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Zahira V. MAMEDOVA

ON APPROXIMATE PROPERTIES OF SYSTEMS IN
BANACH SPACES

Abstract
Some problems of theory of bases are considered in the paper. The known

notion for bases as a space of coefficients, natural isomorphism are carried to
the case of systems possessing certain properties

The problems of minimality and basicity of the given of the given systems of
functions in Lebesgue and Sobel spaces are very important in approximation theory.
The same problems are of great interest from the point of view of spectral theory of
differential operators. There are many papers in this direction. Some general aspect
was considered in the paper [1] in the Hilbert space L2 (a, b). In the present paper,
some problems of close systems in Banach systems are considered. The papers of
the authors [2-9] are closely related to this theme.

Some general facts. We’ll need some facts from theory of bases in Banach
spaces. Let X and Y be some Banach spaces. By L (X;Y ) we denote a Banach
space of bounded operators acting from X to Y . Accept L (X) ≡ L (X;X) . Let
{xn}n∈N be a basis in X. If T ∈ L (X;Y ) is invertible, then {Txn}n∈N also forms
a basis in Y with the same space of coefficient with {xn}n∈N .

Now, let F ∈ L (X;Y ) be a Fredholm operator, {xn}n∈N ⊂ X be a complete
and minimal in X system and yn = Fxn, ∀n ∈ N . If F is invertible, then it is clear
that {yn}n∈N is also complete and minimal in Y . Recall that the system {yn}n∈N is

said to be ω - linearly independent in Y if
∞∑

n=1
anyn = 0 is possible only for an = 0 ,

∀n ∈ N . It is easy to notice that if F is invertible, then {yn}n∈N is ω - linearly
independent. Vice versa, assume that {yn}n∈N is complete in Y . Take ϕ∗ ∈ KerF ∗

and consider:
0 = (F ∗ϕ∗) = ϕ∗ (Fxn) = ϕ∗ (yn) , ∀n ∈ N.

From the completeness of {yn}n∈N in Y we get ϕ∗ = 0, i.e. KerF ∗ = (0). Conse-
quently, F is invertible and so {yn}n∈N is also minimal and ω-linearly independent
in Y . Further, it is clear that Im F is closed in Y , moreover dim Y/ Im F < +∞,
where Y/ Im /F is a factor space and Im F is the set of values in F .

By L [M ] we denote a linear span of the set M in the appropriate space. Let
Sx ≡ {xn}n∈N , x 6= 0, ∀ Define:

Kx ≡

{
{λn}n∈N : the series

∞∑
n=1

λnxn converges in X

}
.

It is easy to notice that with respect to ordinary operations of addition and mul-
tiplication by a complex number, Kx is a linear space. In the sequel, we’ll assume
xn 6= 0, ∀n ∈ N . Introduce a norm in Kx:∥∥λ

∥∥
Kx

= sup
m

∥∥∥∥∥
m∑

n=1

λnxn

∥∥∥∥∥ , where λ = {λn}n∈N ∈ Kx
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Obviously
∥∥λλ

∥∥
Kx

= |λ| ·
∥∥λ

∥∥
Kx

, ∀λ ∈ C and
∥∥λ + µ

∥∥
Kx

≤
∥∥λ

∥∥
Kx

+ ‖µ‖Kx
, ∀λ, µ ∈

Kx. Let
∥∥λ

∥∥
Kx

= 0. Denote n0 = min {n : λk = 0,∀k < n}. If n0 < +∞, it is clear

that sup
m

∥∥∥∥ m∑
n=1

λnxn

∥∥∥∥ ≥
∥∥∥∥ n0∑

n=1
λnxn

∥∥∥∥ = |λn0 | · ‖xn0‖ > 0. We get contradiction, so

n0 = +∞; i.e. λ = 0.
Consequently Kx is a normed space. Show that it is complete. Let

{
λn

}
n∈N

⊂
Kx be some fundamental sequence, where λn {λn

k}k∈N ⊂ C. Take ∀k ∈ N and fix
it. Consider: ∣∣∣λn

k − λn+p
k

∣∣∣ =

∥∥∥(
λn

k − λn+p
k

)
xk

∥∥∥
‖xk‖

=

=

∥∥∥∥ k∑
i=1

(
λn

i − λn+p
i

)
xi −

k−1∑
i=1

(
λn

i − λn+p
i

)
xi

∥∥∥∥
‖xk‖

≤
2

∥∥λn − λn+p

∥∥
Kx

‖xk‖
→ 0 ,

for n, p →∞.

We get that the sequence {λn
k}n∈N is fundamental for ∀k ∈ N and let λn

k → λk,
n → ∞. Take ∀ε > 0. It is clear that ∃n0 : ∀n ≥ n0, ∀p ∈ N :

∥∥λn − λn+p

∥∥
Kx

< ε.
Thus, ∥∥∥∥∥

m∑
k=1

(
λn

k − λn+p
k

)
xk

∥∥∥∥∥ < ε, ∀n ≥ n0,∀p ∈ N, ∀m ∈ N.

Here, passing to limit as p →∞, we get:∥∥∥∥∥
m∑

k=1

(λn
k − λk) xk

∥∥∥∥∥ ≤ ε, ∀n ≥ n0, ∀m ∈ N. (1)

Obviously, ∥∥∥∥∥
m∑

k=1

(
λn

k − λn+p
k

)
xk

∥∥∥∥∥ < ε, ∀n ≥ n0,∀p ∈ N, ∀m ∈ N.

It follows from the convergence of the series
∞∑

k=1

λn
kxk that ∃mn

0 : ∀m ≥ mn
0 , ∀p ∈ N :∥∥∥∥∥

m+p∑
k=m

λn
kxk

∥∥∥∥∥ < ε.

We have:∥∥∥∥∥
m+p∑
k=m

λkxk

∥∥∥∥∥ ≤
∥∥∥∥∥

m+p∑
k=m

(λn
k − λk) xk

∥∥∥∥∥ +

∥∥∥∥∥
m+p∑
k=m

λn
kxk

∥∥∥∥∥ ≤ 3ε, ∀m ≥ mn
0 , ∀p ∈ N.

This in its turn means that the series
∞∑

k=1

λkxk converges in X, i.e. λ = {λk}k∈N ∈

Kx. It directly follows from (1) that
∥∥λn − λ

∥∥ → 0, n → ∞. As a result, we get
that Kx is a Banach space. Take ∀λ ∈ Kx and consider the operator T : Kx → X :

Tλ =
∞∑

n=1

λnxn,∀λ = {λn}n∈N ∈ Kx.
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It is easy to notice that T is a linear operator. Let x = Tλ. We have:

∥∥Tλ
∥∥ = ‖x‖ =

∥∥∥∥∥
∞∑

n=1

λnxn

∥∥∥∥∥ ≤ sup
m

∥∥∥∥∥
m∑

n=1

λnxn

∥∥∥∥∥ =
∥∥λ

∥∥
Kx

.

Thus, T ∈ L
(
Kk;X

)
and ‖T‖ ≤ 1. It is obvious that if the system {xn}n∈N is ω -

linearly independent in X, then KerT = {0}, where KerT =
{
λ : Tλ = 0

}
. In this

case ∃T−1 : Im T → TKx, where Im T is an image of the operator T , i.e. a space
of values of T . If in this case Im T is close, then by Banach theorem on an inverse
operator we get T−1 ∈ L (Im T ;Kx). It is clear that the reasonings cited above are
valid in the case when {xn}n∈ N is minimal in X. The system {xn}n∈N is called
non-degenerate if xn 6= 0, ∀n ∈ N . So, we arrive at the following conclusion.

To the non-degenerate system Sx there corresponds a Banach space of coefficients
SKx and the operator T ∈ L (Kx;X); ‖T‖ ≤ 1. Furthermore, if Sx is ω - linearly
independent in X, then ∃T−1. But if Im T is closed, then T−1 ∈ L (T ;Kx).

Denote by {en}n∈N ⊂ Kx, where en = {δnk}n∈N (δnk -is Kronecker’s symbol) a
canonical system in Kx. Obviously, Ten = xn, ∀n ∈ N . Prove that {en}n∈N forms a

basis in Kx. Take ∀λ = {λn}n∈N ∈ Kx. Show that the series
∞∑

n=1
λnen converges to

Kx. Really, it follows from the convergence of the series
∞∑

n=1
λnxn in X that ∀ε > 0,

∃m0 ∈ N : ∀m ≥ m0, ∀p ∈ N : ∥∥∥∥∥
m+p∑
n=m

λnxn

∥∥∥∥∥ < ε.

We have:∥∥∥∥∥
m+p∑
n=m

λnen

∥∥∥∥∥
Kx

=
∥∥{λn}m+p

n=m

∥∥ = sup
ν

∥∥∥∥∥
ν∑

n=m

λnxn

∥∥∥∥∥ ≤ ε, ∀m ≥ m0,∀p ∈ N.

Hence it follows that the series
∞∑

n=1
λnen converges in Kx. Furthermore,

∥∥∥∥∥λ−
m∑

n=1

λnen

∥∥∥∥∥
Kx

=
∥∥{λn}n∈N − {λn}m

n=1

∥∥
Kx

=
∥∥{λn}∞n=m+1

∥∥
Kx

=

= sup
ν

∥∥∥∥∥
ν∑

n=m+1

λnxn

∥∥∥∥∥ → 0 as m →∞.

Consequently, λ =
m∑

n=1
λnen.

Consider the functionals e∗n
(
λ
)

= λn, ∀n ∈ N , ∀λ = {λk}k∈N ∈ Kx. It follows
from the relation

∣∣e∗n (
λ
)∣∣ = |λn| =

‖λnxn‖
‖xn‖

≤

∥∥∥∥ n∑
k=1

λxxk

∥∥∥∥
‖xn‖

+

∥∥∥∥n−1∑
k=1

λxxk

∥∥∥∥
‖xn‖

≤ 2
‖xn‖

∥∥λ
∥∥

Kx
,
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that {e∗n}n∈N ⊂ K∗
x, where K∗

x is a space conjugated to Kx . On the other hand, it
is easy to see that e∗n (ek) = δnk, ∀n, k ∈ N , i.e. {e∗n}n∈N is a system conjugated to
{en}n∈N . As a result, we get that {en}n∈N is minimal in Kx and at the same time
it forms a basis in it. Thus, it is valid

Statement 1. Let {xn}n∈N ⊂ X be a non-degenerate system. Then the appro-
priate space of coefficients Kx is a Banach space with a canonical basis {en}n∈N , in
other words, each non-degenerate system Sx generates a Banach space of coefficients
Kx with a canonical basis.

In addition to what has been said, assume that {xn}n∈N is ω - linearly indepen-
dent (minimal) and Im T is closed. Then it is easy to notice that {xn}n∈N forms
a basis in Im T and in the case of its completeness in X it is a basis in it. Con-
sequently, Kx and X are isomorphic and T is an isomorphism between them. The
inverse is also true, i.e. if the operator T defined above is an isomorphism of Kx to
X, then {xn}n∈N forms a basis in X. T is said to be a coefficient operator.

Statement 2. Let Sx be a non-degenerate system, Kx-be an appropriate space
of coefficients, T : Kx → Sx be a coefficient operator. Sx form a basis X if T is an
isomorphism between Kx and X.

Let X be some Banach space and T : X → X be a completely continuous
operator. Consider Φλ = I + λT, λ ∈ C is a complex parameter. It is known that
Φλ is a Fredholm operator. If λ is a regular value of T , then Φλ is invertible and
consequently it takes any basis {xn}n∈N ⊂ X to basis {Φλxn}n∈N . But if λ is an
eigen value of T , then the system {Φλxn}n∈N simultaneously is not complete and
is not minimal in X and it has a finite defect. The set of such values {λk}k∈N is
discrete and lim

k→∞
|λk| = ∞.

Assume that {xn}n∈N ⊂ X is a basis in Banach space X and Sx ≡ {x∗n}n∈N ⊂
X∗ is its conjugated system, where X∗ is a space conjugated to X. Consider the
operator Φ : X → X :

Φx =
∞∑

n=1

x∗n (x) yn, (2)

where Sy ≡ {yn}n∈N ⊂ X is some system. Obviously, the domain of definition DΦ

of the operator Φ consists of those x ∈ X, for which series (2) converges in X.
It is clear that Φ = I + T , where

Tx =
∞∑

n=1

x∗n (x) (yn − xn) ,∀x ∈ DΦ. (3)

Accept the following
Definition 1. We call the system Sy S∗x−close to the system Sx if for ∀x ∈ X

series (3) converges, i.e. DT = X. Thereby, if the operator T determined by
expression (3) is completely continuous, we call this closeness a σS∗x-closeness. It
is easy to notice that if for ∀x ∈ X:

{x∗n (x)}n∈N ∈ lp and {‖yn − xn‖}n∈N ∈ ln, where 1
p + 1

q = 1, 1 ≤ p ≤ +∞
system Sy and Sx, σS∗x then the systems Sy and Sx are σS∗x - close.

Thus, if the system Sy is σS∗x- close to the minimal system Sx, then the operator
Φ is Fredholm. In this case it holds

Theorem 1.Let system Sx form a basis in X and the system Sy be S∗x - close
to it. Then the following statements are equivalent:
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1) Sy is complete in X;
2) Sy is minimal in X;
3) Sy is ω-linearly independent in X;
4) Sy forms a basis in X isomorphic to the basis Sx;
5) the operator Φ = I + T is invertible in L (X), where L (X) is an algebra of

bounded operators acting from X to X.
Validity of this statement directly follows from the reasonings cited above and

relations Φxn = yn, ∀n ∈ N .
Now, let λ ∈ ρ (T ) be a regular value of the operator T . Thus, in this case the

Fredholm operator Φλ = I + λT is invertible.
We have: Φλxn = xn + λ (yn − xn) = (1− λ) xn + λyn, ∀n ∈ N . But if 0 6= λ ∈

σ (T ) is an eigen value of the operator T , the system Sλ
y ≡ {xn + λ (yn − xn)}n∈N

simultaneously is not complete and is not minimal (it is not ω- linearly independent),
in X . It is clear that if Sλ

y is complete (minimal or is ω- linearly independent), then
Φλ is invertible.Thus, it is valid

Theorem 2. Let Sx form a basis in X and the system Sy be σS∗x - close to it.
Then the following statements are equivalent:

1) Sλ
y is complete in X;

2) Sλ
y is minimal in X;

3) Sλ
y is ω - linearly independent in X;

4) Sλ
y forms a basis in X isomorphic to the basis Sx;

5) λ belongs to the resolvent set T .
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