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SYMMETRIC MODEL OF MOTION OF PARTICLES
ON A CIRCLE

Abstract

In the paper symmetric motion model of particles on a circle without over-
taking that has a great importance in transport systems is considered. Existence
of stationary mode for the considered problem is shown. It is proved that in
stationary mode all the particles move by the same parameter for one step. A
counter example that proves that in stationary mode the particles don’t walk by
a binomial law is given.

1. Introduction. The problems on motion of particles on an infinite straight
line without overtaking are considered in the papers [1, 2]. The law of motion
between particles is determined. In other words, the motion law of a particle or of
a group of particles depends on distance to the next particle. It is shown that in
stationary mode each separately considered particle randomly walks and distribution
of distance between neighbouring particles is found.

For passenger departure transport systems the motion of particles on a closed
contour is taken as a mathematical model. While considering motion model of
particles on a closed contour without overtaking there arise additional difficulties and
they impede the motion laws of particles. It is shown that any two particles affect
on each other in motion. In the papers [3, 4] for models consisting of two particles
motion laws between particles in stationary mode is determined. It is proved that
each observable particle randomly walks with the same parameters (r, l = 1− r) for
models consisting of two particles that involves the advantage of one particle with
respect to another one.

Similar results are obtained in [6] for a model of motion of three particles with
a leader on equidistant points of a circle.

In [5], the models related with motion of particles on a circle at continuous time
are considered. In these models, motion diagram determining the stationary motion
mode is found.

When the number of particles is three and more, the motion gets complicated
character and as there is a great number of equations that express stationary mode,
there arises many difficulties and many problems in this direction remain open. In
the present paper, at first a symmetric model of motion with three particles, then
with s particles on a circle without overtaking are considered. Hypothesis from [1]
an invariant character of a random walk is studied.

2. Description of the model. The motion of particles on the fixed points of
a circle is considered. It is assumed that motion happens with jumps at the instants
0, h, 2h, ...(h > 0). Assume that there are N number equidistant points on the circle
and s is the number of particles (s < N). The particles move counter clockwise
(fig. 1). i numbered particle stands before i+ 1 numbered particle and next to i− 1
numbered particle.
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Fig 1.

Introduce the following denotation: ξi,t is a coordinate of the i–th particle at the
instant t; Then

ρi,t = ξi+1,t − ξi,t (i = 1, ..., s− 1); ρs,t = ξ1,t − ξs,t;

is a distance between the successive particles at the instant t; εi,t = ξi,t+h − ξi,t is
motion of the i–th particle at the instant t; T = {0, h, 2h, ...} (h > 0), t ∈ T ;.

There happens jumpiest motion, i.e. either a particle jumps for a given distance
d > 0 in motion direction or stands motionless; d is a distance between neighbouring
points. Note that

εi,t =
{

0, if the particle is motionless at the instant t
d, if the particle moves at the instant t

i = 1, ..., s

The motion happens in the following way: probability of jump of each particle
depends on a distance to the next particle:

1) if there is no particle for one step distance

P
{
εi,t = d | ρi,t = kd

}
= ri

k,

P
{
εi,t = 0 | ρi,t = kd

}
= lik,

k = 2, ..., N − s+ 1; ri
k + lik = 1

2) if there is a particle for a step distance and if this particle jumps

P
{
εi,t = d | ρi,t = d, εi+1,t = d

}
= ri

1,

P
{
εi,t = 0 | ρi,t = d, εi+1,t = d

}
= li1,

ri
1 + li1 = 1

3) if there is a particle at a step distance and this particle is motionless

P
{
εi,t = d | ρi,t = d, εi+1,t = 0

}
= 0,

P
{
εi,t = 0 | ρi,t = d, εi+1,t = 0

}
= 1,

Here for i = s, we understand εs+1,t = ε1,t.

3. Three particle model. Let’s consider the case when the number of
particles is three (s = 3).

Et =
(
ρ1,t, ρ2,t

)
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is the state of the system at the instant t. It is known from the description of the
model that Et makes ergodic Markov chain with finite number states and there is a
stationary distribution. So, there is a stationary mode i.e. there is a t independent
distribution of Et, that

ak1,k2 = P {Et = (k1, k2)} ,
∑
k1,k2

ak1,k2 = 1

Then we can write the following Kolmogorov-Chapman equation

a1,1 = (r3N−2r
2
1r

1
1 + l3N−2)a1,1 + l3N−3r

2
2r

1
1a1,2 + l3N−3r

2
3a1,2

a1,2 = r3N−3l
2
2a1,1 + (r3N−3r

2
2r

1
1 + l3N−3l

2
2)a1,2+

+r3N−3l
2
1r

1
2a2,1 + l3N−4l

2
2r

1
2a2,2 + l3N−4r

3
2r

1
2a1,3

a2,1 = r3N−2r
2
1l

1
1a1,1 + (r3N−3r

2
1r

1
2 + l3N−3l

2
1)a2,1+

+l3N−3r
2
2l

1
1a1,2 + l3N−4r

2
2r

1
2a2,2 + l3N−4r

1
3a3,1

ak1,1 = l3N−k1−1r
2
2l

1
k1−1ak1−1,2 + r3N−k1

r21l
1
k1−1ak1−1,1+

+(l3N−k1−1l
1
k1

+ r3N−k1−1r
2
1r

1
k1

)ak1,1+

+l3N−k1−2r
2
2r

1
k1
ak1,2 + l3N−k1−2r

1
k1+1ak1+1,1

k1 = 3, ..., N − 1 (1)

a1,k2 = r3N−k2
l2k2−1a1,k2−1 + r3N−k2−1l

2
k2−1r

1
2a2,k2−1+

+(r3N−k2−1r
2
k2
r12 + l3N−k2−1l

2
k2

)a1,k2+

+l3N−k2−2l
1
k2
r12a2,k2 + l3N−k2−2r

2
k2+1r

1
1a1,k2+1

k2 = 3, ..., N − 1

ak1,k2 = r3N−k1−k2+1r
2
k2
l1k1−1ak1−1,k2 + r3N−k1−k2+1l

2
k2−1l

1
k1
ak1,k2−1+

+(r3N−k1−k2
r2k2
r1k1

+ l3N−k1−k2
l2k2
l1k1

)ak1,k2+

+l3N−k1−k2
r2k2+1l

1
k1−1ak1−1,k2+1 + r3N−k1−k2

l2k2−1r
1
k1+1ak1+1,k2−1+

+l3N−k1−k2−1l
2
k2
r1k1+1ak1+1,k2 + l3N−k1−k2−1r

2
k2+1r

1
k1
ak1,k2+1

k1 > 1, k2 > 1, k1 + k2 < N

Theorem 1. The following relations are true for this system:

P

 ⋃
k1+k2=j−1

{Et = (k1, k2)} ,
⋃

k1+k2=j

{Et+1 = (k1, k2)}

 =

= P

 ⋃
k1+k2=j

{Et = (k1, k2)} ,
⋃

k1+k2=j−1

{Et+1 = (k1, k2)}


j = 3, 4, ..., N − 1 (2)
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Relation (2) will be expressed by the parameters of the system in the following form:∑
k1+k2=j−1

k1 6=1

r3
N−j+1

l1k1
ak1,k2 + r3

N−j+1
(1− r2

j−2
r11)a1,j−2 =

=
∑

k1+k2=j
k1 6=1

l3
N−j

r1k1
ak1,k2 + l3

N−j
r2

j−1
r11a1,j−1 (3)

Proof. The proof of the statement is obtained by composition of appropriate
equations of system (1). Thus, the case j = 3 is obtained from the first equation of
the system; the case j = 4 is obtained from side by side composition of the first three
equations of the system and so on. If we sum side by side the system’s equations
by the index k1 + k2 ≤ j and take into account that for the index (k

′
1, k

′
2) satisfying

the condition k
′
1 + k

′
2 = m(m < j) the relation∑

k1+k2≤j

P (Et+1 = (k1, k2) | Et = (k
′
1, k

′
2)) = 1

is true, we get proof of the theorem.
Theorem 2. For the considered system the motion probabilities of each particle

for a step in stationary mode coincides:

P (ε1,t = d) = P (ε2,t = d) = P (ε3,t = d)

P (ε1,t = 0) = P (ε2,t = 0) = P (ε3,t = 0)

Proof. The motion probabilities of the first and third particles are described in
the following way

P {ε1,t = d} =
∑
k1,k2
k1 6=1

r1k1
ak1,k2 +

∑
k2

k2 6=1

r2k2
r11a1,k2 + r3N−2r

2
1r

1
1a1,1 (4)

P {ε3,t = d} =
∑
k1,k2

k1+k2<N−1

r3N−k1−k2
ak1,k2+

+
∑
k1

k1 6=1

r1k1
r31ak1,N−k2−1 + r2N−2r

1
1r

3
1a1,N−2 (5)

We can write the first term of expression (4) in the following way∑
k1,k2
k1 6=1

r1k1
ak1,k2 =

∑
k1,k2
k1 6=1

r1k1
(r3N−(k1+k2) + l3N−(k1+k2))ak1,k2 =

=
∑

k1+k2=j
k1 6=1,j=3,N−1

k1,k2

r1k1
r3N−jak1,k2 +

∑
k1+k2=j

k1 6=1,j=3,N−1
k1,k2

r1k1
l3N−jak1,k2
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We can use equality (3) and write∑
k1+k2=j

k1 6=1,j=3,N−1
k1,k2

r1k1
r3N−jak1,k2 +

∑
k1+k2=j

k1 6=1,j=3,N−1
k1,k2

r1k1
l3N−jak1,k2 =

=
∑

j=3,N−1


∑

k1+k2=j−1
k1 6=1,
k1,k2

l1k1
r3N−j+1ak1,k2 + r3N−j+1(1− r2j−2r

1
1)a1,j−2+

−l3N−jr
2
j−1r

1
1a1,j−1

)
+

∑
k1+k2=j

k1 6=1,j=3,N−1
k1,k2

r1k1
r3N−jak1,k2 =

=
∑

j=3,N−1

∑
k1+k2=j

k1 6=1,
k1,k2

r3N−jak1,k2 +
∑

k1+k2=N−1
k1 6=1,
k1,k2

r1k1
r31ak1,k2+

+
∑

j=3,N−1

(
r3N−j+1(1− r2j−2r

1
1)a1,j−2 − l3N−jr

2
j−1r

1
1a1,j−1

)
Here we can write the last term as follows∑

j=3,N−1

(
r3N−j+1(1− r2j−2r

1
1)a1,j−2 − l3N−jr

2
j−1r

1
1a1,j−1

)
=

=
∑

j=2,N−2

r3N−j(1− r2j−1r
1
1)a1,j−1 +

∑
j=2,N−2

l3N−jr
2
j−1r

1
1a1,j−1 =

=
∑

j=2,N−2

r3N−ja1,j−1 −
∑

j=3,N−1

r2j−1r
1
1a1,j−1 − r3N−2r

2
1r

1
1a1,1 + r31r

2
N−2r

1
1a1,N−2

If we take into account the obtained expressions in (4), we get the equality

P {ε1,t = d} = P {ε3,t = d}

is true. Having renumbered we can prove the other sides of the equality. So, if we
number second particle again by 1, then third particle will be first and by the proved
fact

P {ε2,t = d} = P {ε1,t = d}

Thus, the theorem was proved.
Result. In the special case, if motion parameters of the particles are constant,

ri
k = r, lik = l, i = 1, 2; k = 1, ..., N − 1

then
ak1,k2 =

2
N(N − 1)

, k1 + k2 < N − 1
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P {εi,t = d} =
(N − 1)(N − 2)r + 2(N − 2)r2 + 2r3

N(N − 1)
, i = 1, 2.

4. s particle model. We can consider the model in a more general case.
Assume that s is the number of particles (s < N). The analogies of above stated
statements are true for this case as well.

Theorem 3. The following relations are true for the considered system

P

 ⋃
k1+k2+...+ks−1=j−1

{Et = (k1, k2, ..., ks−1)} ,

⋃
k1+k2+...+ks−1=j

{Et+1 = (k1, k2, ..., ks−1)}

 =

= P

 ⋃
k1+k2+...+ks−1=j

{Et = (k1, k2, ..., ks−1)} ,

⋃
k1+k2+...+ks−1=j−1

{Et+1 = (k1, k2, ..., ks−1)}


j = s, s+ 1, ..., N − s+ 1 (6)

The expression of this relation by the motion parameters of the particles will be in
the following form:

s−1∑
i=1

∑
ki 6=1

k1+k2+...+ks−1=j

r11r
2
1...r

i
ki
lsN−ja1,1,...,ki,ki+1,...,ks−1 =

=
s−1∑
i=1

∑
ki 6=1

k1+k2+...+ks−1=j

(1− r11r21...ri
ki

)rs
N−ja1,1,...,ki,ki+1,...,ks−1

j = s, s+ 1, ..., N − s+ 1

Theorem 4. The motion probability of each particle for a step coincides for the
considered system in stationary mode:

P (ε1,t = d) = P (ε2,t = d) = ... = P (εs,t = d)

P (ε1,t = 0) = P (ε2,t = 0) = ... = P (εs,t = 0)

These theorems are proved in a similar way noted above. In the statement’s proof,
the following formulas are used for motion probabilities of particles:

P {ε1,t = d} =
s−1∑
i=1

∑
ki 6=1

k1,k2,...,ks−1

r11r
2
1...r

i
ki
a1,1,...,ki,ki+1,...,ks−1
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P {εs,t = d} =
∑
ks 6=1

k1,k2,...,ks−1
k1+k2+...+ks=N

ri
ki
ak1,k2,...,ks−1+

+
s−2∑
i=1

∑
ki 6=1

k1,k2,...,ks−1
k1+k2+...+ks−1=N−1

rs
1r

1
1r

2
1...r

i
ki
a1,1,...,ki,ki+1,...,ks−1

5. A counter example. In such type problems a binomial law walk of
particles is of great importance. The obtained facts give reason to think that this
statement is true for this model as well. So, the motion probabilities of the particles
for a step coincide. But the constructed example shows the binomial law walk is not
true for the considered model.

Example. We consider motion of two particles on a circle. Each particle moves
by the same parameters r, l. For this case we obtain

ak = ak+1

As
N−1∑
k=1

ak = 1, we get ak =
1

N − 1
. Then

P {ε1,t = d} =
N−1∑
k=1

P
{
ε1,t = d, ρ1,t = k

}
= r2a1 +

N−1∑
k=2

rak =
r2 + (N − 2)r

N − 1

On other hand

P {ε1,t = d, ε1,t+1 = d} =
N−1∑
k=1

P
{
ε1,t = d, ε1,t+1 = d, ρ1,t = k

}
=

=
N−1∑
k=1

P
{
ε1,t = d, ε2,t = d, ε1,t+1 = d, ρ1,t = k

}
+

+
N−1∑
k=1

P
{
ε1,t = d, ε2,t = 0, ε1,t+1 = d, ρ1,t = k

}
=

= r4a1 +
N−1∑
k=2

r3ak + r3la2 +
N−1∑
k=3

r2lak =
2r3 + (N − 3)r2

N − 1

As it is seen

P {ε1,t = d, ε1,t+1 = d} 6= P {ε1,t = d} ∗ P {ε1,t+1 = d}

2r3 + (N − 3)r2

N − 1
6=
(
r2 + (N − 2)r

N − 1

)2

As the assumption is not true for the simplest case, there is no need to consider the
complicated case.
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