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Sevda E.ISAYEVA

THE INITIAL-BOUNDARY VALUE PROBLEM FOR
ONE SEMILINEAR HYPERBOLIC EQUATION
WITH MEMORY OPERATOR

Abstract

In this work we consider the initial-boundary value problem for one semi-
linear hyperbolic equation with memory operator. We prove the existence and
uniqueness of solutions of this problem.

Let © ¢ RN (N > 1) be a bounded, connected set with a smooth boundary T.
We consider the following problem:

O 0 s Fw) = Bu+t uPu=f in Q=0x (0,T) W
52 T 5 U u utuPu=f in Q= T,
u=0 on I'x][0,7], (2)
ou

[u+ F(u)),_g = ul® 4w, =M in Q, (3)

- g

where p > 0 and F' is a memory operator (at any instant ¢, F' (u) may depend not only
on u (t) but also on the previous evolution of u) which acts from M (Q; C° (0, T1)) to
M (Q;C°([0,T])). Here M (Q;C°([0,T])) is a space of strongly measurable func-
tions Q@ — C°([0,7]). We assume that the operator F is applied at each point
z € () independently: the output [F'(u)] (x,¢) depends on u(x,-)[jy, but not on
u(y, ),y for any y # .

We assume that

{ Yui,vq € M( O ([O,T])) , Vt €[0,T],if v1 = vain [0,¢] ,a.e. in £, (@)
then [F (v1)](-,t) = [F (v2)] (-,t) a.e. in £,

V{v, € M (Q;C° ([O,T]))}neN, if v, — v uniformly in [0,77, (5)
a.e. in Q, then F (v,) — F (v) uniformly in [0,77], a.e. in 2,
{ 3L e RT, g€ L*(Q) : Vv e M (;,C°([0,77)),
IF )] G Mooz < E 1o ) leogozy, + 9 () ace. in 9,

Vve M (Q;CO ([OaT])) ) v{tlatQ] - [O?T] )
{ if v (z,-) is affine in [¢1, 2] a.e. in Q, then (7)
{IF (0)] (@12) — [F ()] (20} - [0 (2 82) — 0 (2,12)] > 0 ae. in ©,

if v (z,-) is affine in [t1,5] a.e. in Q, then (8)
|[F (V)] (z,t2) — [F (v)] (z,t1)| < L v (z,t2) —v(x,t1)| ae. in Q.

Let V = H} (Q) N LPT2(Q) and

{ 3L € RT : Vv e M (;C°([0,T))), V[t1,t2] C [0,T7,

u® e V,w® e L2(Q), vV e L? (Q), (9)
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f=h+h hel’?@Q), pew" (0.1:v/). (10)

Definition. A function uw € L*(0,T;V) N H' (0,T;L*(Q)) is said to be a
solution of problem (1)-(3) if F (u) € L*(Q) and

ou Ov ov p _
//{—&-at—[u—i—F(u)](%—i—Vu-VU%—u\ uv}dmdt—
Q

T

:/V, (f,0)y dt+/ [u@) () + w? (z) + u® (a:)}v(:c,O) dx (11)

0 Q
for every v € L* (0, T; V)N H" (0,T;L*(Q)) (v(-,T) =0 a.e. in Q).
(

The equation (11) yields
@+g[u+F(u)]—Au+|u|pu:f in D'(0,T;V) (12)
o2 ot o

Integrating by parts in time in (11), we get

[u+ F (u)l|,—g = u® + @ in v/, % =M in L2 (Q). (13)
t=0
In turn (12) and (13) yield (11).

Well posedness of problem (1)-(3) without F' was studied in the works of differ-
ent authours (see, for example [2]). The corresponding problem for the parabolic
equation without nonlinear term |u|” u was studied in [1]. We have proved existence
and uniqueness of solutions of problem (1)-(3).

Theorem 1 (existence). Assume that (4)-(10) hold. Then problem (1)-(3)
has at least one solution such that

we Whe (0T L% () N L™ (0,13 V), F(u) € H' (0,T5L%(Q)).  (14)

Proof. We prove this theorem with method of time discretization.
Let ’s fix any m € N, set k = % and

nk

1 . n n n n

film(x):% / fl(x,T)dTa. c. 1m Q7 f2m:f2(nk)7 fm:flm+f2m7n:17~--amu
(n—1)k

0

O =w® ul = u® 4+ k™ urt = 0@ — o),

:u(o)’w m:

U,
upy, (z,-) = linear time iterpolate of up, (z,nk) = uy, (),
wy, () = [F (um)] (z,nk) ,n=1,...,m,a.e. in Q.
We consider the following problem
ul, — 2utt 4y 2 . Uy, — U
k2 k k

—Au,, + |u U, = n n=1,...m
Augy, + [P up, = fr, in V7, L..,m, (15)
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0
m

=u® w0 =w® ! =u® 4 k™, st = 6@ — W, (16)

U m m

This problem can be solved step by step in time: for any n € {3, ..., m}, assume
that u2,,...,u! € V are known, and consider the problem of determining u”,.
For almost any x € Q, wuy, (z,-) is affine in [(n — 1) k, nk]; hence [F (uy,)] (z,nk)
depends only on um (,-)[j (,_1)4), Which is known, and on uy, (x), which must be
determined. That is w)), (x) = [F (up)] (x,nk) = UP (ul, (), x) a.e. in .

Let’s set

Unl(z) = [O,{S%i{)k] |tum (z,-)] = j:(]ﬁl,%.},(n—l ‘u{n (x)‘ a.e. in Q. (17)

Thus U1 € L2 (Q), and (6) yields

07, (v (), @)] < Lmax {[U " (x)

v (@)]} +g(x) ae inQ, (18)

for every v € M (2). ~
We define the operator U7 : M (2) — M (), v — ¥ (v(-),-). By (5) and (18)

" ;L2 (Q) — L2 (Q) is affinely bounded and strongly continuous. (19)

(7) yields
(‘T/Zz (v) — w’ﬁn—1> (v—ul')>0ae inQ

for every v € L?(2); by (18) and the latter inequality there exist cj,co € RT
(depending on m, n, but not on v) such that

[8 @) vde =~z — (20)
Q

for every v € L? (Q).
Omitting the fixed indexes m and n, (15) can be written in the form

(1+k)u+ kU (u) — k2Au + k2 lulPu = ¢ in V', (21)

where ¢ = k2f" + (2 + k) u ! + kw? ! — w2 We use a standard procedure to
show that this equation has at least one solution. Let {V;} jeN be a sequence of
finite dimensional subspaces invading V'; for any j € N we consider the following
finite-dimensional problem:

{ to find u; € V; such that (22)

Z (uj) = (1+ k) uj + bV (u;) — k2Au; + k2 [u[ uj = ¢ in V.

By (19), Z is strongly continuous as an operator from V to V’; by (20) it is also

coercive: )

—
[olly
Hence problem (22) has at least one solution; this can be easily checked by an

argument based on the Brower fixed point theorem (see [2], chap. 1, sect. 4.3). By
multiplying (22) by u; and using (23), we get that the sequence {u;} is uniformly

(Z (v),v)y — +o0 as |Jv]ly, — +oo. (23)
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bounded in V. Hence there exists u such that, possibly extracting a subsequence,
u; — u weakly in V. By the compactness of the inclusion V C L?(Q) and by (19),

we have R R
W (u;) — W (u) strongly in L?(Q).

Therefore taking j — oo in (22), we get (21).
In order to obtain a priori estimates we multiply (15) by u?, — u™~! and sum for
n=1,..,1 forany l € {1,...,m}:

l n _ ,n—1 2 1 l
+k Z/ <umkum> dx + kZ/ (w:% — wfn_l) (ufn — u"m_l) dr+
Q n=1"q
l
+Z/Vu% (Vup, — Vup ) dz+
n=1 Q

l
+Z/ ’u?n’p U:Ln (U;Ln - n Z v’ fm’ m u?n71>v . (24)
n=1 Q

By (7) we have

(wl —wi Y (ull, — )>0ae inQn=1,..,1 (25)
moreover
! n n—1 n—1 n—2 n n—1 ! n n—1\ 2
Uy, — Uy, Uy~ — Uy, Uy, — Unn 1 Uy, — Uny
_ de = = d
>/ < ; z ) pede=5> < ; > o
n=1 n=1 Q
! u — unfl 2 unfl —un 2 u — unfl
- m m _ 9 m m m m dr >
" Z/ < k > k k v
n=1 Q
l 2 l 2
1 u — unfl 1 unfl —un 2
> — m___m dr — = m dr =
=3 / ( K > * 22/ ( k ) )
n=1 Q n=1 Q

! é [(W) . \umf] i, (26)

Z/Vu”m (Vup, — Vui ) do 2

HM“‘
b\
N
<l
|
e
<l
|
e
<l
3
—
IS
8
I
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l
1 1 2 2
= 22/ (|Vufn]2 — ‘Vu%_1|2> dx = 2/ <‘Vulm’ - ‘Vu(o)‘ ) dx, (27)
n=1"q Q
l l [
3 / P2 — 3 / Pl > 3 / P2 i
n:lg n:lg n:lﬂ

1

! pt+2 z% 2 S
S Ol T P B W Al Ce )
n=1 \"q Q
ptl 1
l l p+2 p+2
Z/ ‘p+2 _ Z /\uﬁl\p” dr ) /‘uzll‘P-I—Z dr >
n=1 n=1
Q Q

l l
S T e Ty e
n=1 n:IQ

[ 08P (-

Using (25)-(28) in (24) and denoting by C;, Cy suitable constants independent of

m, we get
3 () -

+;/< m‘ —)vu(m‘ )dm+p+2 Ov m’p+2 ‘vu<0)"’+2) dr <
Q

da:—i—k:Z/( %1>2d9&—|—

l l
<3 v = iy = [ i = i o v (),
n=1 n=1 Q
l
v (£20) ) =37 v (F St <
n=2

2

! ! n _ ,n—1\ 2
< (6 [ umrar| ] (“’”ku’”) dr| +
n=1"q L n=1"q

f2m_ 2m

k

> max [l +
’ n= 17 7

n=2

l _ 2
1 k ul, —unt
1ROl [0, <5 Ml + 52 [ (BT ) ds
n=1 Q

+ ( max || f5lly- +kZ
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1
2 2
+Cu 12l + 5, max (29)

a simple calculation then yields

n 1

U

—Uu

k

= ;- max lug ||y, < C. (30)
L2(9) n=1,....m

We introduce some further notations. A.e. in €2, we set
W, (x5 +) =linear time interpolate of wy, (z,nk) = w}, (x), for n =1,...,m,
Uy (2,t) = up, (v) if (n—1)k <t <nk,forn=1,..,m,
and define wy,, fp, similarly. Thus (15) and (30) yield
0%u,, 0

oz T gy (tm + W) = A + [ | T, = fm in V7a.ein(0,7T), (31)

HumHWl,oo(07T;L2(Q))QLOO(O’T;V) ; HﬁmHL”(O,T;V) < const. (32)
As H* (0,T; L* (Q)) = L* (9 H (0,T)) C L* (€;C° ([0, T7])) with continuous injec-
tion, by (6) and (32) we have
[wml| L2000 0,17y < L llumll L2(sc00,11)) + 19l 22() < const. (33)
Moreover (see [2], chap. 1, sect. 1.3)
(T |P Ty € L <O,T; i (Q)) . (34)
(31)-(34) yield
it 2 < const. (35)

By these estimates and applying Proposition XII. 2.1 with D = L!'(0,7) from
[1], we conclude that there exist u, w such that, possible taking m — oo along a
subsequence,

Um — U weakly star in H* (0,T; L? Q) NL>®(0,T;V), (36)

U, — U weakly star in L> (0,7;V), (36)

Wy, — W weakly star in L2, (€; L (0,T)) = (L? (4 LY (o, T)))/, (38)
Uy, + Wy, — U+ W weakly star in L2. (€ L% (0,T7)) N H' (0,T;V'),  (39)
Uy — Ut weakly star in L?(Q) . (40)

So, by taking m — oo in (31), we get (12) in the sense of L? (0,T;V"); (13) is also
easily obtained. As we saw, this yields (11).
By interpolation (see [3], chap. 4, p. 378) we have

H' (0,75 L (2))NL> (0, T;V) C H' (Q) C H* (2 H'™¢(0,T)) C L* (92;C° ([0,T7))

for Ve € (0, %) with continuous injections, and the latter one is also compact. Hence,
possibly extracting a further subsequence, we have

Upy, — u iniformly in (0,7"), a. e. in Q.
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Then by (5) F (u)e M (Q;C°([0,T])) and

F (up,) — F (u) uniformly in [0, 7], a.e. in .
As wp, (z,-) is the linear time interpolate of wy, (x,nk) = [F (up)] (z,nk)
(n=0,...,m) for a.e. x € Q, we have

Wy, — F (u) uniformly in [0,77], a.e. in €.

Therefore by (38) we get w = F (u) a.e. in Q. By (6) w,, converges strongly in
L? (;C° ([0,77)).

As the family of continuous, piecewise linear functions is dense in W1 (0,T),
(8) entails that for every v € M (Q; W1 (0,7))

F(v)eM (Q;VVI’1 (0,T)) and ‘ZF(U)

—|dv
< L|—
'dt

a.e. in Q.

Hence as u € H' (0,T;L? () = L? (Q; H' (0,T)), then F (u) € H' (0,T;L? (2)).
The theorem is proved.
Theorem 2 (uniqueness). Assume that the hypotheses of theorem 1 hold ,

p < (p is arbitrary and finite when N = 2) (42)

N —2
and for every u, v € M (Q; wil (O,T))

0

o7 IF (w) = F (v)] < A (43)

ot
Then problem (1)-(3) has one and only one solution.

Proof. We will prove this theorem for case N > 3 (in the case when N = 2 the
proof is obtained in the same way).

Let uy and uy be two solutions of problem (1)-(3). Then for 6 = u; — us we get

O + 01 + [F (u1) — F (u2)], — A + [ur [P ug — |uaf’ ug = 0, (44)
0l =0, (45)

9|t:0 =0, 9t|t:0 =0 (46)

6eL>®(0,T;V), (47)

0, € L> (0,T;L*(Q)) . (48)

In order to prove that § = 0, we will use a standard procedure applied in the theory
of linear hyperbolic equations (see [2], p.28).
Let s € (0,7),
S
—[0(0)do, t <s,
viy=4 4
0, t> s,
t
0, (t) = / 0 (c) do.

0
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Hence we get that ¢ (t) = 01 (t) — 01 (s) for t < s. By multiplying (44) by v (¢):

/et,wt dt+/ X dt+/<ex,wx>dt+/<[F<u1>—F(uzm,w)dt:

0 0

S

= [l s = ool o)t
0
and taking into account ¢, = 60,1 (0) = —6; (s), we have

1 1
3 18y = [ W0yt = 5 1610 () ey +

0
" / (IF (u1) — F (ua)], ) dt = / (s [P s — fual? i, ) . (49)
0 0

By (42) we can proof that

S

1
/(|u1|p ur — |ua|” ug, 1) dt < 7 1012 (s $)ll720) + / 161122 + ||91x||L2(Q)>
0 0
Using this inequality and (43) in (49), we have

1 1
2 11e ()72 + 5 101 ()72 + (1 + L) / 16172y dt <

s

1
< 3 161 )y + ¢ [ (10Eaco) + [B1aley) .

0

or
s

16 () 117210y + 1612 ()| 720 < C/ (H@H%Q(m + HHI:EH%Q(Q)) dt;
0

hence we get that 6 = 0.
The theorem is proved.
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