
Transactions of NAS of Azerbaijan 211

Ebrahim ZOLGHARNEIN

A PROBLEM ON CRACK NUCLEATION UNDER

INNER COMPRESSION OF CYLINDRICAL BODIES

Abstract

A problem of fracture mechanics on nucleation of crack type defect in plunger
pair bushing is considered. It is assumed that under repeated reciprocating mo-
tion of a plunger there happens crack nucleation and failure of materials of pair
elements embryonic cracks are simulated by bridged prefracture strips that are
considered as areas of weakened interpartide bonds of the matherial. It is ac-
cepted that the inner boundary of the bushing is close to the annular one and
has a rough surface.

Contact deformation of cylindrical bodies of close radii under inner compression
is considered. It is assumed that the surfaces of the bodies in the contact area is
rough. We assume that the outer cylinder (bushing) is an unrestricted plate with an
opening close to anular one wherein elastic cylinder (shaft) is inserted. Concentrated
power P0 pressing it to the hole’s boundary and concentrated pair whose moment
is determined from the cylinder’s limit equilibrium condition under the action of
Coulomb friction forces is applied to the center of the shaft.

For determining contact pressure it is necessary to consider [1,2] a contact prob-
lem on pressing of a plunger into a bushing’s surface involving wear. Let on some
unknown part shaft with mechanical characteristics G1 and µ1 be retained against
internal surface of a bushing with mechanical characteristics G (shear modulus) and
µ (Poisson ratio).

The condition connecting replacements of a bushing and shaft is written in the
form [1,2]

v1 + v2 = δ (θ) θ1 ≤ θ ≤ θ2. (1)

Here δ (θ) is a slip of surface point of the bushing and shaft determined by the
form of inner surface of the bushing and pluhger, and also by the quantity of the
pressing force P0; θ2 − θ1 is quantity of contact angle (area).

In the contact zone, in addition to contact pressure there is a tangential stress
τ rθ connected with contact pressure p (θ, t) by the Coulomb law

τ rθ (θ, t) = fp (θ, t) , (2)

where f is a friction coefficient of the pair ”bushing-shaft”.
Refer the contact pair bushing to polar system of coordinates rθ, for that we

choose an origin of coordinates at the center of circle L of radius R.
We’ll assume that inner contour of the bushing and external contour of the shaft

are close to annular one.
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Represent the boundary L′ of inner contour of the bushing in the form

r = ρ (θ) , ρ (θ) = R + εH (θ) ,

where ε = Rmax/R is a small parameter; Rmax is the greatesr height of the bulge
(cavity) of unevennes of friction surface.

The coefficients of the Fourier series for the function H (θ) :

H (θ) =
n∑

k=0

(
a0

k cos kθ + b0
k sin kθ

)
,

are found by means of profilogram of the treated surface of the bushing that describes
each inner profile of the bushing.

In the similar way, the shaft’s contour may be represeted as.

ρ1 (θ) = R′ + εH1 (θ) , H1 (θ) =
n∑

k=0

(
a1

k cos kθ + b1
k sin kθ

)
.

It is assumed that the bushing and shaft wear is of abrasive character.
For displacements of the points of friction surface of the bushing we have

v1 = v1y + v1sh + v1i , (3)

where v1y are elastic displacements of bushing’s contact surface; v1sh, v1i are displace-
ments caused by removal of microbulges and by bushing surface wear, respectively.

Similarly, for displacemments of bushing’s contact surface we have

v2 = v2y + v2sh + v2i . (4)

Velocity of alternations of surface displacements in the course of bushing and
shaft wear will be [2]

dvju

dt
= K(j)p (θ, t) (j = 1, 2) , (5)

where K(j) is the wear coefficient of the bushing and shaft’s material (j = 1, 2)
respectively.

As in the functioning process of the contact pair the bushing will be loaded
by power load there will arise prefracture zones that will be simulated as areas of
interparticle bonds of the material.

Interaction of the lips of thse areas is similated by introducing the bouds possess-
ing the given deformation diagram between the lips of prefracture strips of bonds.

Physical nature of such bonds and dimensions of prefracture zones wherein in-
teraction of interparticle bonds area lips are realized, depend on the form of the
material.

Since the indicated zones are small compared with the remaining part of the
bushing, one can mentally remove then and replace by sections whose surfafaces
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interact between themselves by some law corresponding to the action of the removed
material.

It is assumed that the law of deformation of bonds is given. Notice that equation
of deformation of bonds for different materials are considered in [3-5].

In the investigated case, arise of a defect (crack) is a process of going the pre-
fracture area to the area of broken bonds between material’s surface.

We’ll assume that the prefracture strip is criented in the direction of maximal
stretching stresses arising in the bushing.

Let’s consider a prefracture strip of length 2l allocated on the segment |x1| ≤ l,

y1 = 0. At the center of the prefracture strip we locate an origin of local system
of coordinates x1O1y1 whose axis x1, coincides with the line of the strip and makes
an angle with the axis x (θ = 0). The prefracture strip lips interact so that this
interaction (bonds between lips) restrains the defect (crack) nucleation.

For mathematical descriprion of interaction of prefracture strip lips, it is assumed
that between the lips these are bonds whose deformation law is given. Under the
action of external loads connecting the prefracture strip lips there will arise normal
qy1 (x1) and tangential qx1y1 (x1) tractions.

Consequently, normal and tangential stresses numerically equal qy1 (x1) and
qx1y1 (x1) respectively, well be applied to the prefracture strip lips. The quanti-
ties of these stresses are not known beforehand and are to be determined in the
process of solution of the boundary value problem of fracture mechanics.

For determining the replacements v1y and v1sh it is necessary to solve the fol-
lowing problem of elasticity theory for a bushing:

σn = −p (θ) ; τnl = −fp (θ) for r = ρ in a contact area

σn = 0; τnl = 0 for r = ρ outsid the contact area
(6)

on prefracture strip lips

σy1 = qy1 (x1) ; τx1y1 = qx1y1 (x1) for |x1| ≤ l, (7)

n, t are natural coordinates; σn, σt and τnt are stress tensor components.
In the similar way we state a problem of elasticity theory for determining dis-

placements v2y and v2sh of contact surface of the shaft

for r = −ρ (θ) σn = −p (θ) ; τnt = −fp (θ) for r = ρ in a contact area

σn = 0; τnl = 0 for r = ρ outsid the contact area
(8)

Here the function C (x1, σ1) may be considered as an effective compliance of tension
dependent bonds; σ1 is modulus of force vector in bonds (u+,− u−) is tangential,
(v+,− v−) is normal constituent of the crack lips opening.
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Using the calculation method stated in [6] we find boundary conditions at each
approximation:

for zero approximation of the problem

σ
(0)
r = −p(0) (θ) ; τ

(0)
nθ = −fp(0) (θ) for r = R in the contact area

σ
(0)
r = 0; τ

(0)
nθ = 0 for r = R out of contact area

(10)

on the prefracture strip lips

σ(0)
y2

= q(0)
y1

; τx1y1 = q(0)
x1y1

for |x1| ≤ l (11)

for the first approximation of the problem

σ
(1)
r = N − p(1) (θ) ; τ

(1)
rθ = T − fp(1) (θ) for r = R on the contact area

σ
(1)
r = N ; τ

(1)
rθ = T for r = R out the contact area

(12)

on the prefracture strip lips

σ(1)
y1

= q(1)
y1

; τ (1)
x1y1

= q(1)
x1y1

for |x1| ≤ l. (13)

Here N = −H (θ)
∂σ

(0)
r

∂r
+ 2τ

(0)
rθ

1
R

dH

dθ
; for r = R

T =
(
σ

(0)
θ − σ(0)

r

) 1
R

dH

dθ
−H (θ)

∂τ
(0)
rθ

∂r
.

Similarly, we can write the boundary conditions at each approximation for a
shaft.

Additional relation (9) accepts the following form:(
v(0)+ (x1, 0)− v(0)− (x1, 0)

)
− i

(
u(0)+ (x1, 0)− u(0)− (x1, 0)

)
=

= C
(
x1, σ

(0)
1

) [
q(0)
y1

(x1)− iq(0)
x1y1

(x1)
]

(14)

at the first approximation(
v(1)+ (x1, 0)− v(1)− (x1, 0)

)
− i

(
u(1)+ (x1, 0)− u(1)− (x1, 0)

)
=

= C
(
x1, σ

(1)
1

) [
q(1)
y1

(x1)− iq(1)
x1y1

(x1)
]
. (15)

By means of Kolosov-Muskheleshvili formulae [7], we write the boundary condi-
tions of the problem at zero approximation (10)-(11) for complex potentials Φ(0) (z)
and Ψ(0) (z). On annular boundaries of the bushing they will be of the form

Φ(0) (z) + Φ(0) (z)− e2iθ
[
zΦ(0)′ (z)−Ψ(0) (z)

]
= X(0) (θ) (16)
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z = Reiθ; X(0) (θ) =


− (1− if) p(0) (θ) on a contact area

0 out of a contact area

Boundary conditions on the strip lips will be writen as:

Φ(0) (t) + Φ(0) (t) + tΦ(0)′ (t) + Ψ(0) (t) = q(0)
y1

+ iq(0)
x1y1

(17)

where t is an affix of points of prefracture strip lips.
We look for the potentials Φ(0) (z) , ,Ψ(0) (z) , Φ(0)

1 (z) , Ψ(0)
1 (z) , Φ(0)

2 (z) , Ψ(0)
2 (z)

and in the form

Φ(0) (z) =
2∑

k=0

Φ(0)
k (z) ; Ψ(0) (z) =

2∑
k=0

Ψ(0)
k (z) (18)

Φ(0)
1 (z) =

1
2π

l∫
−l

g0
k (t) dt

t− z1
; (19)

Ψ(0)
1 (z) =

1
2π

e−2iα

l∫
−l

[
g0
k (t)

t− z1
− Tke

iα

(t− z1)
2 g0 (t)

]
dt;

T1 = teiα + z0
1 ; z1 = e−iα

(
z − z0

1

)
Φ(0)

2 (z) =
1
2π

l∫
−l

[(
−1

z
− T1

z − T1

)
eiαg0 (t) + g0 (t) · e−iα 1− T1T1

T1

(
1− zT1

)2

]
dt

Ψ(0)
2 (z) =

1
2πz

l∫
−l

{
g0 (t)

[
1

zT1
− 2

z2
− T1

z
(
1− zT1

) +
T 2

1(
1− zT1

)2

]
eiα+

+e−iαg0 (t)

[
− 1

1− zT1
+

1− T1T1

zT1

(
1− zT1

)2 −
2

(
1− T1T1

)(
1− zT1

)3

]}
dt. (20)

Here g0 (t) is a desired function characterizing the displacements in going through
the prefracture strip.

For defining the potentials Φ(0)
0 (z) and Ψ(0)

0 (z) we use N.I. Muskhelechvili method
[7].

Φ(0)
0 (z) = − 1

2πz

∫
X(0) (σ) dσ

σ − z
, σ = eiθ (21)

Ψ(0)
0 (z) =

1
z2

Φ(0)
0 (z) +

1
z2

Φ(0)
0 (z)

(
1
z

)
− 1

z
Φ(0)′

0 (z) .

Satisfying the boundary condition on the prefracture strip lips by the functions
(18)-(20), we find singular integral equation with respect to the function g0 (x1):

l∫
−l

[
R (t, x1) g0 (t) + S (t, x1) g0 (t)

]
dt = π

[
q0
y1
− iq(0)

x1y1
+ f0 (x1)

]
(22)
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|x1| ≤ l

f (0) (x1) = −
[
Φ(0)

0 (x1) + Φ(0)
0 (x1) + x1Φ

(0)′

0 (x1) + Ψ(0)
0 (x1)

]
.

To the singular integral equation for the inner prefracture strip at zero approxi-
mation we should add additional equality

l∫
l

g(0) (t) dt = 0. (23)

By means of the algebraization procedure [8,9], under the condition (23), the
singular integral equation (22) is reduced to the system of M complex algebraic
equations for finding M unknowns g(0) (tm) = v(0) (tm)− iu0 (tm) (m = 1, 2, ...,M)

1
M

M∑
m=1

l
[
g(0) (tm) R (ltm, lxr) + g(0) (tm)S (ltm, lxr)

]
=

= f (0) (xr) + q(0)
y1

(xr)− iq(0)
x1y1

(xr) , r = 1, 2, ...,M − 1 (24)

M∑
m=1

g(0) (tm) = 0,

where tm = cos
2m− 1

2M
π (m = 1, 2, ...,M) ; xr = cos

πr

M
(r = 1, 2, ...,M − 1) .

If in (24) we go over to complexly conjugated values, we get M algebraic equa-
tions more. The right hand side of (24) contains unknown values of the tractions
q
(0)
y1 (xr) and q

(0)
x1y1 (xr) in bonds.

Additional condition (14) at zero approximation is the condition determining
tractions in bonds arieung on prefracture strip lips

g(0) (x1) =
2G

i (i + kb)
d

dx1

[
C

(
x1, σ

(0)
1

(
q(0)
y1

(x1)− iq(0)
x1y1

(x1)
))]

, (25)

where kb = 3−4µ for plane deformation, kb = (3− µ) / (1 + µ) for plane stress state.
For constructing missing algebraic equations for finding approximate values of

the forces q
(0)
y1 (xr) and q

(0)
x1y1 (xr) at the nodal points we require the conditions (25)

to be fulfilled at nodal points For that we use the finite differences method.
We need two complex equations determining the dimensions of prefracture strip

for closeness of the obtained system. Writing the stress finiteness conditions we find
two missing equations more in the following form

M∑
m=1

(−1)m g(0) (tm) ctg
2m− 1

4M
π = 0,

M∑
m=1

(−1)M+m g(0) (tm) ctg
2m− 1

4M
π = 0.

(26)
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By means of complex potentials (18)-(20) and Kolosov-Muskheleshvili formulae
[7] and integration of kinetic equation (5) wear of bushing’s material at the zero
approximation we find the displacements v

(0)
1 of bushing’s contact surface. In the

similar way, we find the solution of the elasticity theory problem for a shaft in the
zero approximation. Using this solution and kinetic equation of shaft’s material wear
at zero approximation we find the displacements v

(0)
2 of the shaft’s contact surface.

We substitute the found quantities v
(0)
1 and v

(0)
2 into the basic contact equation

(1) at zero approximation.
For algebraization of the basic contact equation, the unknown functions of con-

tact pressure at zero approximation are found in the form of expansions

p(0) (θ, t) = p0
0 (θ) + tp0

1 (θ) + ...;

p0
0 (θ) =

∞∑
k=0

(
α0

k cos kθ + β0
k sin kθ

)
;

p0
1 (θ) =

∞∑
k=0

(
α1

k cos kθ + β1
k sin kθ

)
. (27)

Sunstituting the relation in the basic contact equation at zero approximation,
we get functionsl equations for sequential determination of p0

0 (θ) , p0
1 (θ) and etc.

For constructing algebraic system for finding ak, βk we equate the coefficients for
the same trigonometric functions in the left and right hand sides of the functional
equation of the contact problem. We get an infinite algebraic system with respect
to α0

k (k = 0, 1, 2, ...), β0
k (k = 1, 2, ...) and a1

k, β
1
k and etc.

Because of unknown quantities θ1 and θ2 the system of equations turns into
nonlinear one. For determining the quantities θ1 and θ2

(
θ1 = θ0

1 + εθ1
1 + ...;

θ2 = θ0
2 + εθ1

2 + ...
)

we have the condition:
for the zero approximation

p(0)
(
θ0
1

)
= 0; p(0)

(
θ0
2

)
= 0;

for the first approsimation

p(0)
(
θ1
1

)
= 0; p(0)

(
θ1
2

)
= 0.

The right hand sides of infinite algebraic systems with respect to ak, βk a contain
integrals of the unknown function q(0) (x1). Thus, the infinite algebraic system
with respect to ak, βk and finite systems with respect to g(0) (x1) , q

(0)
y1 (xr) and

q
(0)
x1y1 (xr) , l are connected between themselves and they must be solved jointly.

The conbined system of equations even for linear-elastic bonds became nonlinear
because of unknown quantities θ1, θ2, l. For its solution at the zero approximation,
the reduction and succussive approximations methods were used [9].

In the case non-linear law of deformation of bonds, for determiming tractions in
bonds we also use iteration algorithm similar to the method of elastic solutions [10].
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Nonlinear part of the bonds deformation curve is represented in the form of
bilinear dependence [11] whose outgoing section corresponds to elastic deformation
of bonds (0 < V (x1) < V∗) with maximal tension of bonds. For V (x1) < V∗ the
deformation law was describes by a nonlinear dependence determined by two points
(V∗, σ∗) and (δcr, σcr), moreover for σcr ≥ σ∗ we have increasing linear dependece
(linear hardening corresponds to elasticoplastic deformation of bonds).

After defining the desired quantities of the zero approximation we can construct
the solution of the problem at the first approximation N and T are determined on
the base of the obtained solution for r = R. The boundary conditions (12), (13) may
be written in the form of a boundary value problem for finding complex potentials
Φ(1) (z) and Ψ(1) (z) that we seek in the form of (18) with obvious altermations. The
further course of the solution is at the zero approximation. The obtained complex
integral equation with respect to g(1) (t) , g(1) (t) under additional condition of type
(23) by means of the algebtaization system is reduced to the system of M algebraic
equations for determining N0 ×M unknowns g(1) (tm) (m = 1, 2, ...,M) .

The desired expansion coefficients of the contact pressure p(1) (θ) the unknown
values of tractions in bonds q

(0)
y1 (x1) and q

(0)
y1 (xr) are contained in the right hand

side of this system.
Construction of missing equations for determining unknown tractions at the

nodal poinds and prefracture zone sizes are realized as in the zero approxiation. A
problem of theory of elasticity for a shaft at the first approximation is solved in
the some way. Algebrazation of solving equation of the contact problem at the first
approximation is carried out similar to the zero approximation. For that, the desired
functions of contract pressure are represented in the form

p(1) (θ, t) = p1
0 (θ) + tp1

1 (θ) + ...;

p1
0 (θ) = α1

0,0 +
∞∑

k=0

(
α1

k,0 cos kθ + β1
k,0 sin kθ

)
;

p1
1 (θ) = α1

0,1 +
∞∑

k=0

(
α1

k,1 cos kθ + β1
k,1 sin kθ

)
;

As a result we get infinite linear algebraic systems with respect to α1
0,0, α

1
k,0, β

1
k,0

(k = 1, 2, ...) and α1
0,1, α

1
k,1, β

1
k,1 (k = 1, 2, ...) and etc.

The system of equations becomes nonlinear because of the unknown quantities θ1
1

and θ1
2. The constructed combined system of equations is closed and under the given

functions H (θ) and H1 (θ) allows to find the contact pressure, tractions in bonds,
prefracture strip sizes, stress-strain state, bushing and contact pair shaft wear by
numerical calculations. The functions H (θ) and H1 (θ) describing roughness of
internal surface of the bushing and shaft were considered as determined totality of
unevenness of contours profile and also stationary random function with zero mean
value and known variance.
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As a rule, the greatest values of contact pressure are in the middle part of
contact surface depending on the angle of contact and friction coefficient. Presence
of friction forces in the contact zone leads to displacement of the graph contact
pressure distribution to the contrary action of the moment.

Using the solution of the problem, calculate displacements on prefracture strip
lips

−1 + kb

2G

x1∫
−l

g (x1) dx1 = v (x1, 0)− iu (x1, 0) .

Assuming x1 = x0 applying change of variable, changing the integral by the sum,
we find displacement vector on the prefracture strip lips for x1 = x0

V0 =
√

u2 + v2 =
1 + kb

2G

πl

M

√
A2 + B2;

A =
M1∑

m=1

v0 (tm) + εv1 (tm) ; B =
M∑

m=1

u0 (tm) + εu1 (tm) . (28)

Here M1 is the number of nodal points contained in the interval (−l, x0).
In the place of crack nucleation condition we accept the criterion of critical

opening of prefracture strip lips. Considering relation (9), we can write the limit
condition in the form

C (x0, σ (x0))σ (x0) = δcr, (29)

where δcr is characteristics of resistance of bushing’s material to crack initiation.
Soint solution of the combined algebraic system and conditions (29) makes pos-

sible to determine ultimate size of external load (contact pressure) the size of pre-
fracture strip size for the limiting equilibrium state under which crack arises, under
the given characteristics of crack resistance of the material
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