 ∗ g) (0)− 2

√
2β

λ
[(

2
√

2λ− β
)2

+ β2
] (G0 ∗ g)′′x (0) . (12)

Then, we have

(G0 ∗ g) (0) =
1

2λ3

∫
R

e
− λ√

2
|y| sin

(
λ√
2
|y|+ π

4

)
g (y) dy,

(G0 ∗ g)′x (0) =
1

2λ2

∫
R

e
− λ√

2
|y| sin

λ√
2
y · g (y) dy,

(G0 ∗ g)′′x (0) =
1
2λ

∫
R

e
− λ√

2
|y| sin

(
λ√
2
|y| − π

4

)
· g (y) dy.

Considering these expressions and relations (10), (11) and (12) in (8), after simple
transformations we get

f (x) =
∫
R

G
(
x, y;−λ4

)
g (y) dy, (13)

where the integral trace formula G
(
x, y;−λ4

)
has the representation (6).

It follows from representation (6) that the operator B determined by the equality

Bf =
∫
R

G
(
x, y;−λ4

)
f (y) dy, f ∈ L2 (R)

is a bounded operator in the space L2 (R) if λ > 0 for β ≥ 0 and λ > 0, λ 6= − β√
2

for β < 0. Consequently, for such values of λ, there exists a resolvent R−λ4 (A) =(
A + λ4I

)−1 = B. Thus, the resolvent set ρ (A) of the operator A contains real
numbers and therefore the operator A is self adjoint in the space L2 (R).

Continuing G
(
x, y;−λ4

)
analytically in λ on a complex plane, we get Rz (A),

z ∈ ρ (A) that is an integral operator and ρ (A) is of the from:

ρ (A) = C\ [0,+∞) , if β ≥ 0;
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ρ (A) = C\ [0,+∞) ∪
{
−β4

4

}
, if β < 0.

Theorem 1 is proved.
Classification of the points of the spectrum of the operator A is described by the

following theorem.
Theorem 2. The essential spectrum of the operator A coincides with continuous

part of its spectrum, moreover

σess (A) = σac (A) = [0,+∞) . (14)

If β < 0, the operator A has only one negative prime eigen value λ0 = −β4

4 . The
corresponding normed eigen function is of the form:

f (x) =
√

2 |β|e
β
2
|x| sin

β

2
x. (15)

In the case β ≥ 0, the operator A has no eigen values.
Proof. Relations (14) are proved by means of the standard method that is usu-

ally used while investigating such problems. Namely, the Weyl theorem on essential
spectrum ([5], theorem XIII, 14) and a theorem on preservation of absolutely con-
tinuous parts of the spectra of perturbed and non-perturbed operators ([6], ch. X,
theorem 42) are used. Application of these theorems leads to equalities (14).

Find the negative eigen values of the operator A in the case β < 0. Let
−λ4 (λ > 0) be a negative eigen value of the operator A, and f (x) be a an ap-
propriate eigen function. Then Af + λ4f = 0. Assuming g (x) = 0 in (8), we
get

f (x) = − β

4λ3

[
f ′′ (+0) + f ′′ (−0)

]
e
− λ√

2
|x| sin

(
λ√
2
|x|+ π

4

)
−

− β

4λ2

[
f ′ (+0) + f ′ (−0)

]
e
− λ√

2
|x| sin

λ√
2
x+

β

2λ
f (0) e

− λ√
2
|x| sin

(
π

4
− λ√

2
|x|

)
. (16)

For brevity we denote

c1 = f ′ (+0) + f ′ (−0) , c2 = f ′′ (+0) + f ′′ (−0) , c3 = f (0) .

It is obvious that f (x) 6= 0 iff c2
1 + c2

2 + c2
3 6= 0. From representation (16) for

determining the quantities c1, c2 and c3 we get the system of equations:
βc2 + 2λ2

(
2
√

2λ− β
)
c3 = 0,(√

2λ + β
)
c1 = 0,(

2
√

2λ− β
)
c2 − 2βλ2c3 = 0.

(17)

The system of equations (17) has a non-zero solution iff the determinant of this
system equals zero:

∆ = 2λ2
(√

2λ + β
) [

β2 +
(
2
√

2λ− β
)2

]
= 0.

Hence we find λ = − β√
2
. For this values of λ, from system (17) we have c2 = c3 = 0.

Consequently, the system of equations (17) has a non-zero solution only for λ = − β√
2
.
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Therefore, λ0 = −β4

4 is a negative eigen value of the operator A and appropriate
eigen function is of the from:

f (x) = ce
β
2
|x| sin

β

2
x,

where c 6= 0 is an arbitrary constant.
Find the normed eigen function. Choose the constant c from the condition

‖f‖L2
= 1, i.e.

2c2

+∞∫
0

eβx sin2 β

2
xdx = 1.

The non-singular integral in the last equality is easily calculated:
+∞∫
0

eβx sin2 β

2
xdx = − 1

4β
.

Therefore c2 = 2 |β|. Choosing c =
√

2 |β|, we get that the normed eigen function
is of the from (15).

It is directly verified that when β ≥ 0, the operator A has no eigen values.
Theorem 2 is proved.

The basic results of the paper were announced by the author in [7].
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