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MEAN OSCILLATION, Φ-OSCILLATION AND
HARMONIC OSCILLATION

Abstract

In the paper, the notion of Φ-oscillation is introduced and its relations with
mean and harmonic oscillations are studied. Bilateral estimations connecting
the indicated quantities are obtained.

1. Some estimations in the terms of mean oscillation
Let Rn denote an n−dimensional Euclidean space of the points x = (x1, x2, ..., xn),

where x1, x2, ..., xn ∈ R; B(a, r):= {x ∈ Rn: |x− a| ≤ r} be a closed ball in Rn of
radius r > 0 centered at the point a ∈ Rn; N be a set of all natural numbers, Pk be a
totality of all polynomials in Rn of at most k degree. By Lp

loc(R
n) (1 ≤ p < ∞) we

denote a class of all locally summable functions of p degree, and by Lp
loc(R

n) a class
of all locally bounded functions determined in Rn.

Let x = (x1, x2, ..., xn) ∈ Rn, ν = (ν1, ν2, ..., νn), xν = xν1
1 · xν2

2 ...xνn
n ,

|ν| = ν1 + ν2 + ... + νn, νi(i = 1, 2, ..., n) be entire non-negative numbers. Apply
the orthogonalization process with respect to the scalar product

(f, g): = |B(0, 1)|−1 ·
∫

B(0,1)

f(t)g(t)dt

to the system of power functions {xν} , |ν| ≤ k located in partially lexicographic
order (see [4]), where |B(a, r)| denotes the volume of the ball B(a, r), k ∈
∈ N ∪ {0} . We denote the result of the orthogonalization process by {ϕν} , |ν| ≤
≤ k. The system {ϕν} , |ν| ≤ k is orthogonal and normalized.

For the function f ∈ L1
loc(R

n) we put [2], [3]

Pk,B(a,r)f(x): =
∑
|ν|≤k

 1
|B(a, r)|

∫
B(a,r)

f(t)ϕν

(
t− a

r

)
dt

 ϕν

(
x− a

r

)
.

It is seen from definition that Pk,B(a,r)f is a polynomial of at most k degree.
Let f ∈ Lp

loc(R
n) (1 ≤ p ≤ ∞), k ∈ N. Introduce the following denotation

µk
f (x; r)P : = inf

π∈Pk−1

‖f − π‖Lp(B(x,r)) , r > 0, x ∈ Rn,

Ok (f,B(x, r))p : =
∥∥f − Pk−1,B(x,r)f

∥∥
LP (B(x,r))

, r > 0, x ∈ Rn.

It is known that [5]

∃c > 0 ∀x ∈ Rn ∀r > 0: µk
f (x; r)p ≤ Ok(f,B(x, r))p ≤ c · µk

f (x; r)p. (1.1)

This relation may be written in the following form as well:1

µk
f (x; r)p ≈ Ok(f,B(x, r))p (r > 0, x ∈ Rn).

1If the functions f and g are determined on the set X ⊂ Rm, the conditions f(x) = O(g(x)), (x ∈
X) and g(x) = O(f(x)) (x ∈ X) are fulfilled, this is written as: f(x) ≈ g(x) (x ∈ X).
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For the function f ∈ Lp
loc(R

n) (1 ≤ p ≤ ∞) we denote

Ωk(f,B(x, r))p: =

 1
|B(a, r)|

∫
B(a,r)

∣∣f(t)− Pk−1,B(a,r)f(t)
∣∣P dt


1/p

, 1 ≤ p < ∞,

Ωk(f,B(a, r))∞: = ess sup
{∣∣f(t)− Pk−1,B(a,r)f(t)

∣∣ : t ∈ B(a, r)
}

.

It is easy to see that

Ok(f,B(x, r))p = |B(x, r)|1/p · Ωk(f,B(x, r))p, (x ∈ Rn, r > 0). (1.2)

By the proposal 1.2 from [7], the function µk
f (x; r)p monotonically increases with

respect to the argument r. Taking this fact into account, from relation (1.1) we get:

µk
f (x; δ)p ≈ sup {Ok(f,B(x, r))p: r ≤ δ} (x ∈ Rn, δ > 0). (1.3)

Applying the Holder inequality, we can prove the following statement:
Lemma 1.1. Let f ∈ Lq

loc(R
n) (1 ≤ p < q ≤ ∞). Then the inequality

Ok(f,B(x, r))p ≤ |B(x, r)|
1
p
− 1

q ·Ok(f,B(x, r))q, (x ∈ Rn; r > 0). (1.4)

is true.
In the sequel, we’ll use the following denotation

mk
f (x; δ)p: = sup {Ωk(f,B(x, r))p: 0 < r ≤ δ} (x ∈ Rn, δ > 0),

Mk
f (δ)p: = sup

{
mk

f (x; δ)p: x ∈ Rn
}

(δ > 0), 1 ≤ p ≤ ∞, k ∈ N.

We can write inequality (1.4) in the form:

|B(x, r)|−
1
p ·Ok(f,B(x, r))p ≤ |B(x, r)|−

1
q ·Ok(f,B(x, r))q (x ∈ Rn, r > 0).

Hence, by relation (1.2) we get that if f ∈ Lq
loc(R

n) (1 ≤ p ≤ q ≤ ∞), x ∈
∈ Rn and r > 0, the inequality

Ωk(f,B(x, r))p ≤ Ωk(f,B(x, r))q.

is true.
Passing to supremum, hence we get

mk
f (x; δ)p ≤ mk

f (x; δ)q (x ∈ Rn, δ > 0). (1.5)

Theorem 1.1. Let f ∈ L1
loc(R

n), α > 0, k ∈ N, k < α + 1, x0 ∈ Rn. Then
the inequality ∫

Rn

∣∣f(x)− Pk−1,B(x0,r)f(x)
∣∣

rn+α + |x− x0|n+α dx ≤ c ·
∞∫
r

µk
f (x0; t)1
tn+α+1

dt, (1.6)

is true for any r > 0 , where c > 0 is independent of f , x 0 and r .
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Proof. Applying elementary trans formations, we get

A: =
∫

Rn

∣∣f(x)− Pk−1,B(x0,r)f(x)
∣∣

rn+α + |x− x0|n+α dx = r−α

∫
Rn

∣∣f(x)− Pk−1,B(x0,r)f(x)
∣∣

1 +
(
|x− x0|

r

)n+α · dx

rn
.

Having made change of variables x− x0 = rt, we get

A = r−α

∫
Rn

∣∣f(x0 + rt)− Pk−1,B(x0,r)f(x0 + rt)
∣∣

1 + |t|n+α dt = r−α

∫
Rn

|g(t)|
1 + |t|n+α dt, (1.7)

where g(t) = gr(t) := f(x0 + rt)− Pk−1,B(x0,r)f(x0 + rt) is denoted.
Applying theorem1 from [6] to the last integral of equality (1.7), we have

A ≤ c · r−α

 ∫
B(0,1)

|g(t)| dt +

∞∫
1

µk
g(0; t)1
tn+α+1

dt

 , (1.8)

where the constant c > 0 is independent of g.
Further, by means of change of variables by the formula x0 + rt = y we get∫

B(0,1)

|g(t)| dt =
∫

B(0,1)

∣∣f(x0 + rt)− Pk−1,B(x0,r)f(x0 + rt)
∣∣ dt =

= r−n

∫
B(x0,r)

∣∣f(y)− Pk−1,B(x0,r)f(y)
∣∣ dy =

= c0 ·
1

|B(x0, r)|

∫
B(x0,r)

∣∣f(y)− Pk−1,B(x0,r)f(y)
∣∣ dy =

= c0 · Ωk(f,B(x0, r))1 = c0 |B(x0, r)|−1 ·Ok(f,B(x0, r))1,

(1.9)

where c0 = |B(0, 1)| is the volume of a unit ball in Rn. In the last transition we
used equality (1.2).

Before we estimate the quantity µk
g(0, t)1, we establish some auxiliary relations.

It is easy to see that if y0 ∈ Rn is an arbitrary point, B(a, r) is an arbitrary ball,
fy0(t):= f(y0 + t), then

Pk−1,B(a.r)(fy0)(x) = Pk−1,B(a+y0,r)f(x + y0). (1.10)

Further, by means of equality (1.10) we get (for 1 ≤ p < ∞)

Ok(fy0 , B(a, r))p =

 ∫
B(a,r)

∣∣fy0(x)− Pk−1,B(a,r)fy0(x)
∣∣p dx


1
p

=

=

 ∫
B(a,r)

∣∣f(y0 + x)− Pk−1,B(a+y0,r)f(y0 + x)
∣∣p dx


1
p

=

=

 ∫
B(a+y0,r)

∣∣f(t)− Pk−1,B(a+y0,r)f(t)
∣∣p dt


1
p

= Ok(f,B(a + y0, r))p.

(1.11)
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Arguments for the case p = ∞ are similar.
In particular, it follows from equality (1.11) that the relation

µk
fy0

(a, r)p ≈ µk
f (a + y0; r)p (r > 0).

is true.
Let (τ δf)(x) = f(δx), x ∈ Rn, δ > 0. Then we have

Pk−1,B(0,r)(τ δf)(x) =
∑

|ν|≤k−1

 1
|B(0, r)|

∫
B(0,δr)

f(t)ϕν

(
t

δr

)
dt

δn

 ϕν

(
δx

δr

)
=

=
∑

|ν|≤k−1

 1
|B(0, δr)|

∫
B(0,δr)

f(t)ϕν

(
t

δr

)
dt

 ϕν

(
δx

δr

)
= Pk−1,B(0.δr)f(δx).

Hence, applying the rule of change of variables, we get

Ok(τ δf,B(0, r))p =

 ∫
B(0,r)

∣∣f(δx)− Pk−1,B(0,r)(τ δf)(x)
∣∣p dx


1
p

=

=

 ∫
B(0,r)

∣∣f(δx)− Pk−1,B(0,δr)f(δx)
∣∣p dx


1
p

=

=
1

δn/p

 ∫
B(0,δr)

∣∣f(t)− Pk−1,B(0,δr)f(t)
∣∣p dt


1
p

=
1

δn/p
Ok(f,B(0; δr))p,

(1.12)

with appropriate modification in the case p = ∞. In particular, it follows from
relation (1.12) that

µk
τδf (0, r)p ≈

1
δn/p

µk
f (0; δr)p (r > 0, δ > 0).

Let h(t):= f(t)− Pk−1,B(x0.r)f(t). Then g(t) = h(x0 + rt) = hx0(rt) = (τ r(hx0))(t).
Therefore, considering equalities (1.11) and (1.12), we get

Pk−1,B(0,t)g(y) = Pk−1,B(0,t) (τ r(hx0)) (y) = Pk−1,B(0,rt)(hx0)(ry) =

= Pk−1,B(x0,rt)h(x0 + ry) =
(
Pk−1,B(x0,rt)h

)
(x0 + ry) =

=
(
Pk−1,B(x0,rt)f − Pk−1,B(x0,r)f

)
(x0 + ry) =

= Pk−1,B(x0,rt)f(x0 + ry)− Pk−1,B(x0,r)f(x0 + ry).

Hence it follows that∣∣g(y)− Pk−1,B(0,t)g(y)
∣∣ =

∣∣f(x0 + ry)− Pk−1,B(x0,rt)f(x0 + ry)
∣∣ .



Transactions of NAS of Azerbaijan
[Mean oscillation...]

171

Therefore, for 1 ≤ p < ∞

Ok(g,B(0, t))p =

 ∫
B(0,t)

∣∣f(x0 + ry)− Pk−1,B(x0,rt)f(x0 + ry)
∣∣p dy


1
p

.

After substitution of x0 + ry = u, hence we get

Ok(g,B(0, t))p =

 ∫
B(0,rt)

∣∣f(u)− Pk−1,B(x0,rt)f(u)
∣∣p du

rn


1
p

=

=
1

rn/p
Ok(f,B(x0, rt))p.

The arguments for the case p = ∞ are similar.
Hence it follows that

µk
g(0, t)p = µk

gr
(0, t)p ≈ 1

rn/p Ok(f,B(x0, rt))p ≈
≈ 1

rn/p · µk
f (x0; rt)p, 1 ≤ p ≤ ∞.

(1.13)

Considering relations (1.9) and (1.13), from inequality (1.8) we get

A ≤ c · r−α

c0 · |B(x0, r|−1 Ok(f,B(x0, r))1 + c1

∞∫
1

µk
f (x0; rt)1
tn+α+1

dt

rn

 ≤

≤ c2r
−α−n

µk
f (x0, r)1 + rn+α

∞∫
r

µk
f (x0;x)1
xn+α+1

dx

 .

Thus,

A ≤ c2

r−α−nµk
f (x0, r)1 +

∞∫
r

µk
f (x0;x)1
xn+α+1

dx

 , (1.14)

where c2 is a positive constant independent of f, x0 and r. It is known that the func-
tion µk

f (x0, x)1 monotonically increases with respect to the argument x. Therefore,
we have

∞∫
r

µk
f (x0;x)1
xn+α+1

dx ≥ µk
f (x0; r)1

∞∫
r

x−n−α−1dx =
1

n + α

1
rn+α

µk
f (x0, r)1.

Taking this into account, from inequality (1.14) we get

A ≤ c3

∞∫
r

µk
f (x0;x)1
xn+α+1

dx, r ∈ (0,+∞),

where c3 is some positive constant independent of f, x0 and r.
This is inequality (1.6). The theorem is proved.
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Corollary 1.1. Let f ∈ Lp
loc(R

n) (1 ≤ p ≤ ∞), α > 0, k ∈ N, k <
< α + 1, x0 ∈ Rn. Then the inequality

r−n

∫
Rn

1

1 +
(
|x− x0|

r

)n+α

∣∣f(x)− Pk−1,B(x0,r)f(x)
∣∣ dx ≤

≤ crα

∞∫
r

mk
f (x0; t)p

tα+1
dt,

(1.15)

holds for any r > 0, where c > 0 is independent of f, x0 and r.

2. Φ-oscillation and mean oscillation
Let Φ(x) (x ∈ Rn) be a function summable in Rn, such that Φ(x) ≥ 0 (x ∈

Rn) and ∫
Rn

Φ(x)dx = 1.

Introduce the following denotation.

Φr(x): = r−nΦ
(x

r

)
(r > 0, x ∈ Rn);

Ωk,Φ(f,B(x; r)): =
∫

Rn

Φr(x− t)
∣∣f(t)− Pk−1,B(x,r)f(t)

∣∣ dt,

where f ∈ L1
loc(R

n), k ∈ N.
Ωk,Φ(f,B(x; r)) is said to be Φ-oscillation of k-th order of the function f in the

ball B(x, r).
Furthermore, let

hk,Φ
f (x; δ): = sup {Ωk,Φ(f,B(x; r)): 0 < r ≤ δ} , δ > 0, x ∈ Rn,

Hk,Φ
f (δ): = sup

{
hk,Φ

f (x; δ): x ∈ Rn
}

, δ > 0.

It is obvious that the functions hk,Φ
f (x; δ) and Hk,Φ

f (δ) monotonically increase with
respect to the argument δ ∈ (0;+∞)

Let
Φ(x) ≡ Φ(α)(x): = c(n;α)

1
1 + |x|n+α , α > 0,

where c(n, α) is a constant such that∫
Rn

Φ(α)(x)dx = 1.

Introduce the following denotation

Ωk,α(f,B(x; r)): = Ωk,Φ(α)(f,B(x; r)),

hk,α
f (x; δ): = hk,Φ(α)

f (x; δ), Hk,α
f (δ):Hk,Φ(α)

f (δ).
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If Φ(x) ≡ 1
|B(0, 1)|

· XB(0,1)(x), where XE is a characteristic function of the set

E ⊂ Rn, then

Φr(x− t) = r−nΦ
(

x− t

r

)
=

1
rn |B(0, 1)|

XB(0,1)

(
x− t

r

)
=

=
1

|B(x, r)|
XB(x,r)(t) =

{ 1
|B(x,r)| for t ∈ B(x, r)
0 for t /∈ B(x, r).

Therefore, for this function Φ(x) we have

Ωk,Φ(f,B(x; r)) =
∫

Rn

Φr(x− t)
∣∣f(t)− Pk−1,B(x,r)f(t)

∣∣ dt =

=
1

|B(x, r)|

∫
B(x,r)

∣∣f(t)− Pk−1,B(x,r)f(t)
∣∣ dt = Ωk(f,B(x, r))1,

where Ωk(f,B(x; r))1 is a k-th order mean oscillation of the function f in the ball
B(x, r) in the metric of the space L1.

It is easy to see that Φ(1)(x) ≈ P (x), x ∈ Rn, where P (x):= cn ·
1(

1 + |x|2
)n+1

2

is a Poisson kernel for the case Rn; here cn = Γ
(

n + 1
2

)
π−

n+1
2 . Therefore the

relation
Ωk,P (f,B(x; r)) ≈ Ωk,Φ(1)(f,B(x; r)) (r > 0; x ∈ Rn),

where the constant in ” ≈ ” relation is independent of f ∈ L1
loc(R

n), is fulfilled.
After the introduced denotation, we can write inequality (1.15) in the form:

Ωk,α(f,B(x0, r)) ≤ c · rα

∞∫
r

mk
f (x0; t)p

tα+1
dt, r > 0. (2.1)

We can show that if ϕ(t) monotonically increases on the interval (0,+∞), accepts
only non-negative values and α > 0, the function

F (r): = rα

∞∫
r

ϕ(t)
tα+1

dt, r > 0,

also monotonically increases on the interval (0,+∞).
Considering monotone increase of the function F (r), from inequality (2.1) we

get

hk,α
f (x0; δ) ≤ c · δα

∞∫
δ

mk
f (x0; t)p

tα+1
dt, δ > 0.

Thus, we proved
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Proposal 2.1. Let f ∈ Lp
loc(R

n) (1 ≤ p ≤ ∞), α > 0, k ∈ N, k <
< α + 1, x0 ∈ Rn. Then, the inequality

hk,α
f (x0; δ) ≤ c · δα

∞∫
δ

mk
f (x0; t)p

tα+1
dt, δ > 0, (2.2)

is true, where the positive constant c is independent of f, x0 and δ.
Hence, passing to supremum with respect to x0 ∈ Rn, we get
Proposal 2.2. Let f ∈ Lp

loc(R
n) (1 ≤ p ≤ ∞), α > 0, k ∈ N, k < α + 1.

Then the inequality

Hk,α
f (δ) ≤ c · δα

∞∫
δ

Mk
f (t)p

tα+1
dt, δ > 0, (2.3)

where c > 0 is independent of f, x0 and δ, is true.
Remark. Further, we’ll mainly consider inequalities (2.2) and (2.3) for p = 1,

therefore the case 1 < p ≤ ∞ easily follows from the case p = 1 by the inequal-
ities mk

f (x; t)1 ≤ mk
f (x, t)p and Mk

f (t)1 ≤ Mk
f (t)p, t ∈ (0,+∞) (see (1.5)). Fur-

thermore, instead of mk
f (x; r)1 and Mk

f (r)1 we’ll oftenly write mk
f (x; r) and Mk

f (r),
respectively.

It is also true the following
Proposal 2.3. Let f ∈ L1

loc(R
n), α > 0, k ∈ N . Then the inequalities

mk
f (x; δ) ≤ c · hk,α

f (x, δ) (x ∈ Rn, δ > 0), (2.4)

Mk
f (δ) ≤ c ·Hk,α

f (δ) (δ > 0) , (2.5)

where c > 0 is independent of f, x and δ, are valid.

3. Harmonic oscillation and its relation with mean oscillation
Let P (x) be a Poisson kernel for Rn, Pr(x) := r−nP

(x

r

)
(r > 0) and let

f ∈ L1
loc(R

n), Prf(x) := (Pr ∗ f)(x) =
∫

Rn

f(t)Pr(x− t)dt. The quantity

∫
Rn

|f(t)− Prf(x)|Pr(x− t)dt

is said to be harmonic oscillation of the function f (see [1]). We also introduce the
following denotation:

hf (x; δ): = sup
0<r≤δ

∫
Rn

|f(t)− Prf(x)|Pr(x− t)dt (x ∈ Rn, δ > 0),

Hf (δ): = sup {hf (x; δ): x ∈ Rn} , δ > 0.
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Lemma 3.1. Let f ∈ L1
loc(R

n). Then the relation∫
Rn

|f(t)− Prf(x)|Pr(x− t)dt ≈
∫

Rn

∣∣f(t)− fB(x,r)

∣∣ Pr(x− t)dt, (x ∈ Rn, r > 0),

is true, where fB:=
1
|B|

∫
B

f(t)dt and the constants in the relation ” ≈ ” depend

only on dimension n.
Notice that for k = 1, the polynomial Pk−1,B(x,r)f(t) coincides with fB(x,r).

Therefore lemma, 3.1 shows that∫
Rn

|f(t)− Prf(x)|Pr(x− t)dt ≈ Ω1,p(f,B(x, r)) ≈

≈ Ω1,1(f,B(x, r)), (x ∈ Rn, r > 0).

Hence, it follows that

hf (x; δ) ≈ h1,1
f (x; δ) (x ∈ Rn, δ > 0),

Hf (δ) ≈ H1,1
f (δ) (δ > 0). (3.1)

It should be noted that a variant of the characteristics Hf (δ) for periodic functions
is met in [1].

Applying the Proposals 2.1, 2.2, 2.3 and considering relation (3.1), we get the
following statement.

Theorem 3.1. Let f ∈ L1
loc(R

n). Then the following inequalities

m1
f (x; δ) ≤ c1 · hf (x; δ) ≤ c2 · δ

∞∫
δ

m1
f (x; t)p

t2
dt, (x ∈ Rn, δ > 0);

M1
f (δ) ≤ c1 ·Hf (δ) ≤ c2 · δ

∞∫
δ

M1
f (t)
t2

dt, (δ > 0),

are true, where c1 > 0 and c2 > 0 are independent of f, x and δ.
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