Yasin Y. GULIYEV, Javanshir J. HASANOV*)

NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF *B*-RIESZ POTENTIAL IN MODIFIED *B*-MORREY SPACES

Abstract

We consider the generalized shift operator, associated with the Bessel (Hankel) differential operator $B = \frac{\partial^2}{\partial x^2} + \frac{\gamma}{x} \frac{\partial}{\partial x}$, $\gamma > 0$. The maximal operator $M_{\gamma}(B$ -maximal operator) and the Riesz potential $I_{\alpha,\gamma}$ (B-Riesz potential), associated with the generalized shift operator are investigated. At first, we prove that the B-maximal operator M_{γ} is bounded from the modified B-Morrey space $\tilde{L}_{p,\lambda,\gamma}$ to $\tilde{L}_{p,\lambda,\gamma}$ for all $1 and <math>0 \le \lambda < 1 + \gamma$.

We study the B-Riesz potential and their modified version in the modified B-Morrey space. We prove that B-Riesz potential $I_{\alpha,\gamma}$, $0 < \alpha < 1+\gamma$ is bounded from the modified B-Morrey space $\tilde{L}_{p,\lambda,\gamma}$ to $\tilde{L}_{q,\lambda,\gamma}$ if and only if, $\alpha/(1+\gamma) \leq 1/p - 1/q \leq \alpha/(1+\gamma-\lambda)$, 1 .