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SPECTRAL ANALYSIS OF ONE-DIMENSIONAL
BIHARMONIC OPERATOR WITH ¢ POTENTIAL

Abstract
In the given paper, the self-adjoint operator A corresponding to the dif-
d4
ferential operator T + 36" (x) is determined in the space Lo (R) . Explicit
x

representation of the resolvent of the operator A is found. It is shown that
Oese (A) = 04c (A) = [0,+00). The negative eigen value of the operator A and
corresponding normed eigen function are found.

In the given paper, in the space Ly (R) we find a self adjoint operator corre-
sponding to the formal differential expression

d4 1"
) + B6" (2), (1)
where ¢ (z) is Dirac’s function, 6" (z) is its generalized second order derivative,
B € R =(—00,+00) is fixed.

It is known that while determining the operator corresponding to differential
expression (1), there arise difficulties related with strong singularity of the distri-

_5_
bution 0" (z). Since §” () belongs to the Sobolev space W, 2 - (R) (¢ > 0), the
known methods (see. for example [1], [2]) are not applicable for determining the

operator (1). The methods stated in these papers are not suitable for determining
4

d
the operator o + ¢ (z) with the generalized potential ¢ (z) € W5 2 (R).
x
In this paper the way for the definition of the operator (1) based on the formula
of the product of 6" (x) by piecewise differentiable functions f (), for which first
and second classic derivatives have first order discontinuous at the point x = 0.
This formula is of the form ([3]):

" @)-f (@) = TEOVETCD ) (57 (10) 1 £ (-0)] & @) £ 08" (). @

Formula (2) allows to give sense to formal operator (1) as a self-adjoint operator
in the space L (R).

Let D (A) be a set of functions f € W3 (R\ {0})NW3 (R) satisfying the boundary
conditions:

F(~0) ~ £ (+0) = 57 (0), Q
F7(+0) ~ 7 (~0) = B[/ (+0) + ' (-0)]. 0
P (=0) = £ (+0) = 2 [+ )+ 1 (-0)]. )

In the space Ly (R) determine the operator A:

4
Af =54 58" (@) 1.7 € D(4),
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4
where the derivative wfis understood in the sense of distributions, and the product
8" (z) - f is determined by formula (2).

By boundary conditions (3)-(5), the operator A is a closed symmetric operator
in the space Lo (R).

In this paper, the self-adjointness of the operator A is proved. Furthermore, the
resolvent R, (A) is found and the structure of the spectrum of the operator A is
researched.

Theorem 1. The operator A is a self-adjoint operator in the space Ly (R).
The resolvent R, (A) is an integral operator in Lo (R) an the integral trace formula
G (z,y;2) for z= =X (A > 0), =\ € p(A) has the representation

1 2, A
G(x,y;—)\4):2—)\3€ Vil y'sin (ﬂ ]a:—y|+z>—

— s e_%(lx‘ﬂy') #sinix-sini — ! X
V228 V2A+5 V2 V2" (2v2A - )" + 3

< [(8=2vaN) cos o lal + )+ dsin S (el + D] | (@

Proof. By closeness and symmetry of A, for proving the self-adjointness of the
operator A is suffices to show that its resolvent set contains even if one real number
([4], Corollary of theorem X.I).

In the space Ly (R), solve the equation

Af+X =g (9€Ly(R), X>0).

By formula (2), we can write this equation as follows

d4
D1 0+ £ (-0)) 5 (a) -
—Bf (+0) + [/ (=0)] &' (z) + BF (0) 6" (z) + A f = g. (7)
Apply the Fourier transformation F' to equation (7). Then, taking into account
F|SH =erin, Fo@I=1 F@] =i @) =€
dm4 - 9 - 9 - ) - 9
we get
Pl = Pl = 2 [ (10) 4 7 (-0)] -
IR e
B 0+ (0)] 4 B 0)
¢+ gt

Now, apply the Fourier inverse transformation F~! and use the known formulae

F! b :Le_%msin i\x’—i-z
¢t 28 V2 4)’
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F1 [ =(-—— vzlgin —u,
¢t 22 V2
2
1 ¢ 1 Y A LA B
F [§4+>\4] = 2\/5/\6 V2 <cos\/§|xl—sm\/§|az| =
1 — Az . T A
— ¢ V2 T
o3¢ 2" gin <4 7 :1:|> ,
L ;F[] — 1 ; xaq = Go
54 + )\4 gl = 54 + )\4 g==Go*g,

T
Go = Go (3?73/;—/\4):27)\36 7217l gin ( W).

where

As a result we get

S

£(@) = Goxg— L5 1 (+0) + £ (-0)] e ¥ sin <A 2] + D -

V2

g LA PN A
S 17 QO£ (0] i e+ 1 @ s (T ) 9

Find the quantities f (0), f'(+0)+ f' (—0) and f” (+0) + f” (—0). Set = 0 in
(8). Then

2V o B
_Q\EA—Q(GO g)(O) 2)\2(2\/§A—ﬁ)

Calculate the derivative f’ (x) for  # 0 by formula (8) and in the obtained equality
pass to limit as x — 4+0 and z — —0:

[F"(+0) + /" (=0)] . (9)

f(0)

g g

f1(+0) = (Go * g); (0) — W) [ (+0) + f/(=0)] = 51 (0),
F/(=0) = (G0, 0) = T [7/(+0) + 7/ (<0)] + 5£ 0).
Summing these equalities, we get:
/ / _ 2\/§>‘ %a)
fH(+0) + f1(=0) = NN (Go* g), (0). (10)

Similarly,we calculate the second derivative f” (x) for x # 0 and pass to limit as
x — +0 and x — —0. Then we get the equalities

7 " 1 1 !/ ! )\
P (H0) = (G gl O [ (+0)" (<05 [ (GO +7 (057 0),
F1(20) = (Gox )t 0) + = [ (+0) + 1" (~0)] -

B ivo s f oA
5[ G0+ (0] + S (0).
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Putting together these equalities, we get

_Avan vy L 2N

Taking into account (9) in the last equality, after some transformations we find

_ W2 (2v2X - B)
(2v2A - 8)” + 5

44263

f7(40) + f7(=0) f(0).

f7(+0) + f(=0) (Go * ) (0) +

GV (Go*g) (0). (11)
Find f (0) by formulae (9)
22\ (QﬁA — ﬂ) 2\@ﬂ "
0) = Go * 0) — Go * 0). (12
(2\/§A—ﬁ)2+52( 0*9)(0) A[(2\/§A—ﬂ)2+g2}( 0*9);(0). (12)
Then, we have
_ 1 2l (A m
(Go*g><0>—wée Asin (bl + 7 ) 9 0)
(Go * g),, (0) = 2124695‘”' sin \%y -9 (y) dy,
T N e D A S A
<Go*g>m<o>%£ s (bl =7 ) - )

Considering these expressions and relations (10), (11) and (12) in (8), after simple
transformations we get

f (@) = / G (25 —XY) g (4) dy, (13)
R

where the integral trace formula G (a:, Y; —)\4) has the representation (6).
It follows from representation (6) that the operator B determined by the equality

Bf = / G (.5 ~N) f (W) dy, [ € Ly (R)
R

is a bounded operator in the space Ly (R) if A > 0 for 8 > 0and A > 0, A\ # —%
for 5 < 0. Consequently, for such values of A, there exists a resolvent R_,1 (A) =
(A+ MT )71 = B. Thus, the resolvent set p(A) of the operator A contains real
numbers and therefore the operator A is self adjoint in the space Ls (R).

Continuing G (a;,y; —)\4) analytically in A on a complex plane, we get R, (A),
z € p(A) that is an integral operator and p (A) is of the from:

p(A)=C\[0,+0), if (>0
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4
p(A) = C\ [0, +00) U {—i}, it 5 <0,

Theorem 1 is proved.

Classification of the points of the spectrum of the operator A is described by the
following theorem.

Theorem 2. The essential spectrum of the operator A coincides with continuous
part of its spectrum, moreover

Oess (A) = 04c (A) = [0, +00). (14)

4
If B < 0, the operator A has only one negative prime eigen value \g = —%. The
corresponding normed eigen function is of the form:

f(z) = \/2\ﬁ|e§|m| singm. (15)

In the case § > 0, the operator A has no eigen values.

Proof. Relations (14) are proved by means of the standard method that is usu-
ally used while investigating such problems. Namely, the Weyl theorem on essential
spectrum ([5], theorem XIII, 14) and a theorem on preservation of absolutely con-
tinuous parts of the spectra of perturbed and non-perturbed operators ([6], ch. X,
theorem 42) are used. Application of these theorems leads to equalities (14).

Find the negative eigen values of the operator A in the case § < 0. Let
—X* (A > 0) be a negative eigen value of the operator A, and f(z) be a an ap-
propriate eigen function. Then Af + A f = 0. Assuming g(z) = 0 in (8), we
get

_ B o " -2zl A m
f(x) =0 [f (+0) + f (—O)}e V2 Sll’l(\/§|l’|+ 4> —
5 ., o el g A B —el (T A
e [f (+0) + f (—O)]e V2" sin \/éx+2>\f(0)e vz <4 \@| \) (16)

For brevity we denote
c1 = f(+0) + [ (=0),c2 = f" (+0) + f" (=0) ,e3 = [ (0).

It is obvious that f(z) # 0 iff ¢? + 3 + ¢} # 0. From representation (16) for
determining the quantities ¢y, co and c3 we get the system of equations:

Bea + 202 (2V2) = B) 3 = 0,
(V2X+ ) e1 =0, (17)
(22X — ) 2 — 28\%c3 = 0.

The system of equations (17) has a non-zero solution iff the determinant of this
system equals zero:

A = 2)?2 (\/5)\ + ﬁ) {52 + (2\/§A _ 5)2] —0.

e

Hence we find A = —%. For this values of A, from system (17) we have co = ¢3 =

Consequently, the system of equations (17) has a non-zero solution only for A = — %
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Therefore, Ay = —%4 is a negative eigen value of the operator A and appropriate

eigen function is of the from:

]
f(z) = cez!" sin gaj,
where ¢ # 0 is an arbitrary constant.
Find the normed eigen function. Choose the constant ¢ from the condition

£z, =1, ie.
+o0o

2¢2 / % sin? ga;dx =1.
0
The non-singular integral in the last equality is easily calculated:

—+00

Bz i 2 ﬂ . 1
/e sin Eacdx— G
0
Therefore ¢2 = 2|3|. Choosing ¢ = /23|, we get that the normed eigen function
is of the from (15).
It is directly verified that when G > 0, the operator A has no eigen values.
Theorem 2 is proved.
The basic results of the paper were announced by the author in [7].
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