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THE UNIQUE STRONG SOLVABILITY OF THE
MIXED BOUNDARY VALUE PROBLEM FOR
LINEAR NON-DIVERGENT PARABOLIC
EQUATIONS OF THE SECOND ORDER IN THE
SPACE SOBOLEV

Abstract

The mized boundary value problem is considered for linear non-divergent
parabolic equations of the second order with generally speaking, discontinuous
coefficients satisfying Cordes conditions. The one-valued,strongly (almost every-
where) solvability of this problem is proved in the space I/V2 'L where p belongs
to same segment containing the point 2.

Introduction. Let E, and R,;1 be n and (n + 1)-dimensional Euclidean
spaces of the points © = (x1,x2,...,x,) and (t,x) = (¢, 21,2, ..., ) respectively,
Q) C E,- be bounded domain with boundary 092 € C?, Bﬁo -n - dimensional open
sphere of the radius R with the centre at the point 20 = (29,29, ..., 22), Q“” (0, )
Qr ={t,2)|0 <t <T < oo,z €Q}, Sy ={(t,x)|0 <t < T,z e N}, AQL)-Db
the set of all functions u(t,z) from C*(Q%) with support in BZ:O x [0,T], p < R,
for which u(0,z) = 0.

Consider in the domain @ the mixed boundary value problem for linear parabolic
equations of the form

n

Lu= Y ay(t,x)uj+ Y b (t,x)ui —u = f (t,2), (1)

ij=1 i=1

ou
_n = O’ _— = O, 2
u’t—ﬂ 8” |ST ( )
under the assumptions that ||a;;(¢,z)|- is a real symmetrical matrix, moreover for
all (t,z) € Qr and £ € E, the conditions

n
YIEP < D aig(t,a)&g; < v IEP € (0,1] — const, (3)
ij=1

is fulfilled.

Besides we’ll suppose that all coefficients of the operator £ are real and measur-
able in Q)7 functions.

The aim of the present paper is finding the conditions on coefficients of equations
(1) by fulfilling of which the mixed boundary value problem (1) -(2)on identically
strong (almost everywhere) solvable in the space Wp for any f(t,x) € L,(Qr) ,
p € [p1,p2], where p; € (1,2), pa € (2,00).
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In case, when the leading coefficients of linear operator are uniformly continu-
ous in the cylindrical domain, and minor coefficients are elements of corresponding
Lebesgue spaces then uniform strong (almost everywhere) solvability of the Dirichlet
and the mixed problems for the parabolic and elliptic equations in the respective
space Sobolev is proved in [1,2]. The example indicating the exactness of Cordes
conditions is in [3]. In [4],[5] the indicated fact is transported on the class of non-
linear parabolic equations the second order, under the more rigid condition than
the Cordes condition. Denote that the Dirichlet problem for linear and quasilinear
parabolic and elliptic equations the second order non-divergent structure with dis-
continuous coefficients are studied in [6-12].

1. Some auxiliary assertions. Let agree at first in some notations and

u  Ou Pu

a’ 871‘2 an 8.2?1'8.%]‘7

1,7 = 1,...,n, respectively. Let WZ}’O(QT) and Wg’l(QT) be Banach space of the
measurable functions u(t, z) given on Qr with finite norms

definitions. We’ll denote by u; , u;, and u;; the derivatives

3 =

HUHWZ}’O(QT) = / <|u|p =+ Z ]ul|p) dtdz

QT =1

and

n n
lullyz1 g = / ul? + > il + > P+ Jwl? | deda |
Or i=1 i,j=1

respectively. Denote by W; ’I(QT) the subspace W; ’I(QT), in which dense set is
collection of all functions from C°°(Qr) vanishing on ¢t = 0 and %| sy = 0. The
functions u(t,z) € Wa'' (Qr) is called strong solvability of the mixed boundary value
problem (1)-(2) if it satisfies equation (1) almost everywhere in Q7.

Further everywhere the note C(...) means that the positive constant C' depends
only on the contest of parenthesis.

Lemma 1. Ifu(t,z) € A(QF), then

/ Z U?j +uj | dtdz < /(Mou)2dtda:,

7 \&i=1 T
Qr Qr

where My = A — %
Proof. We have

/ (Mou)? dtdz = / <(Au)2 — 2Au uy + u?) dtdx =
Q% Q%
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n
= / Z Ugithj; — 2 Zu”ut + ut dtdx = —/ Z uujjdtdr+

n
/Zulultdtdx + /u?dtdaz = / Z ufj +u? | dtdz+
Q" Q% Qf \W!
n n
+/Z( ?)tdtda::/ > ul+up | dtdat
or, =1 or \ii=1
n
+/ Z( 2(T,2) —ui (0,2)) da.
0 i=1
Bk

Since u(0,z) = 0, then hence it follows the required inequality.
Lemma 2. If u(t,z) € A(Q%) and p € (1,00),then

Z |uz3|p + |w|? | dtdz < Cy (p,n / |IMoul? dtdz.
=1
QL \"=

Proof. Let
F(t,x) =Au(t,x) —u (t,x),
_n ‘l'|2
apt " 2exp| ——— |, att >0,
4t
G(t,.ﬁlf) =
0, at  t <0, (except for t = |z| =0),

where ag = 277~ 2. Then

u(t,r) = /G(t—T,x—y)F(T,y)dey.

Fori=1,...,n we have

(t,z) /G —T,x—y) F (T,y)dey:/Gi(tT,y:p)F(T,y)dey:
Q%
/G F (1,9 + x)drdy.
n+1

Further acting as at differentiation of integrals with weak singularity [12], we
obtain

uij(t,z) = —Gij* F + F(t,x) [l)im / Gi(t — 7,2 —y) cos(7, y;)dsry,

(t,@)
830 /o
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where

Gij* F = lin% / Gij (t — 1,2 —y) F (1,z)drdy,

p—
B,
(ta) ‘ Git—r,z—y) 1
Bo7l/p—{(7',y).0< - <p )

and BB((ff;)p— its boundary.
Let’s calculate

Jij (p) = / Gi(t—T1,2 —y)cos(n,y;)dsry =
8B®Y)

0,1/p
_ 1 Yi _
= Gi (—7,—y) cos (n,yj) dsry = ; 5 cos (7, Yj) dsry.
(0,0) (0,0)
630!1//3 83071#’

If i # j, then J;; = 0. Let now 7 = j. Consider for example the case i = j =n

since in all remaining cases the proof is analogous. Denote by S, that part oB%)

0,1/p
on which y, > 0 and by II, the projection S, on hyperline ¥, = 0.
Then

0] 2
Sp
2 [yn _ 1
2 [y drdyidyn1 —
p/ 5 cos (7i, Yn) cos(T, ) Tdy1...dYn—1
P
2 1y 2 [~y
=2 v = 3 arin s =
I, i, =

2

2 [ |n+2 app) T FE A 2
= / 5 (—T)ln(of)—Z?Zdeyl...dyn_l.
pHp T =1

2 1
Let’s make change of the variables u = —7 (agp) "2, ¥; = y;(agp) "2 ;
i=1,...,n—1. Let II'" be image II, at such transformation. We have

n—1 4,2
n+2 1 9
Inn (p) = QaO/ 5 uwln — — g Zdudﬁl...dﬁn_l =

u :
o+ =1

on+1 ! 1 n-1 )
0 Enfl =

Wherer:exp[zzﬁl—”gzln}, £i=— i=1,..
u

=1
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It is easy to see that the last integral is equal to . Subject to these calcu-
n

lations for w;; we have
wij (t x)———Gi~*F+7ij F(t,z), i,7=1,...,n (4)
¥i ) ¥i n 9 ) ) ’ ) s 14y

where ¢;; is Cronecker symbol and G;; * F' is a parabolic singular integral with the
kernel in Gy;. By Jones theorem [13] for p € (1,00), 4,5 =1,...,n
1Gij * Fllz, (oz) < Cig (0, n) 1Fll L, (qz) -
Subject this inequality in (4) we’ll obtain
n
5231 luijllz, (z) < Cr () 1F L, (qr) - (5)

Now let‘s show that Hut”LP(Qg) < Cs2 (p,n) HFHLP(Q@. Really from the relations
uy = Au — F and (5) we have

n
luellz, o) < 18l gry + IFll, gy < D luill, (gr) +
i=1

PN, o) < Ca () 1l (o)

Then
1 1
n P n P
/ S gl + ual? | dedz | < / S gl dtdar |+
Qg 2,0=1 Qg 2,7=1

hSA

n
+ /’Ut\pdtdm <> il (@) + luellL, (n) <
Q£ i,7=1

3 =

<Catpn) | [ IMoul dido
QF
The lemma is proved.
Denote now by T/T/,?’1 (QE) and 10/})2’1 (Qﬁ) closures A (Q%) by the norms

3 =

n
lullgzscagy = | [ | 32 sl + el | de
' or ij=1
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and
p
Jullyz gy = | [ Mol deds |
Qk

respectively, p € (1,00). According to the Friedrichs type inequality and lemma2
functionals determined above are really norms. Denote by T'(p) the operator, associ-
ating to each functions u (z,t) € \O/},Q’l (Q%) itself as element of the space Wg’l (QE).
By lemma 2 the operator T (p) is bounded. Denote by K (p) its norm. By lemmal
K (2) < 1. Let po— be an arbitrary number from the interval (1,2). According to
Riez-Thorin theorem on convexity [14] for any p € [po, 2]

K (p) < (K (o))" ™" (K (2))” < (K (po))' ™,

2(p—po)

p(2—po)
Thus

where 0 =

po(2—p)
K (p) < K (po)P (2= P0)

: 5 5\° AN 5
Letsﬁxp():ganddenotea:max 3] K 3 . Since for p € 3,2

po (2 —p) < 2-p
p(2—po) ~ 2—po

=3(2—p), then we finally obtain

K (p) < a®*7P.

And so we proved the following assertions
2 5
Lemma 3. If u(t,x) € Wy (QF) , then for any p € [37 2]

. < g2 P . .
lullyy2(ory < @™ llullyzrgry

5
Note that at this the constant a > 1 depends only on n. For p € [3,2}
p=1
n p P
sup | > laij (t,x) — 05|71 denote by 6, (for brevity we write sup instead
QT \ij=1

1—~2
esssup ) and let do = §, h = max ,1p.
Y

5
Lemma 4.Forp € [3, 2} it holds the estimation

2-p 2(p—1)

Sy <h P&
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Proof. From the condition (3) it follows that for i =1,...,n
v—1<a;(ta) 1<y =1,

and since y — 1 > 1 — 4! that

1—
laii (t,x) — 1] < —. (6)
Y
If i # j then
2y < agi (t, ) + ajj (t, ) + 2a;5 (t, ) <2y
Therefore
1—72
|aij (t,2)] < : (7)
Y
From (6)and (7)we conclude that for i,5 =1,...,n
|aij (t,x) = dij| < h (8)

On the other hand allowing for (8), we obtain

n P
2-p
Op = sup Z (agj (t, ) = 6i)° |ags (t, ) — i =1 <hrd »
Q% \ij=1
and lemma is proved.

)
Lemma 5.Let 0 < 1. Then there exists p1(7y,0,n) € [3,2], such that for

allp € [p1,2].
Proof. According to the previous lemma

a?7Ps, < 613

p—1

1 1
But hv < ht = hy, 2— > - Therefore
p
a®7P5, < (ahy)? 7P 63, (9)
Let S Then at p € [p1,2] (ah1)>? < 675 and
= - _— . 3 1
et now p; = maxj o, 310 (ahy) en at p € [p1,2] (ahy < a

from (9) it follows the assertions of the lemma.

2. Internal priory estimation. Consider the operator

- 0? 0
EO: Z G,ij (t,%)m—a,

ij=1
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together with the operator L.

Lemma 6. If relative to the coefficients of the operator Ly the condition (3)
and 6 < 1 is fulfilled, then at all p € [p1,2] for any function u (t,x) € VVPQ’I (QF) the
estimation

||UHW511(Q£) < Cy(v,0,n) HﬁouﬂLp(Qg)
18 true.
Proof. According to lemma 3

H'LLHVVZ%J(QE) S a27p ”MOUHLP(Q£) S a27p HﬁouHLp(Qﬁ) +

_ - 2
+a> P> (ai (1) = 6i) wig < a3 [[Loull, (r) +
i,7=1 Lp(Qg)
+a* 7P Z (aij (t, ) — 045) uij . (10)
b=t Ly(QF)

But other hand

n

Z (aij (t, l’) - (523) Ui <

b=t Lp(QF)
1
P
-21 Jug;[” -21 |aij (t,2) — 3y 7T dtde | < 0p [Jullyyzaqgry -
L,]= ,]=

Qk

Therefore from (10) and lemma 5 we conclude
) 2 2-p .
el (qr) < a I€ouly, (qr) +a* P8y lullyr gr) <

2 1
S abs H‘COUHLP(Q£) + (53 ”u”wgl(Qg)

and and the assertion of the lemma is proved.

Further everywhere not specifying it we will suppose that the radius R of the
sphere B}‘%O (Bf%0 is foundation of the cylinder Q%)) doesn’t exceed 1.

Lemma 7. If the conditions of previous lemma are proved then at all p € [p1, 2]
for any functions u (t,z) € A(QF) the inequality

lullyz1(qry < C5 (7. 8,n) 1 Lol (qn)

18 true.
It is enough to apply the Friedrichs inequality and lemma 6 for proving.
Now assume the following Cordes condition on leading coefficients of the operator

L

n
wp 32 oy (o)
T 1,)=
< . (11)

n—1

gg =

[infiaii (t, g;)} 2

Qri=1
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At this we’ll suppose that condition (11) is fulfilled to within non-singular linear
transformation,i.e.we can cover the domain Q7 with finite number of the subdomains
Q1,...,Qm so in every @; there exists non-singular linear transformation at which
the image of the operator L satisfies condition (11) in the image of subdomain
Qi, i=1,....,m.

Lemma 8. Conditions § < 1 to within non-singular linear transformation coin-
cides with the conditions (11).

Proof. Let’s make the transformation 7 = k%t,y; = kx;; ¢ = 1,...,n, where

n
sup 3 aj; (t, @)
Qr ij=1

2

k:

- . Then if ||A4;; (7,y)| is matrix of leading part of image
inf Z (077 (t, 1‘)

Qr =1
of the operator £ then A;; (7,y) = k%a;j (t,z); i,j = 1,...,n. Condition § < 1 in
new variables will take the form

Qr ij=1 Qr i

where QT—is the image of the domain Qr. It is clear, that coincides with the
conditions

n
sup 3° a2, (£, )
Qr i,j=1

[mfi% (t, x)] 2

Qri=1

< .
n—1

Lemma 9. Let relative to the coefficients of the operator Ly the conditions (3)
and (11) be fulfilled. Then there exists the constant Cg (7y,0,n) such that for any
function u (t,z) € C*(QF), uli=o = 0 at every p € [p1,2] and Ry € (0,R) the
estimation

Cs
; G
el g,y = Collfovle,op) + 7= gz 1¥lenen) *

=
R—R; "W (QR)
18 true.
. 0 . 0
Proof. Let the functions 7 (z) € C§° (Bﬁ) be such that n(r) = 1 in Bj ,
0 <n(z) <1, moreover

C Cr

7 .
ms] < R_Ry, Ini;] < ij=1,..,m, (13)

where C7 = Cr (n).
Applying to the functions un lemma 7 we’ll obtain

2 gz, ) < 5 10 (um)l, g (14)
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But on the other hand

n

1,7=1

n
Z aij (t, ) m;;

i=1

Lo (un)| < [Loul + |u|

and further allowing for (13)

- Cs (v,n
Z agj (t, @) ;| < L)Qa
) (R—Ry)

N[

n n

n
2 Z aij (t, ) win;| <2 Z a;ij (t, ) uju; Z aij (t, ) n;mn;

4,j=1 1,j=1 1,j=1

n % n
1(21&’) <§jn?> <2712|uz|2|m|_2”” C7Z|uz|.
=1 =1

Thus from (15) we conclude

IN

Cy
Lo (U77)||LP(Q£) < ||£0UHLP(Q£) + m HUHLp(Qg) +

09(77 CS
TR Z”“Z”L (h) = oty op) * (7~ 7 M)

+i [lee|| 1.0
R— Ry "Wyt (QR)
Subject to (16) in (14) and denoting by max {C5Cs, C5Cy} the C1g we arrive at the
required estimation (13).

(16)

Lemma 10. Let relative to the coefficients of the operator Lo conditions of the
previous lemma be fulfilled. Then there exists the constant Ci1 (7y,0,n) such that
for any functions u (t,x) € C*® (Q%), uli=o = 0 at any € > 0 and p € [p1,2] the
estimation

Jul Cu
WpQ’l(Q

) < Cs HEOUHLP(Q};) +e Hu||W3,1(QT) R [[w ||Lp(QT)

™

18 true.
Proof. We'll use the following interpolation inequality ([1]): let p € (1, 00) then
for any functionsu (t,z) € Wg’l (Q%) ; at any € > 0 and p € [p1, 2] the estimation

Cr2 (p,n)
g

||U||W;70(Qg) <e HUHWEJ(Q'}%) + HUHLP(Qg) (17)

is true.
Let’s fix an arbitrary € > 0 and let €1 > 0 be a number which will be choosen
later. According to lemma 9 and the inequality (17)

406 2C6
<
HU!W2,1<Q%> < GsllLoully, (ory + 32 ullp,on) + 5

P

2 ullypogr <
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4C6 20661
R2 HU’HLP(QT) + T ||U”W§,1(Q7};) +
2C6C13

TR Mli(en)

< Gs || Loullp, gz +

where C13 = sup Cia2 (p,n).
P€[p1,2]

eR
Now it is enough to choose €; = 20, , the lemma is proved.
6
Remark. If the minor coefficients of the operator £ are bounded ,then there

exists such Ry (vy,00,n,B,¢), that at R < Ry the assertion of lemma 10 is also
true for the operator £. Here B = (b1 (¢,2),....,b, (t,2)). For p > 0 the set
{z : 2 € Q,dist (x,0Q) > p} denote by Q.

Lemma 11. Let relative to the coefficients of the operator Ly the conditions (3)
and (11) be fulfilled. Then for any function u(t,z) € C* (Q%F), , ul=o = 0 at any
€>0, p>0 andp € [p1,2] the estimation

HUHWZ?J(QPX(O,T)) <Cuy (77 g,n,p, Q) HEOUHLP(QT) +

Cis (v,0,n,p,9)
+e ||UHW3’1(QT) T c Hu”Lp(QT)

18 true.
Proof. Let’s fix an arbitrary € > 0, p > 0 and €2 > 0 be a number which will be
choosen later. Let cover Qp by the system of spheres {B"g} and choose from this
2

cover the finite subcovering B, ..., BN. It is evident that the number N depends
only on p, n and diamf). Applying for every i = 1,..., N lemma 10 we obtain

oy S8 (Cé” 2ol gy + 5 Ml g

Tl o )

Summarising this inequality by 1 from 1 to N we conclude

W21Q)

lullyz1 0, <01y <

CP
<3 1N<cpuz:ouup o+ S lull g + 735 Il QT>>

.- . 3 .
Now it is suffisients to choose €9 = 3N and the lemma is proved.

3. Basic coercive estimation. The assertion of lemma 11 is true without
any demands relative to the domain 0€2. All next assertion of the present paper hold
under the conditions 09 € C? which we’ll always suppose as fulfilled one.

Lemma 12. Let relative to the coefficients of the operator Ly the conditions (3)
and (11) be fulfilled. Then there exist positive constant p1, C16 and Cy7 depending
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on 7y,00,n and the domain Q such that for any function on u (t,x) € Wg’l (Qr) at
every € > 0 and p € [p1,2] the estimation

Ciz
HUHW;?J((Q\QM)X(QT)) < Ci ||£0U”LP(QT) +e HUHWIEJ(QT) +— HUHLP(QT)
18 true.
Proof. It is sufficient to prove the lemma for the functions u (t,x) € C*° (QT) ,
0
Ulp=o = 0,8—u |s; = 0. Besides non losing generality we’ll suppose that the coefficients
n

of the operator £ are infinite differentiable Q7. Let’s fix an arbitrary € > 0 and the
point z° € 90. Make orthogonal transformation of the coordinate & — y such that
the tangent hyperline to Q at the point y° will be perpendicular to the axis Oy,.
Here O and y? are images of the domain Q and the point " respectively at such
transformation. Denote by 1 (¢,y) the image of the function w (¢,x). We’ll suppose
for simplicity that the domain 8 at intersection Q with some neighbourhood Oy,
of the point ° is given by the equation y, = ¢ (y1, ..., yn_1) With twice continuously
differentiable function ¢ and the part Q adjacent to 9Q N Oy, belongs to the set
{v:yn > Wi...yn—1)}. Let A(t,z) = |la;; (¢, x)|- be a matrix of leading coefficients
of the operator Lo, A (t,y) = llaij (t,y)||, where a;; (t,y) are leading coefficients of
the image Lo operator £g at our transformation; 4,7 = 1, ..., n. Show now that eigen
numbers of the matrices A and A coincide. Really, fix an arbitrary point (t,x) € Qr
and \ is an arbitrary eigen number of the matrix A and z* be corresponding to it
eigen vector. By virtue of orthogonality of our transformation there exists a non-
degenerated matrix T" such that A = T='AT. Denote by the T~'z*. We have

Ayt = TP Az = AT 12 = Ayt

On the other hand we can write condition (11) in the following form

=
>
Rl V]

Il
—

) (t’ Jj) 1

n—1’

(2
o = sup

}

where \; (¢,x) are eigen numbers of the matrixA (¢,z); ¢ = 1,...,n. Thus the con-

5 <

O
S

s
&
—~
\.H-

&

L=

dition (11) is fulfilled also for the operator Ly, moreover with the same constant
o. Analogously it is shown that for the operator Lo the conditions (3) are fulfilled
(with the same constant -). Let’s make one more transformation z; = y;; i =
Loown—1, 2n = Yo — @ (Y1, -y Yn—1)- Let L}, Q' and 2° be images of the opera-
tor Lo, of the domain Q and the point yY respectively at our transformation, and
a;j (t,z) be leading coeflicients of the operator Lj; i,j = 1,...,n. It is easy to see
that

- 0z; 0z;
/ _ ~ 7 J . ..
aj; (t,2) = kgl_lakl (t,y) —ayk 781/1 i ,7=1,...,n.

Therefore
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n—1
- 0 N . .

al; (t,2) = =y (t,y) 8—; tan(ty) if 1<j<n—1,

k=1

n n—1
- 690 op
! t) = ty) - — 2 (t t
Ann (Z, ) k;l agl ( ayk 3yz Z ank y + ann ( y)
0
Since a(’p (y°) =0 fori =1,..,n— 1, then there exists k1 (y°, ) such that
Yi

at h < hy at intersection €' N (BfLO X (O,T)) the condition (11) (with the same
1

constant o’ = Tnfl) is fulfilled. Besides for the operator L{, in indicated in-

tersection the conditions (3) are fulfilled (with the constant %) Assume that

r = r(2°) = hi(vo,p) and let u'(¢,z) be image of the function @ (t,y) at our
transformation. It is clear that in variables z the intersection €' N Bz0 represent
hemisphere B, = {z }z - zo‘ <7T,zp > 0} Continue the function v’ (¢, z) and co-
efficients of the operatorL{, by the even form by the hyperlane z, = 0 in Bz \B;" and
denote by v’ (¢, z) and L, the obtained in this function and the operator respectively.

Since o’ (t,z) € Wg'! <Bfo X (O,T)) then according to lemma 10

Hu,”wﬁ’1<Bi"x(o,T)> <GCs ”‘C6u,”Lp(B§OX(O,T)) +é3 HUIHWZ?’l(B,%OX(O,T)) +
2

C
+53% HU/HL;,(B;%OX(O,T)) ’

(18)
where €3 > 0 will be choosen later. But on the other hand each of norms at

the right-hand side (18) represent the corresponding norm taken by semi-cylinder
1
Q;" = B;f x (0,T) and multiplied by 2». Therefore from (18) we conclude

c
!!U/ng,l(m) < Cs 10wl iy + 23 10/ lwzr oy + oz Il 0y (19)
2

Cover 99 by the system of spheres {Bil} and choose from this cover finite sub-
2

covering B, ..., BM. At this the number M is determined only by the quantities
v, 00, h and the domain Q. Writing out the inequality of the form (19) for every
semi-cylinder B;" (zz) x (0,T); i=1,..., M raising both sides of obtained inequal-
ities to power p and summarising by ¢ from 1 to M, we obtain

< (os e,

H“/H;@?»l(sx(o,n) (% (0,T)) +eg [ HW21 x1) T

B o )
ebrlp (% (0,1))
M
where B = |J B%_ (2%), and ro = min{r (z1),...,r (2ar)}. Returning to the variables
i=1

x and notiné that pre-image B contains the set Q\€, with some p; (v,0,n,), we
conclude

HUHWI?J((Q\QM)X(O,T)) < Cis[[Loull,@r) +
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Cao
+Choes [|ully21 (g, + = lullz,or) -
where the constants Cig, C19 and Cyy depend only on ~,0,n and the domain ().

Now it is sufficient to choose e3 = —, and the lemma is proved.

Cho

It follows the following from lemmas 11 and 12

Lemma 13. Let relative to coefficients of the operator Ly the conditions (3) and
(11) be fulfilled. Then for any function u (t,z) € sz’l (Qr) at any p € [p1,2] the
estimation

lullyz gy < Cor (v, ) (€0l gy + 1l 2,0

18 true.
Now impose the following conditions on minor coefficient of the operator £. For
pe [plv 2]
b; (t, ac) S Ln+2 (QT); 1=1,...,n, (20)

Let ¢ (t,x) € L, (Qr), 1 < p < 0o. The quantity

1
P

Wyp (0) = sup /|¢|p dtdz |

eCQr,mes e<d

is called AC modulus of the function ¢ (¢, z). Denote by wp., (6) the max {wp,p (6)}-

Further everywhere the symbol C' (£) means that the positive constant depends
only on v, cand wpg.p42(9).

Lemma 14. Let relative to the coefficients of the operator L the conditions (3),
(11) and (20) be fulfilled. Then there exist the constants Coo (L,n,Q), Ty (L,n),
such that if T < Tpy, then for any function u (t,x) € Wg’l (Qr) at every p € [p1,2]
the estimation

- gr) < Ol Cully -

18 true.
Proof. We'll use the following embedding theorems [1]: for any function u (¢, x) €
WqQ’I (Qr) it holds the estimation

lills, o ir) < Co (@m) fullypagpy . i 1<g<nt2  (21)

n+2—q

According to lemma 13

el g,y < Cot €l gy + Cor L = Lo) ull gy + Cor l1ull 1, gy <

< Cor | Lullp, gy + Co1 D Ibiwill (opy + Cor Nl 0y - (23)
i=1

Let’s fix an arbitrary ¢, 1 <7 < n and assume in (21) ¢ = p. We obtain

||biUiHL,,(QT) < HbiHLHQ(QT) Hui||L(n+2)p Qr) = Cas ||biHLn+2(QT) ||U||W§71(QT) .

n+2—p
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Thus

; HbiuiHLp(QT) < 0232 ||biHLn+2(QT) HUHWS’I(QT) =

< Oz (n) wpnt2 (6) HUHWI?J(QT) ) (24)

where § =T mesQ, Co5 = sup Cas(p,n).
PE[p1,2]
Let now t € (0,7"). We have

u(t,z) = ]ut (r,2)dr.
0

Thus using the Holder inequality we obtain

T
1
u(t,x) < T /|ut (r,x)Pdr |
0

and consequently

T
lu(t,x)P < Tpl/ |ug (7, 2) P dr.
0

Integrating the both sides of this inequality by Q7 and raising to power 1 we
have g
lull @) < T lluellz, oy - (25)
Subject to (25), (26) and (27) in (24) we come to the estimation

lully21(gpy < CorllLull,@r) + O (Coawpinga (6) +T) X

<l an
Then there exists the constant Ty (£, n) such that at T' < Tj
C (0)+T < —
W —
24WB;n+2 95Co;

The lemma is proved.

7
4. Case p > 2. Letp e [2, 3] , and K (p) have the same meaning as in lemma

3. By Riez-Theorin theorem for any p € [2, ;] ,

K (p)

AN
=
~—~

)
S~—
=

&
/:Xj\
TN
wl =3
N~
S~
>

AN

/&:\
TN
Wl =
N~
~

>
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3 3
where 0 = 2(]7)2) Denoting by a; (n) the max { (;) ) (K (;)) } we ob-
r(5-7)

3
tain
K (p) < azf_Z.

Thus the following analogue of lemma 3 is true.

Lemma 15. Ifu(t,z) € W,?’l (Qr) then for any p € [2, ?j

. p—2 .
HUHWI?J(Q% < ay HUHVPQJ(QE)
is true. The analogy of lemmas 4 and 5 is proved absolutely analogously.

7
Lemma 16. Forp € [2, 3] it holds the estimation

5, <h'7 6.

Lemma 17. Let 6 < 1. Then there exists ps (,6,n) € <2, Q such that for all

p € [2,p2)] )
a} P, < 63,

Impose now the following restrictions on minor coefficients of the operator L for
p € (2ap2]
bi(t,2) € Luta (Qr); i=1,..m. (26)

Using the scheme conducted in lemmas 6-13, and subject to lemmas 15-17 we are
sure in validity of lemma 14 for p € (2, po] and u (t,z) € Wa'' (Qr) if only relative
to the coefficients of the operator £ the conditions (3), (11) and (26) are fulfilled.

Theorem 1. Let relative to coefficients of the operator L the conditions (3),
(11) and (26) be fulfilled. Then there exists the positive constants Ty (L,n) and
Cas (v,0,n,Q) such that for any functions u (t,z) € Wﬁ’l (Qr) at T < Ty and at
every p € [p1,p2] the estimation

lllyy 21 gpy < Cos 1£ul, o)

18 true.

5. Solvability of the mixed boundary value problem. Now consider
the mixed boundary value problem (1)-(2).

Theorem 2. Let in domain Qr be given the coefficients of the operator L
satisfying the conditions (3), (11) and (26). Then if T < Ty and 0 € C? then the
fized boundary value problem is identically strongly solvable in the space u (t,x) €
W2 (Qr) at every f (t,x) € L, (Qr), p € [p1,p2]. At this for solution u(t,z) the
estimation

el omy < Cos 171,20 (27)
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18 true.

Remark. In case p = 2 and the operator £, theorem 2 is correct and without
the assumption 7' < Tj (see: [11]).

Proof. Let’s prove the theorem by the method of continuation by parameter
introduce for s € [0, 1] the family of the operator L5 = sL 4 (1 — s) M.

It is easy to see that the conditions (3) and (11) are fulfilled for the operator
Ls with the constant v and o respectively. Show this on the example of condition
(11). According to lemma 8 the last to within non singular linear transformation
considers with the condition § < 1. Let aj; (,z) be leading coefficients of the
operator Lg; 4,5 =1,...,n and

N

n

0% = sup Z (afj (t,z) — (5ij)2

Qr i,j=1

We have

N|=

= s sup Z (aj (t,x) — 51-3-)2 =350 < 0.
QT ’L,j:l

Besides if b (t,2); i = 1,...,n are minor coefficients of the operator L, then the

n
quantity > (|67 (¢, %), o + 1€* (&2) L, ) 18 by majorized by the constant,
i=1

n
depending only on > [|bill;,, ., (g, - Hence it follows that the assertion of theorem
i=1

1 is true for the operator Ly with the constant C%; not depending on s. Denote
by E the problem [0, 1] has solution. Note that by virtue of theorem 2 this solu-
tion is unique. Now show that the set E is nonempty and it is open and closed
simultaneously relative to [0,1]. Then

Louw=f(t,z); (tz)€Qr, ue W2 (Qr), (28)

coincides with the segment [0,1] and in particular the problem (28) is identically
solvable at s = 1 when £;= L. At this the estimation (27) follows from theorem 2.
Nonemptiness of the E follows form that problem (28) is solvable at s = 0 (see:[1]).
Show that the set E is open relative to [0,1]. Let s° € E, s € [0,1] be such that
‘s — 30‘ < a where a > 0 will be choosen later. Represent the problem (28) in the
form

Lou=f(t,z)+ (Lo —Ls)u; (t,x)€Qp, ue W2 (Qr). (29)
It is easy to see that Lo — Ly = (5% — s) (£ — My). Consider auxiliary problem

Lou=f(t,x)+ (50 =) (L— M) 9; (t,z) €Qr, ue Wp2’1 (Qr), (30)
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where ¥ (t,2) € W' (Qr). Acting as in theorem 1 we can show that
[(£=Mo) Q9||Lp(QT) < C31(L,n) HﬂHWEJ(QT) :

Thus the operator M associating to every function 9 (t,z) € W2 (Qr) the
solution wu (t,x) of the problem (30) is determined, i.e. u = M. Show that at
corresponding way chosen by a the operator M is contractive. Let u! = M9, u? =
M2, We have

Lo (u' —u?) = (" —s) (L— M) (9" —=9%); u' —u’€ Wg’l (Qr) .
Then according to theorem 1

H“l - UZHW}I(QT) < CosaCs Hﬁl - 192HW§’1(QT) )

1
————. Then the operator M has a fixed
2C055Co6 P

point u = Mu. But at ¥ = u the problem (30) coincides with the problem (29),
i.e. with (28). The openness of the set E is proved. Now prove its closure. Let
smc E; m=1,2,..., s = lim s™. Show that s € E. Denote by u™ (t,z) the

m oo
solution of the boundary value problem

Lonu™ = f(t,2); (ta)€Qr, u™e W (Qr).

and it is sufficient to choose o« =

According to theorem 1
1™ lwz1gry = €25 £l @r) -

Thus the sequence {u™ (t,z)} is bounded by the norm W' (Qr). Hence it
follows that it is wearily compact, i.e. there exist subsequence my — oo at k — oo
and the function u (t,2) € Wa'' (Qr) such that (¢, z) is weak limit in Wg'' (Qr) of
the subsequence {u™* (t,z)} at k — oo Hence in particular it follows that for any

L 21
function W, (Qr)
(Loou™,0) = (Lyo,0);  k — 00
where (u,9) = [ wddtdz. But
Qr

<L50umk7 30> = <(‘CSO - [‘Smk) umkv @) + <£8mkumka 90> = Z.1 + Z.2-
‘We have
Jin] < |s” — ™| [((£ — Mo) u™, @) <

< \so — 5| Ca7 (¢, p) Cae |Ju™ <

wzr@n =
< C5C57Ch | 8" — 5™ | [PAIPRTE
Thus i; — 0 at & — oco. On the other hand ia = (f,¢). So for any function
o (t,z) € Wy (Qr)
(Lsou, ) = (f, ¥).
It means that Lou = f (¢, 2) almost everywhere in Qr, i.e. s° € E. The theorem
is proved.
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