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ON THE BOUNDEDNESS OF THE MAXIMAL

OPERATOR IN MORREY SPACES ASSOCIATED

WITH THE DUNKL OPERATOR ON THE REAL

LINE

Abstract

On the real line, the Dunkl operators are differential-difference operators
associated with the reflection group Z2 on R. We consider the generalized shift
operator, associated with the Dunkl operator. We study some embeddings into
the Morrey space (Dunkl-type Morrey spaces) associated with the Dunkl operator
on R. We obtain the boundedness of the Dunkl-type maximal operator in the
Dunkl-type Morrey spaces. As applications we get boundedness of the Dunkl-type
maximal operator in the Dunkl-type Besov-Morrey spaces.

1. Introduction
On the real line, the Dunkl operators Λα are differential-difference operators

introduced in 1989 by Dunkl [8]. For a real parameter α ≥ −1/2, we consider the
Dunkl operator, associated with the reflection group Z2 on R :

Λα(f)(x) :=
d

dx
f(x) +

2α + 1
x

(
f(x)− f(−x)

2

)
Note that Λ−1/2 = d/dx.

In this paper we consider the generalized shift operator, generated by the Dunkl
operator Λα in terms of which the maximal operator (Dunkl-type maximal operator)
in the Morrey space (Dunkl-type Morrey space) associated with the Dunkl opera-
tor on R is investigated. We obtain the boundedness of the Dunkl-type maximal
operator in the Dunkl-type Morrey spaces.

The paper organized as follows. In Section 2, we present some definitions and
auxiliary results. In section 3, we give some embeddings into the Dunkl-type Mor-
rey spaces. In Section 4, we give the our main result on the boundedness of the
Dunkl-type maximal operator in the Dunkl-type Morrey spaces. As applications of
this result, we prove the boundedness of the Dunkl-type maximal operator in the
Besov-Morrey spaces (Dunkl-type Besov-Morrey spaces) associated with the Dunkl
operator on R.

2. Preliminaries
Let α > −1/2 be a fixed number and µα be the weighted Lebesgue measure on

R, given by

dµα(x) :=
(
2α+1Γ(α + 1)

)−1 |x|2α+1 dx.
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For every 1 ≤ p ≤ ∞, we denote by Lp,α(R) = Lp(dµα)(R) the spaces of complex-
valued functions f , measurable on R such that

‖f‖p,α ≡ ‖f‖Lp,α
=
(∫

R
|f(x)|p dµα(x)

)1/p

< ∞ if p ∈ [1,∞),

and
‖f‖∞,α ≡ ‖f‖L∞,α

= ess sup
x∈R

|f(x)| if p = ∞.

For 1 ≤ p < ∞ we denote by WLp,α(R), the weak Lp,α(R) spaces defined as the
set of locally integrable functions f(x), x ∈ R with the finite norm

‖f‖WLp,α
= sup

r>0
r (µα {x ∈ R : |f(x)| > r})1/p .

Note that

Lp,α ⊂ WLp,α and ‖f‖WLp,α
≤ ‖f‖p,α for all f ∈ Lp,α(R).

For all x, y, z ∈ R, we put

Wα(x, y, z) = (1− σx,y,z + σz,x,y + σz,y,x)∆α(x, y, z)

where

σx,y,z =

{
x2+y2−z2

2xy if x, y ∈ R \ 0,

0 otherwice

and ∆α is the Bessel kernel given by

∆α(x, y, z) =

{
dα

([(|x|+|y|)2−z2][z2−(|x|−|y|)2])α−1/2

|xyz|2α if |z| ∈ Ax,y,

0 otherwice,

where dα = (Γ(α + 1))2/(2α−1√π Γ(α + 1
2)) and Ax,y = [||x| − |y||, |x|+ |y|].

Proposition 1 (see Rösler [17]). The signed kernel Wα is even and satisfies
the following properties

Wα(x, y, z) = Wα(y, x, z) = Wα(−x, z, y),

Wα(x, y, z) = Wα(−z, y,−x) = Wα(−x,−y,−z)

and ∫
R
|Wα(x, y, z)| dµα(z) ≤ 4.

In the sequel we consider the signed measure νx,y, on R, given by

νx,y =


Wα(x, y, z) dµα(z) if x, y ∈ R \ 0,

dδx(z) if y = 0,

dδy(z) if x = 0.

Definition 1. For x, y ∈ R and f a continuous function on R, we put

τxf(y) =
∫

R
f(z) dνx,y(z).
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The operators τx, x ∈ R, are called Dunkl translation operators on R and it can
be expressed in the following form (see ref. [17, 18])

τxf(y) = cα

∫ π

0
fe

(√
x2 + y2 − 2|xy| cos θ

)
h1(x, y, θ)(sin θ)2α dθ

+cα

∫ π

0
fo

(√
x2 + y2 − 2|xy| cos θ

)
h2(x, y, θ)(sin θ)2α dθ,

where f = fe + fo, fo and fe being respectively the odd and the even parts of f ,
with cα = Γ(α + 1)/(

√
π Γ(α + 1/2)),

h1(x, y, θ) = 1− sgn(xy) cos θ and h2(x, y, θ) =

{
(x+y) [1−sgn(xy) cos θ]√

x2+y2−2|xy| cos θ
if xy 6= 0,

0 if xy = 0.

Proposition 2 (see Soltani [15]).
(i) If f is an even positive continuous function, then τxf is positive.
(ii) For all x ∈ R the operator τx extends to Lp,α(R), p ≥ 1 and we have for

f ∈ Lp,α(R),
‖τxf‖p,α ≤ 4‖f‖p,α.

3. Dunkl-type Morrey spaces
Let B(x, r) = {y ∈ R : |y| ∈]max{0, |x| − r}, |x|+ r[} and r > 0. Then B(0, r) =

]− r, r[ and
µα(]− r, r[) = bα r2α+2,

where bα =
[
2α+1 (α + 1) Γ(α + 1)

]−1.
Definition 2. Let 1 ≤ p < ∞, 0 ≤ λ ≤ 2α + 2. We denote by Lp,λ,α(R) Morrey

space (≡ Dunkl-type Morrey space), associated with the Dunkl operator as the set of
locally integrable functions f(x), x ∈ R, with the finite norm

‖f‖p,λ,α = sup
x∈R, r>0

(
r−λ

∫
B(0,r)

τx|f(y)|p dµα(y)

)1/p

.

Note that
Lp,α(R) ⊂� Lp,0,α(R),

‖f‖Lp,0,α
≤ 4 ‖f‖Lp,α

and if λ < 0 or λ > 2α + 2, then Lp,λ,α(R) = Θ, where Θ is the set of all functions
equivalent to 0 on R.

Definition 3. Let 1 ≤ p < ∞, 0 ≤ λ ≤ 2α + 2. We denote by WLp,λ,α(R) weak
Dunkl-type Morrey space as the set of locally integrable functions f(x), x ∈ R with
finite norm

‖f‖WLp,λ,α
= sup

t>0
t sup

x∈R, r>0

(
r−λ

∫
{y∈B(0,r): τx|f(y)|>t}

dµα(y)

)1/p

.
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We note that

Lp,λ,α(R) ⊂ WLp,λ,α(R) and ‖f‖WLp,λ,α
≤ ‖f‖p,λ,α

Lemma 1 [11]. Let 1 ≤ p < ∞. Then

Lp,2α+2,α(R) = L∞(R)

and
‖f‖p,2α+2,α = b1/p

α ‖f‖∞ .

On the Dunkl-type Morrey spaces the following embedding is valid.
Lemma 2 [11]. Let 0 ≤ λ < 2α + 2 and 0 < β ≤ 2α + 2 − λ. Then for

p =
2α + 2− λ

β

Lp,λ,α(R) ⊂ L1,2α+2−β,α(R) and ‖f‖1,2α+2−β,α ≤ b1/p′
α ‖f‖p,λ,α ,

where 1/p + 1/p′ = 1.

4. Main result
Now we define the Dunkl-type maximal function (see [1, 10, 16]) by

Mf(x) = sup
r>0

1
µαB(0, r)

∫
B(0,r)

τx|f |(y) dµα(y).

In [1, 10, 16] was proved the following theorem (see also [6, 7]).
Theorem 1.1. If f ∈ L1,α(R), then Mf ∈ WL1,α(R) and

‖Mf‖WL1,α ≤ C1‖f‖1,α,

where C1 > 0 is independent of f .
2. If f ∈ Lp,α(R), 1 < p ≤ ∞, then Mf ∈ Lp,α(R) and

‖Mf‖p,α ≤ C2‖f‖p,α,

where C2 > 0 is independent of f .
Corollary 1. If f ∈ Lloc

1,α(R), then

lim
r→0

1
µαB(0, r)

∫
B(0,r)

∣∣τxf(y)− f(x)
∣∣ dµα(y) = 0

for a. e. x ∈ R.
Corollary 2. If f ∈ Lloc

1,α(R), then

lim
r→0

1
µαB(0, r)

∫
B(0,r)

τxf(y)dµα(y) = f(x)

for a. e. x ∈ R.
The following theorem is our main result in which we obtain the boundedness of

the Dunkl-type maximal operator M in the Dunkl-type Morrey spaces.
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Theorem 2.Let 0 ≤ λ < 2α + 2.
1. If f ∈ L1,λ,α(R), then Mf ∈ WL1,λ,α(R) and

‖Mf‖WL1,λ,α
≤ C3‖f‖p,λ,α,

where C3 > 0 is independent of f .
2. If f ∈ Lp,λ,α(R), 1 < p ≤ ∞, then Mf ∈ Lp,λ,α(R) and

‖Mf‖p,λ,α ≤ C4‖f‖p,λ,α,

where C4 > 0 is independent of f .
Proof. The maximal function Mf(x) may be interpreted as a maximal function

defined on a space of homogeneous type. By this we mean a topological space X

equipped with a continuous pseudometric ρ and a positive measure µ satisfying

µ(E(x, 2r)) ≤ C0µ(E(x, r)) (1)

with a constant C0 independent of x and r > 0. Here E(x, r) = {y ∈ X : ρ(x, y) <

r}, ρ(x, y) = |x− y|. Let (X, ρ, µ) be a space of homogeneous type. Define

Mµf(x) = sup
r>0

1
µ(E(x, r))

∫
E(x,r)

|f(y)|dµ(y).

It is well known that the maximal operator Mµ is bounded from L1(X, λ, µ) to
WL1(X, λ, µ) for 0 ≤ λ < 2α + 2 and is bounded on Lp(X, λ, µ) for 1 < p < and
0 ≤ λ < 2α+2 (see [4, 13, 14]). We shall use this result in the case in which X = R,
ρ(x, y) = |x−y|, dµ(x) = dµα(x). It is clear that this measure satisfies the doubling
condition (??).

We will shall show that

Mf(x) ≤ C5Mµf(x), (2)

where C5 > 0 is independent of f .
From the definition of the generalized shift operator it follows that τxχB(0,r)(y)

is supported in B(x, r).
Moreover

0 ≤ τxχB(0,r)(y) ≤ min

{
1,

2cα

2α + 1

(
r

|x|

)2α+1
}

, ∀y ∈ B(x, r). (3)

In the case |x| ≤ r this follows from the simple inequality 0 ≤ τxχB(0,r)(y) ≤ 1.
To prove (??) in the case |x| > r, we proceed as follows:

τxχB(0,r)(y) = cα

∫
n

θ∈(0,π):x2+y2−r2

2|xy| ≤cos θ
o(sin θ)2αdθ = cα

∫ 1

x2+y2−r2

2|xy|

(1− t2)α−1/2dt ≤

≤ 2(α−1/2)+cα

∫ 1

x2+y2−r2

2|xy|

(1− t)α−1/2dt =
2(α−1/2)+cα

α + 1/2

(
1− x2 + y2 − r2

2|xy|

)α+1/2

≤
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≤ 2cα

2α + 1

(
r

|x|

)α+1/2(r − |x− y|
|y|

)α+1/2

,

where a+ = a if a ≥ 0 and a+ = 0 if a < 0.
In the case |y| > |x|

τxχB(0,r)(y) ≤ 2cα

2α + 1

(
r

|x|

)2α+1

and in the case |y| < |x| the inequality
r − |x− y|

|y|
<

r

|x|
is equivalent to r < |x|.

Therefore we have

τxχB(0,r)(y) ≤ 2cα

2α + 1

(
r

|x|

)2α

,

which proves (??) in the case |y| < |x| as well.
Also

µαB(x, r) =
(
2α+1Γ(α + 1)

)−1
∫

B(x,r)
|y|2α+1 dy ≤

≤
(
2α+1Γ(α + 1)

)−1

{
2
∫ |x|+r
|x|−r y2α+1dy, r < |x|

2
∫ |x|+r
0 y2α+1dy, r ≥ |x|

≤

≤ 2α+1

Γ(α + 1)

{
r|x|2α+1, r < |x|
r2α+2, r ≥ |x| =

2α+1

Γ(α + 1)
r2α+2

{
(|x|/r)2α+2, r < |x|

1, r ≥ |x|.

Then
Mf(x) = sup

r>0

1
µαB(0, r)

∫
R

τx|f(y)|χB(0,r)(y)dµα(y) =

= sup
r>0

1
µαB(0, r)

∫
R
|f(y)| τxχB(0,r)(y)dµα(y) =

= sup
r>0

1
µαB(0, r)

∫
B(x,r)

|f(y)| τxχB(0,r)(y)dµα(y).

Thus
Mf(x) ≤ M1f(x) + M2f(x),

where
M1f(x) = sup

r≥|x|

1
µαB(0, r)

∫
B(0,r)

τx|f(y)| dµα(y),

M2f(x) = sup
r<|x|

1
µαB(0, r)

∫
B(0,r)

τx|f(y)| dµα(y).

If r ≥ |x|, then µαB(x, r) ≤ 2α+1

Γ(α + 1)
r2α+2, also µαB(0, r) = bα r2α+2 and

τxχB(0,r)(y) ≤ 1 for all y ∈ B(x, r). Thus yields

M1f(x) = sup
r≥|x|

1
µαB(0, r)

∫
B(x,r)

|f(y)| τxχB(0,r)(y)dµα(y) ≤
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≤ 22α+2 (α + 1) sup
r>0

1
µαB(x, r)

∫
B(x,r)

|f(y)|dµ(y) ≤ C6 Mµf(x).

If r < |x|, then by (??) µαB(x, r) ≤ 2α+1

Γ(α+1) r|x|2α+1 and

τxχB(0,r)(y) ≤ 2cα

2α + 1

( r

|x|

)2α+1

for all y ∈ B(x, r). Thus we have

M2f(x) = sup
r<|x|

1
µαB(0, r)

∫
B(x,r)

|f(y)|τxχB(0,r)(y)dµα(y) ≤

≤ C7 sup
r>0

1
µαB(x, r)

∫
B(x,r)

|f(y)|dµ(y) ≤ C8Mµf(x).

Therefore we get (??), which completes the proof 1) and 2).
Theorem 2 has been proved.
For 1 ≤ p, q ≤ ∞, 0 ≤ λ < 2α + 2 and 0 < s < 2, the Dunkl-type Besov-Morrey

BDs
pq,λ,α(R) consists of all functions f in Lp,λ,α(R) so that

‖f‖BDs
pq,λ,α

= ‖f‖Lp,λ,α
+

(∫
R

‖τxf(·)− f(·)‖q
Lp,λ,α

|x|2α+2+sq
dmα(x)

)1/q

< ∞.

Besov spaces in the setting of the Dunkl operators studied by C. Abdelkefi and
M. Sifi [2, 3], R. Bouguila, M.N. Lazhari and M. Assal [5], V.S. Guliyev and Y.Y.
Mammadov [7] and L. Kamoun [9]. In the following theorem we prove the bounded-
ness of the Dunkl-type maximal operator in the Dunkl-type Besov-Morrey spaces.

Theorem 3. For 1 < p < ∞, 1 ≤ q ≤ ∞, 0 ≤ λ < 2α + 2 and 0 < s < 2 the
Dunkl-type maximal operator is bounded on BDs

pq,α(R). More precisely, there is a
constant C > 0 such that

‖Mf‖BDs
pq,λ,α

≤ C‖f‖BDs
pq,λ,α

hold for all f ∈ BDs
pq,λ,α(R).

Remark Note that Theorem 3 in the case λ = 0 was proved in [7].
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