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ON A CONICAL SHELL FLUTTER AT INTERNAL

STREAMLINE BY SUPERSONIC GAS FLOW

Abstract

A conical shell flutter problem was considered in the papers [1-4], and as a
rule the problem statement was based on a formula of piston theory for positive
pressure. The paper [5] is devoted to refined statement of the problem. The
mathematical model suggested below is based on corollaries of a linearized equa-
tion for perturbed flow potential; the matter was reduced to a new non-classic
eigen-value problem for a system of two integro-differential equations.

1. Problem statement. Assume a conical shell that in a spherical system
of coordinates r, θ, ψ1 occupies a part r1 ≤ r ≤ r2 of a conical surface

{0 ≤ r <∞, θ = α, 0 ≤ ψ1 ≤ 2π} .

Interior to a cone gas flows in positive direction of the axis r; we assume that non-
perturbed flow is radially steady, its parameters-velocity u0, density ρ0, pressure
p0, local velocity of sound a0 are the known functions of radius. Flow is super-
sonic, we accept M2 = (u0/a0)2 >> 1; provided small conicity α2 << 1 we can
identify the coordinate r with the coordinate x, counted off from the vertex of a
cone along the flow. The shell is considered to be elastic. Its mechanical charac-
teristics are: E is Young modulus, υ is a Poisson ratio, ρ is density, h is thickness,
D = Eh3/

(
12(1− υ2)

)
is cylindrical rigidity.

Vibrations of the shell are described by the equations of engineering theory in
the mixed form (w,F are the flexure and force functions in the median surface)
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The operator L(u, v) is of the form:
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We denote ψ = ψ1 sinα,∆ is a Laplace operator.
As it is accepted in panel flutter problems, the solution of a nonlinear sys-

tem is represented by a sum of base and perturbed states w = w0 + w1, F =
F0 + F1. After substitution in (1.1) (1.2) and linearization by small perturbations




