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IMPACT BY A ROUGH BLUNT WEDGE ON AN
ELASTIC FILAMENT WITH REGARD TO ITS
FAILURE UNDER SUBSONIC CONDITIONS

Abstract

In the paper, a problem on break of flexible elastic filament under normal
impact on it by a plane frond edge and with regard to external medium pressure
for subsonic notion condition is investigated.

In the paper, a problem on break flexible elastic filament under lateral impact
on it by a plane front wedge with regard to external medium pressure for subsonic
motion condition is investigated. The similar self-model problem is considered in
the paper [2].

Notice that break of the filament with regard to external medium pressure under
normal impact by a sharp wedge was studied in the papers [3, 4].

1. Let a normal impact with constant velocity V by a plane front rigid symmetric
wedge be delivered on an infinitely long linear unstressed flexible elastic filament. It
is accepted that the filament is retained against the wedge cheek of constant pressure
P, and P is normal to the filament (fig.1).

Fig 1.

Since the subsonic motion condition is considered, the velocity of A and A1 is
less than the velocity of the elastic wave and filament. Denote the front of the
wedge by 2L, i.e. |BB1| = 2L. Under impact, four elastic waves whose fronts are
the points M1, C1, C2,M2 and two strong distortion waves A, A1 (fig 1) originate in
the filament. Since the wedge is symmetric, the filament’s behavior in the domain
M2, A1, B1C2 and M1, ABC1O is the same. In the domain C2O and C1O to the

moment t =
L

a
(a is velocity of elastic wave) the filament is in the rest state with

respect to the wedge. Here a =
√

E

ρ
is elastic wave velocity in the filament. In-

teraction of wedge’s rough surface and the filament is described by Coulomb’s dry
friction law.
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Equation of motion of linear-elastic filament in the outline area in dimensionless
form will be [1− 4]

∂2u

∂t2
=

∂2u

∂x2
1

− µP
∂u

∂x
ν0; (1.1)

ν0 = signυ; υ =
∂u

∂t
, x1 = x− L;

Fig 2.

Here µ is a friction coefficient, x is a Lagrange coordinate of the filament particle,
u is displacement of the filament section of the wedge surface after impact, t is time.

Wave motion scheme in the filament after impact in the plane (x, t) is shown in

figure 2
(

0 ≤ t <
L

a

)
.

After elastic waves reflection there arise new areas in the filament. Denote them
by 1, 2, 3, 4 and etc. By these indices we’ll supply the parameters of corresponding
areas.

2. Since the filament behavior with respect to the point O is symmetric, we’ll
consider the problem in the right hand side of the filament OBAM1.

Conditions on strong distortion waves (at the climbing point A) in the dimen-
sionless form will be [1, 2]

b− υ1

1 + ε1
=

b sec γ − υ2

1 + ε2
= z; (2.1)

z (υ2 − υ1 cos γ −M sin γ) = σ1 cos γ − σ2 − FTp; (2.2)

z (M cos γ − υ2 sin γ) = σ1 sin γ + Q; (2.3)

b = Mctgγ; M = V a−1. (2.4)

Here υ1, υ2 are filament particles velocities in areas 1 and 2, respectively; ε1, ε2

are strains in the areas 1 and 2; σ1, σ2 are stresses in the areas 1 and 2; FTp, Q
are concentrated forces at the breakpoint A; z is dimensionless velocity of strong
distortion wave.
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Notice that when the inequality

FTp < µ∗Q, (2.5)

is fulfilled on the strong distortion wave, this implies the condition [2]

υ2 = 0. (2.6)

For constructing the solutions in the subsonic conditions area M < tgγ, solution
for supersonic conditions on the sound line M = tgγ should be kept in mind and
natural requirement of continnity of changes determined in the parameters problem
while passing through this line to subsonic area should be taken into account. On the
indicated line, under supersonic condition in the area γ < 2γ∗, it holds the inequality
[2− 4] FTp < µ∗Q, therefore, it is natural to require to observe this inequality also
in some vicinity of the sound line in the subsonic area. Furthermore, we have to
construct the solution of the problem under subsonic condition that continuously
passes to the solution of the problem on pointwise impact on an elastic filament for
which on the strong distortion wave for F = Q = 0, P = 0, L = 0, the condition

ε1 = ε2 (2.7)

should be taken into account.
Also at the point B we have a kinematic condition in the form

υ3 (x1, t)|x1=0 = υ2 (x1, t))|x1=0 cos γ. (2.8)

On the fronts M1 and C1 we have conditions of displacement fucntion continuity
in the form

u1 (x1, t) = 0 for x1 − t = 0; (2.9)

u3 (x1, t) = 0 for x1 + t = 0. (2.10)

Notice that the we’ll supply the filament motion parameters u (x1, t) , ε (x1, t),
σ (x1, t), υ (x1, t) arising in the areas 1,2,3 by the corresponding indices.

The motion equation of the linear-elastic filament in the area before the climbing
point A in the dimensionless form will be

∂2u

∂t2
=

∂2u

∂x2
1

. (2.11)

To get the solution of the problem, we represent the function u (x1, t) and trajec-
tory of the strong distortion wave x∗ (t) in the form of expansion in the parameter
µ (µ is assumed to be small µ > 1). And we are restricted by two terms in the ex-
pansion.

We represent the trajectory of strong distortion wave in the form (dimensionless
form)

x1 = x∗ (t) = z0t + µz1t
2. (2.12)

We represent the solution of equation (1.1) in the areas 2,3 in the form

u2 (x1, t) =
(
1 + ε

(0)
2

)
x1 + υ

(0)
2 t + µ×



200
[K.Sh.Mutallimov]

Transactions of NAS of Azerbaijan

×

a2 (t− x1)
2 + b2 (t + x1)

2 +
P

(
1 + ε

(0)
2

)
4

(
x2

1 − t2
)
ν0

 (2.13)

u3 (x1, t) = ε
(0)
3 x1 + υ

(0)
3 t + µ

[
a3 (t− x1)

2 + b3 (t + x1)
2 + P

ε
(0)
3

4
(
x2

1 − t2
)
ν0

]
,

(2.14)
respectively.

Represent the solution of equation (2.11) in the area 1 as follows

u1 (x1, t) = ε
(0)
1 x1 + υ

(0)
1 t + µ

[
a1 (t− x1)

2 + b1 (t + x1)
2
]
. (2.15)

Here ε
(0)
1 , υ

(0)
1 , ε

(0)
2 , υ

(0)
2 , ε

(0)
3 , υ

(0)
3 , z0 correspond to the self-model solution

(P = 0) [2]. The coefficients z1, a1, b1, a2, b2, a3, b3 and ε
(0)
1 , υ

(0)
1 , ε

(0)
2 , υ

(0)
2 , ε

(0)
3 , υ

(0)
3 ,

z0 must be determined.
Substituting formulae (2.12) − (2.15) in conditions (2.1), (2.6), (2.7)-(2.10) and

equating the coefficients at the same degrees of µ, determine ε
(0)
1 , ε

(0)
2 , ε

(0)
3 , z0, z1,

υ
(0)
1 , υ

(0)
2 , υ

(0)
3 , a1, b1, a2, b2, a3, b3 in the form

ε
(0)
1 = ε

(0)
2 = M (sec γ − 1) ctgγ; z0 = b [b + (1− b) cos γ]−1 ;

υ
(0)
2 = 0; υ(0)

3 = 0; ε
(0)
3 = 0; a1 = 0; z1 = 0

a3 = 0; b1 = 0; υ(0)
1 = −ε

(0)
1 ; (2.16)

a2 =
P

8

(
1 + ε

(0)
2

) 1 + z0

1− z0
; b2 =

P

8

(
1 + ε

(0)
2

) 1− z0

1 + z0
;

b3 =
P

2

(
1 + ε

(0)
1

) z2
0

1− z2
0

cos γ;

Then stresses and velocity of the filament’s particle in the areas 1,2,3 allowing
for (2.16) in dimensionless form will be{

σ1 = σ
(0)
1 = ε

(0)
1 = Mctgγ (sec γ − 1) ;σ(0)

1 = σ
(0)
2 ;

υ1 = υ
(0)
1 = ε

(0)
1 = −Mctgγ (sec γ − 1) ;

(2.17)


σ2 (x1, t) = σ

(0)
2 + µP0

[
1− z0

1 + z0
(t + x1)−

1 + z0

1− z0
(t− x1) + 2x1

]
;

υ2 (x1, t) = µP0

[
1 + z0

1− z0
(t− x1) +

1− z0

1 + z0
(t + x1)− 2t

]
;

P0 = P
(
1 + ε

(0)
2

)
· 4−1;

(2.18)


σ3 (x1, t) = ε3 (x1, t) = µP

(
1 + ε

(0)
2

) z2
0

1− z0
(t + x1) cos γ;

υ3 (x1, t) = µP
(
1 + ε

(0)
2

) z2
0

1− z0
(t + x1) cos γ;

(2.19)

respectively.
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For x1 = 0, i.e. at the nodes of the wedge the formulae (2.17)-(2.19) will take
the form 

σ2 = σ
(0)
2 = µP

(
1 + ε

(0)
2

) z0

1− z2
0

t;

υ2 = µP
(
1 + ε

(0)
2

) z2
0

1− z2
0

t
(2.20)


σ3 = µP

(
1 + ε

(0)
2

) z2
0

1− z2
0

t cos γ;

υ3 = µP
(
1 + ε

(0)
2

) z2
0

1− z2
0

t cos γ;
(2.21)

It follows from formulae (2.20) , (2.21) that in the area 1,2,3 the filament is
stretched. The stresses σ2 (0, t) at the nodes of the wedge, the decreasing linear
function in time and the functions υ2 (0, t) , σ3 (0, t) , υ3 (0, t) are positive and are
linear functions in time.

3. Now, let’s consider a problem allowing for possiblity of elastic filament break-
age under impact for the subsonic motion condition. For that, it is necessary to
determine max σ in the solution constructed above, and equating this quantity to
breaking stress σnp, to obtain a line on the plane (γ, M) restricting the conditions for
which the solutions constructed above remain acceptable, and in the domain exterion
to this boundary to construct the solution allowing for the filament’s breakage.

Obviously, at the moment t =
L

a
the elastic waves outgoing from the point B

and B1 (fig. 1) meet at the point O and at this place the stress is doubled, the
particle’s growth vanishes. Then, the stress at this point will be

σ = 2σ3, (3.1)

here σ3 is expressed by formula (2.19).
The filament stress at the wedge nodes, allowing for (2.20),(2.21) will be

σ1 (x1, t)|x1=0 = σ
(0)
2 − µP

(
1 + ε

(0)
2

) z0

1− z2
0

(1− z0 cos γ) t (3.2)

It follows from expressions (3.1),(3.2) that max σ coincides with the value of σ
and is determined by formula (3.2) at the initial stage of collision, i.e.

max σ = σ
(0)
2 ,

or
σ

(0)
2 = σnp. (3.3)

Taking into account the expression σ
(0)
2 from (2.17) in formula (3.3), the failure

condition will take the form

b (sec γ − 1) = σnp; b = Mctgγ;

or
Mtg

γ

2
= σnp (3.4)
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Notice that under impact by a sharp wedge on elastic filament, the failure con-
dition at the impact point is of the form [4]

2Mtg
γ

2
= σnp; M =

V

a
.

It follows from formulae (3.4),(3.5) that for the given velocity of impact by a
sharp wedge, the filament terminates at the impact point for critical angle γ = γp,
but for just these data, under impact by a blunt wedge, the filament at the nodes
B and B1 don’t terminate. But breakage may happen only when the velocity M
by the blunt wedge is twice greater than the velocity of a sharp wedge and under
the same velocities of impact, the opening angle of the blunt wedge is twice smaller
than the opening angle of a sharp wedge.

The solution of the problem with breakage at the nodes of the wedge B and
B1 (x1 = 0) is similar to the problem on impact by a rough sharp wedge on elastic
filament with regard to its breakage under subsonic condition [4]. Therefore, we’ll
not stop on the solution of this problem. However, under impact by the blunt
wedge on elastic filament, after breakage in the nodes of the wedge B and B1, the
destructed part of the filament BB1 is in the rest state and moves together with the
wedge (fig.3)

Fig 3.
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