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SOLVABILITY OF SOME BOUNDARY VALUE

PROBLEMS FOR LAPLACE EQUATION

Abstract

One of the important solution methods of boundary value problems for ellip-
tic equations is the method of potentials theory used by many authors [1]-[3].

When boundary conditions of the considered problems contain higher deriva-
tives, the use of classic potentials of simple or double layers doesn’t lead to the
aim.

In the given paper, we introduce special potentials [4]-[7] that allow to solve
boundary value problems for elliptic equations when a boundary condition may
contain higher derivatives. Here, consideration of Laplace equation is caused by
simplification of notation. As a matter of fact, these problems are solved for
second order elliptic equations.

Denote m−dimensional real Euclidean space by Rm, (m ≥ 2), its points by
x = (x1, x2,...,xm)y, z, ξ and |x| = (x2

1 + x2
2+...+x2

m)1/2. Let G be a bounded,
simply-connected, open domain in Rm and S its surface.

Problem Statement. Find the solution of the equation

∆u(x) = 0, x ∈ G, (1)

satisfying the boundary condition(
∂u

∂α

)
(z) = ϕ0(z), z ∈ S, (2)

or (
∂2u

∂α∂n

)
(z) = ϕ1(z), z ∈ S (3)

where n ≡ nz is an external normal to S at the point z ∈ S, α = (α1, α2,...,αm),

is some direction, |α| = 1,
(
∂u

∂α

)
(z) and

(
∂2u

∂α∂n

)
(z) are the tame derivatives

on S from within S, ϕi(z), (i = 0, 1) are some given functions on S, ∆ is Laplace

operator, i.e. ∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+...+
∂2

∂x2
m

; u(x) is a desired solution.

It is assumed that the following restrictions are fulfilled:
10. Let S be a Lyapunov surface.
20. Domain G is convex in the direction of α.
30. The functions ϕ0(z) and ϕ1(z) are continuous on S.
It follows from restriction 20 that surface S may be divided into two disjoint

parts S1 and S2 so that the half-lines z + tα, z ∈ S1, 0 ≤ t <∞ and z − tα, z ∈




