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ON THE FIRST PASSAGE TIME OF ONE-SIDED
NONLINEAR BOUNDARY BY THE TRAJECTORY

OF MARKOV CHAIN

Abstract

In paper, a theorem on Kolmogorov’s strong law for the first passage time
of Markov chain for the nonlinear boundary dependent on growing parameter is
proved.

1. Introduction. Let X = {Xn, n ≥ 0} be a realvalued inhomogeneous in time
Markov chain with transition probability

P (Xn+1 ∈ B/Xn = x) = Pn (x,B) , (1)

where x ∈ R = (−∞,∞) and B ∈ β (R) is σ algebra of Borel subsets R.
We consider a family of the first passage moments

τa = inf {n : Xn > fa (n)} (2)

of the Markov chain X for the nonlinear boundary fa (t) , t ≥ 0 dependent on some
growing parameter a > 0, and fa (1) ↑ ∞ as a → ∞. When the Markov chain

Xn =
n∑

k=1

ξk is generated by the sums of independent identical random variables,

there are many results in references on asymptotic behavior of distribution of the
first passage moment τa. Statement of the results in this direction are in the papers
[1], [7], [10], [15] and in monographs [2], [3], [19]. These works are on the base of
the theory of boundary problems for random walks.

The boundary problems for the Markov chain were studied in the recent papers
[4], [5] in which the linear boundary value problems (i.e. when fa (t) ≡ a) related
with the first passage time τa are studied.

At present, there are many papers [6], [8], [9], [11], [12], [14], [26], [17] devoted
to the boundary value problems of the Markov chain, i.e. to the problems related
with achievement of the boundary by trajectory the Markov chain. These papers
give ground to speak on the existence theory of boundary problems for the Markov
chain. In the paper, Kolmogorov’s strong law is proved for the first passage moment
of τa of the form (2) of the Markov chain. In linear statement fa (t) ≡ a this problem
was studied in [16]. Similar problems for the ordinary process of summation of in-
dependent identical random variables were studied in the papers [1], [3], [15] and [19].

2. Conditions and formulation of basic results. We’ll assume that the
function fa (t) is of the form fa (t) = ag (t), where the positive function g (t) is
continuous, concave and monotonically increases for t ≥ T , (T > 0 is a large number)
Furthermore, the function g (t) regularly varies at the infinity with the index 0 ≤
β < 1, i. e. it has the form g (t) = tβL (t), where L (t) is a slowly changing function
at the infinity [18] L (t) = const, L (t) = ln t, L (t) = ln ln t, L (t) = arctgt are
typical examples for the function L (t).

For the Markov chain we’ll assume that it is a chain with a drift asympyotically
homogeneous in time and in space, i.e. the jump ξn (x) of the chain from the state x
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at moment n satisfies the condition: Eξn (x) converges as n, x →∞ to some number
µ ∈ R, and at this time the existence of mathematical expectation Eξn (x) is not
supposed for all the values of n and x. In this case, they say that the Markov chain
X has a mean drift µ asymptotically homogeneous in time and in space (see [13]).
We’ll suppose µ > 0.

Notice that the distribution of the jump ξn (x) of the chain X may be given by
the equality (1), i.e.

P (x + ξn (x) ∈ B) = Pn (x,B) .

By Na = Na (µ) we denote the solution of the equation fa (n) = nµ that exists
and unique for sufficiently large a by the made assumptions for the function g (t)
and Na →∞ as a →∞. In particular, for the boundary fa (t) = atβ we get

Na = Na (µ) =
(

a

µ

) 1
1−β

, 0 ≤ β < 1.

It holds
Theorem. Let the above listed conditions for the boundary fa (t) be satisfied and

the Markov chain X have a mean positive drift m > 0 asymptotically homogeneous
in time and in space, moreover X n

a.s.→ ∞ as n → ∞. Assume that for some
spatial level U and time M the family of random variables {|ξn (u)| , u ≥ U, n ≥ M}
possesses an integrable majorant, i.e. there exists a non-negative random variable ξ
with Eξ < ∞ such that

sup
u≥U
n≥M

p (|ξn (u)| ≥ x) ≤ P (ξ ≥ x) (3)

for any x ∈ R. Then
τa

Na

a.s.→ 1 as a →∞.

The following results follow from this theorem.
Corollary 1. Let the conditions of the theorem be fulfilled. Then,

Xτa

fa (Na)
a.s.→ 1 or

Xτa

Na

a.s.→ µ as a →∞.

Corollary 2. Let the conditions of the theorem be fulfilled and Eξr < ∞ for
some r ≥ 1. Then,

ξ
(u)
τa

(Na)
1/r

a.s.→ 0 as a →∞.

uniformly with respect to u ≥ U .
Remark 1. The ordinary summation process Xn = ξ1 + ...+ ξn of independent

identical random variables ξk, k ≥ 1 with a positive mean value µ = Eξ1 > 0 and the
random walk Xn+1 = max

(
0, Xn + ξn+1

)
with delay in zero [13] give the simplest

examples for the Markov chains satisfying the conditions of theorem 1.
Remark 2. The theorem and its corollaries for an ordinary random walk are

proved in the papers [1], [3].
Remark 3. The condition Xn

a.s.→ ∞ as n →∞ in the theorem is equivalent to
irrevocability of the chain with denumerable set of states ([13], [20]). This condition
shows that the theorem and its corollaries are very substantial for the irrevocable
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Markov chains, though it is not obviously supposed in the theorem if the Markov
chain X is positive revocable or zero revocable or irrevocable [20] (see also [13]).

3. Theorem’s proof. For the proof we’ll need the following additional state-
ments.

Lemma 1. When fulfilling the conditions of the theorem for the Markov chain
Xn it holds

Xn

n

a.s.→ µ as n →∞.

The affirmation of this lemma is in theorem 2 from the paper [13] on strong law
of large numbers for the Markov chain.

Lemma 2. Let the function fa (t) be continuous and increase monotonically,
moreover fa (1) ↑ ∞ as a → ∞ and let this conditions of the theorem for the
Markov chain X be fulfilled.

Then
1) τa is a stop moment with respect to the flow of σ- algebra Fn = σ (Xk, k ≤ n) ,

n ≥ 1;
2) τa

a.s.→ ∞ as n →∞;

3)
g (τa)

τa

a.s.→ 0 as n →∞.

Proof. Statement 1) follows from the following equality

{τa = n} = {X0 ≤ fa (0) , ..., Xn−1 ≤ fa (n− 1) , Xn > fa (n)} ∈ Fn

for each n ≥ 0.
Prove statement 2) Consider the first passage time

ta = inf {n : Xn > fa (1)} .

It is clear that by the monotonicity of the boundary fa (t) it holds

τa ≥ ta. (4)

Show that ta
a.s.→ ∞ as n →∞. Let Zn = max {X0, X1, ..., Xn}. We have

{ta > n} = {Zn ≤ fa (1)} . (5)

Taking into account Zn
a.s.→ ∞, n →∞, from (5) we get P {ta < ∞} = 1 for all a > 0.

The variable ta increases as the function a Therefore, P
(

lim
a→∞

ta = t∞ ≤ ∞
)

= 1,

since fa (1) ↑ ∞ as a →∞. It follows from (5) that

P (t∞ ≤ n) = lim
a→∞

P (Zn > fa (1)) = 0

for all n ≥ 0 and consequently, P (t∞ = ∞) = 1. Hence by (4) we get statement 2)
of lemma 2.

For proving statement 3) it suffices to notice that t−εL (t) → 0 as t →∞ for any
ε > 0 [18].

Lemma 3. Let ξn, n ≥ 1 be a sequence of random variables and θa, a > 0 be a
familly if positive integer random variables such that θa

a.s.→ ∞ as n →∞. If ξn
a.s.→ ξ

as n →∞, then ξθa

a.s.→ ξ as n →∞.
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Proof. Denote

A =
{

ω : ξn →
n→∞

ξ
}

, B =
{

ω : ξθa
→

n→∞
ξ
}

and D =
{

ω : θa →
n→∞

∞
}

.

It is easy to understand that A ∩ D ⊂ B. By the condition P (A) = P (D) = 1.
Then it follows from the equality

P (A ∪D) = P (A) + P (D)− P (A ∩D)

that P (A ∩D) = 1, since P (A ∪D) = 1. Therefore P (B) = 1.
Lemma 4. Let the positive number functions f (t) and g (t)be given such that

f (t) →∞, g (t) →∞ as t →∞ and for some slowly changing function L (x) , x > 0
the relation for t 6= 0 (

f (t)
g (t)

)r L (f (t))
L (g (t))

→ 1 as t →∞

be fulfilled
Then,

f (t)
g (t)

→ 1 as t →∞.

The statement of this lemma follows from lemma 2.2 of the paper ([3], see.
Supplemet B).

Lemma 5. Let the Markov chain X satisfy the conditions of the theorem and
θa, a > 0 be a family of positive integer random variables such that θa

a.s.→ ∞ as
t →∞. Then,

1)
Xθa

θa

a.s.→ ∞ as t →∞

2) If Eξr < ∞ for some r > 0, then
ξθa

(u)

(θa)
1/r

a.s.→ 0 as t → ∞ uniformly with

respect to u ≥ U .
Proof. Statement 1) follows from lemmas 1 and 3. Prove statement 2). If

follows from the condition Eξr < ∞ that

∞∑
n=1

P (ξr > n) < ∞ (6)

(5) yields
∞∑

n=1

P
(
ξ > εn1/r

)
< ∞ (7)

for all ε > 0.
By (3), from (6) we get

∞∑
n=1

P
(
|ξn (u)| > εn1/r

)
< ∞ for all u ≥ U .

Then by the theorem on almost sure convergence ([3]) we have

ξn (u)
n1/r

a.s.→ ∞ as n →∞ (8)

uniformly with respect to u ≥ U .
Statement 2) of the proved lemma we get from (7) and lemma 3.
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Proof of the theorem. By the definition of the first passage moment τa we
have

fa (τa) < Xτa and Xτa−1 ≤ fa (τa − 1) .

By the monotonicity of fa (t), for these inequlities we get

fa (τa) < Xτa ≤ fa (τa − 1) + Xτa −Xτa−1 ≤ f (τa) + Xτa −Xτa−1. (9)

It follows from lemma 1 that

Xn −Xn−1

τa

a.s.→ 0 as n →∞.

By lemmas 1,2 and 3 we have

Xτa −Xτa−1

τa

a.s.→ 0 and
Xτa

τa

a.s.→ µ as n →∞.

Therefore, from (7) and statemenr 1 of lemma 5 we find

fa (τa)
τa

a.s.→ µ as n →∞.

In view of fa (Na) = µNa, from (8) we get

Nafa (τa)
τaf (Na)

a.s.→ 1 as n →∞ or
(

τa

Na

)β−1 L (τa)
L (Na)

a.s.→ 1 as n →∞.

By lemma 4, from the last relation we complete the proof of theorem 1.
Proof of Corollary 1. We have

Xτa

fa (Na)
=

Xτa

µNa
=

τa

Na

Xτa

µτa
.

Hence, applying theorem 1 and statement 2) of lemma 2 and statement 1) of lemma
5 we get the statement of Corollary 1.

To prove Corollary 2 it suffices to note the following equality

ξ
(u)
τa

(Na)
1/r

=
ξ
(u)
τa

(τa)
1/r

(
τa

Na

)1/r

and apply theorem 1) and statement 2) of lemma 5.
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