Rabil A. AMANOV

ON SOME NONUNIFORM WEIGHTED EMBEDDING THEOREMS

Abstract

Sobolev and Poincare type weight spaces containing different weight functions each derivative $\partial u/\partial x_i$ are proved

The paper is devoted to stydying weight variants of Sobolev Poincare classic inequalities containing different weight functions in front of each derivative $\frac{\partial u}{\partial x_i}$ (i=1,2,...,n). Such inequalities may be useful while investigating regularity of weak solutions of degeranating elliptic equations of the form

$$\frac{\partial}{\partial x_i} \left(a_{ij} \left(x \right) \frac{\partial u}{\partial x_j} \right) = 0,$$

where $A = ||a_{ij}(x)||$ is a symmetric matrix such that $\exists \mu \in (0,1]$ for $\forall \xi \in E_n$;

$$\mu \sum_{i=1}^{n} \omega_{i}(x) \xi_{i}^{2} \leq A \xi \cdot \xi \leq \mu^{-1} \sum_{i=1}^{n} \omega_{i}(x) \xi_{i}^{2}$$

when they are studied by a general scheme (see. f.i. [1,2,3]). This case has been studied relatively little in comparison with the case of equal weights $(\omega_i(x) \equiv \omega(x); i = 1, 2, ..., n)$ that are mentioned for example in [4, theorem 5].

Let E_n be n - dimensional Euclidean space of points $x=(x_1,x_2,...,x_n), n \geq 1$. Suppose that the vector $\sigma=(\sigma_1,\sigma_2,...,\sigma_n)$ has positive components. Introduce quasimetric in E_n by the formula

$$\rho(x,y) = \max_{1 \le i \le n} \left\{ |x_i - y_i|^{1/\sigma_i} \right\}, \quad x, y \in E_n.$$

Assume
$$\rho(x) = \rho(x,0), |x|_{\sigma} = \sum_{i=1}^{n} |x|^{1/\sigma_i}$$
. Let $Q_R^x = \{y \in E_n : \rho(x,y) < R\}$

be a quasiphere with a center at the point x of radius R in a quasimetric ρ . By $l_j(Q)$ we denote the length of the j-th rib of a quasihere Q, i.e. $l_j(Q) = \sup\{|x_j - y_j| : x, y \in Q\}, \ j = 1, 2, ..., n$. |E| denotes Lebesgue measure of the set $E \subset E_n$. For an integrable function f and a set E we accept the denotation:

$$f(E) = \int_{E} f(x) dx; \quad \oint_{E} f(x) dx = \frac{1}{|E|} \int_{E} f(x) dx.$$

By $L_{p,\nu}(D)$ we denote a space of measurable functions $f:D\to R$ with finite norm

$$||f||_{p,\nu}^{D} = \left(\int_{D} |f(x)|^{p} \nu(x) dx\right)^{1/p}; \quad ||f||_{p,D} = ||f||_{p,1}^{D}, \quad p \ge 1.$$

It is will not lead to misunderstanding, instead of $||f||_{p,\nu}$ we'll write $||f||_{p,\nu}^D$. Denote

$$\overline{f}_{\nu,D} = \left(1/\nu\left(D\right)\right) \int\limits_{D} \nu\left(x\right) f\left(x\right) dx; \ \overline{f}_{D} = \overline{f}_{1,D}.$$

We get the following main results.

Theorem 1. (Sobolev type inequality). Let $2 \leq q < \infty$, $Q_0 = Q_R^a$ be some quasisphere, the non-negative functions V, $\omega_j^{-1} \in L_{1,loc}$ (j=1,2,...,n). Assume that $V \in A_{\infty}(Q_0,\rho,dx)$: there will be found such $C,\eta > 0$ that for any quasisphere $Q = Q_t^x$ where $x \in Q_0$, $t \in (0,R)$ and it is subset E, it is valid

$$V(E)/V(Q) \le C(|E|/|Q|)^{\eta}. \tag{1}$$

Further, let the conditions:

$$l_{j}(Q)|Q|^{-1}(V(Q))^{1/q}\left(\int_{Q}\omega_{j}^{-1}(x)dx\right)^{1/2} \leq A_{2q} < \infty,$$
 (2)

be fulfilled, j = 1, 2, ..., n for any quasisphere $Q = Q_t^x$, where $x \in Q_0, t \in (0, R)$.

Then there exists a positive number C_0 dependent only of n, q and C, η from the condition $V \in A_{\infty}(Q_0, \rho, dx)$ such that for any function $f \in Lip_0(Q_0)$ vanishing on the boundary Q_0 the inequality holds

$$\left(\int_{Q_0} |f|^q V(x) dx\right)^{1/q} \le C_0 A_{2q} \sum_{j=1}^n \left(\int_{Q_0} \omega_j f_{xj}^2 dx\right)^{1/2}.$$
 (3)

Theorem 2. (Poincare type inequality). Let $2 \leq q < \infty$, $Q_0 = Q_R^a$ be a fixed quasisphere, the non-negative functions V, ω_j^{-1} (j=1,2,...,n) belong to $L_{1,loc}$. Further, let the conditions $A_{\infty}\left(\rho,\chi_{Q_0},dx\right)$ be fulfilled: there will be found $C,\eta>0$ such that for any quasisphere $Q=Q_1^x$ where $x\in Q_0$, $t\in (0,R)$ and measurable subset $E\subset Q$, the estimation

$$\frac{V(E \cap Q_0)}{V(Q \cap Q_0)} \le C \left(\frac{|E \cap Q|}{|Q \cap Q_0|}\right)^{\eta}; \tag{4}$$

be valid, for any quasisphere $Q = Q_t^x$ $x \in Q_0$, $t \in (0, R)$

$$|l_{j}(Q)|Q|^{-1} \left(V(Q \cap Q_{0})\right)^{1/q} \left(\int_{Q \cap Q_{0}} \omega_{j}^{-1}(y) dy\right)^{1/2} \leq A_{2q} < \infty, \tag{5}$$

be fulfilled, where j=1,2,...,n and the constant A_{2q} is independent of Q and j. Then there exists a positive number C_0 dependent on n,q and C,η from the condition (4) such that for any function $f \in Lip_0(Q_0)$ the inequality

$$\left(\int_{Q_0} \left| f - \overline{f}_{v,D} \right|^q V(x) dx \right)^{1/q} \le C A_{2q} \sum_{j=1}^n \left(\int_{Q_0} \omega_j f_{xj}^2 dx \right)^{1/2} \tag{6}$$

[On some nonuniform weighted embedding theorems]

is valid.

As application of general theorems 1,2 we give the following two examples.

Example 1. Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ be a vector with non-negative components, $\delta \geq 0$ such that

$$\max_{1 \le j \le n} \alpha_j < \left(\sum_{k=1}^n \alpha_k + n\delta \right) / 2,$$

are the components of the vector $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n)$, where

$$\sigma_j = \frac{\alpha_j + \delta}{2}; \ j = 1, 2, ..., n$$

determine the quasimetric p. Let further q be found from the condition

$$\frac{1}{q} - \frac{1}{2} + \frac{\delta}{\delta n + \sum_{k=1}^{n} \alpha_k} = 0.$$
 (7)

Then there exists a positive constant $C(n, \delta, \alpha)$ dependent on n, δ and the vector α a such that for any function $f \in Lip_0(Q_R^a)$ equal zero on the boundary of a quasisphere Q_R^a it holds the inequality

$$\left(\oint_{Q_R^a} |f|^q dx\right)^{1/q} \le C\left(n, \delta, \alpha\right) R^{\delta/2} \sum_{j=1}^n \left(\oint_{Q_R^a} |x|_{\delta}^{\alpha_j} f_{xj}^2 dx\right)^{1/2}.$$
 (8)

Example 2. Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ be a vector with non-negative components, $\delta \geq 0$ such that

$$\max_{1 \le j \le n} \alpha_j < \left(\sum_{k=1}^n \alpha_k + n\delta \right) / 2,$$

are the components of the vector $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n)$, where

$$\sigma_j = \frac{\alpha_j + \delta}{2}; \ j = 1, 2, ..., n$$

determine the quasimetric $\rho(x,y)$. Let further q be found from the condition

$$\frac{1}{q} - \frac{1}{2} + \frac{\delta}{\delta n + \sum_{k=1}^{n} \alpha_k} = 0.$$

Then there exists a positive constant $C(n, \delta, \alpha)$ dependent on n, δ, α and such that for a function $f \in Lip(Q_R^a)$ the inequality

$$\left(\oint\limits_{Q_R^a} \left| f - \overline{f}_{Q_R^a} \right|^q dx \right)^{1/q} \le C(n, \delta, \alpha) R^{\delta/2} \sum_{j=1}^n \left(\oint\limits_{Q_R^a} |x|_{\delta}^{\alpha_j} f_{xj}^2 dx \right)^{1/2} \tag{9}$$

is valid.

R.A.Amanov

Proof of theorem 1. Let $f \in Lip_0(Q_0)$, assume $Q_0^+ = \{x \in Q_0 : f(x) > 0\}$, $Q_0^- = Q_0 \setminus \overline{Q}_0^+$. Let $D^i(i = 1, 2, ...)$ be some connected component Q_0^+ . We denote for it

$$D_{\beta} = \left\{ x \in D^{i}; \ f\left(x\right) > \beta \right\}, \ \beta > 0.$$

Let β be such that $D_{2,\beta}$ is non-empty. Then for any fixed $x \in D_{2,\beta}$ we can find $\exists Q_{r(x)}^x$:

$$\left| Q_{r(x)}^x \middle\backslash D_\beta \right| = \gamma \left| Q_{r(x)}^x \right|, \tag{10}$$

where $0 < \gamma < 1$ is a number independent of β , x, r(x) will be defined later. Really, in order to show (10), it suffices to assume

$$r(x) = \sup \{t > 0 : |Q_t^x \setminus D_\beta| = \gamma |Q_t^x| \}.$$

For simplicity of denotation, for the fixed $x \in D_{2,\beta}$ we put $Q = Q_{r(x)}^x$. If 1)

$$|D_{2\beta} \cap Q| < \gamma |Q|, \tag{11}$$

then by 1) we have

$$V\left(D_{2\beta} \cap Q\right) \le C\gamma^{\delta}V\left|Q\right|. \tag{12}$$

Further,

$$V(Q) = V(Q \cap D_{\beta}) + V(Q \setminus D_{\beta}) \le C\gamma^{\delta}V(Q) + V(Q \cap D_{\beta})$$

by 1) and (10). Choosing γ from the condition $C\gamma^{\delta} < 1$ we'll have

$$V\left(Q\right) \leq \frac{1}{1 - C\gamma^{\delta}} V\left(Q \cap D_{\beta}\right),$$

therefore, by (12) we'll get

$$V(Q \cap D_{2\beta}) \le \frac{C\gamma^{\delta}}{1 - C\gamma^{\delta}} V(Q \cap D_{\beta}). \tag{13}$$

If 2)

$$|D_{2\beta} \cap Q| \ge \gamma |Q|, \tag{14}$$

then by (10),(14) we have

$$\int_{A} \left(\int_{B} dy \right) dx \ge \gamma^{2} |Q|^{2},$$

where A and B denote $Q \setminus D_{\beta}$ and $Q \cap D_{2\beta}$ respectively. Let $x \in A$, $y \in B$ be arbitrarily fixed. It is clear that the straight line connecting the point x with y will remain in Q and necessarily intersect the surface $\{x: f(x) = \beta\}$ and $\{x: f(x) = 2\beta\}$ at the points $x' = x + t_1(y - x)$ and $x'' = x + t_2(y - x)$, where $t_2 > t_1 > 0$ are some numbers dependent on x, y. Then $f(x') = \beta$, $f(x'') = 2\beta$, therefore

$$|\gamma^2|Q|^2 \le \int_A \left(\int_B \frac{|f(x'') - f(x')|}{\beta} dy\right) dx,$$

 $\frac{}{[\text{On some nonuniform weighted embedding theorems}]}$

then

$$\gamma^{2} |Q|^{2} \leq \frac{1}{\beta} \int_{A} \left(\int_{B} \left(\int_{t_{1}(x,y)}^{t_{2}(x,y)} \left| \frac{\partial f}{\partial t} \left(x + t \left(y - x \right) \right) \right| dt \right) dy \right) dx.$$

Hence by the Foubini theorem we get

$$\gamma^{2} |Q|^{2} \leq \sum_{j=1}^{n} \frac{l_{j}(Q)}{\beta} \int_{A} \left(\int_{0}^{1} \left(\int_{\{y \in B: x + t(y - x) \in G\}} \left| \frac{\partial f}{\partial x_{j}} \left(x + t(y - x) \right) \right| dy \right) dt \right) dx,$$

where $G = Q \cap (D_{\beta} \setminus D_{2\beta})$. Make substitution $y \to z$ by the formula z = x + (y - x)in the inner integral. Then

$$\gamma^{2} |Q|^{2} \leq \sum_{j=1}^{n} \frac{l_{j}(Q)}{\beta} \int_{A} \left(\int_{0}^{1} \left(\int_{\left\{z \in G: \frac{z-x}{t} + x \in B\right\}} \left| \frac{\partial f}{\partial x_{j}}(z) \right| dz \right) \frac{dt}{t^{n}} \right) dx.$$

Applying the Foubini formula, we get

$$\gamma^{2} |Q|^{2} \leq \sum_{j=1}^{n} \frac{l_{j}(Q)}{\beta} \int_{0}^{1} \left(\int_{G} \left| \frac{\partial f}{\partial z_{j}} \right| \left(\int_{\{x:|x_{j}-z_{j}| \leq t l_{j}(Q), j=1,2,\dots,n\}} dx \right) dz \right) \frac{dt}{t^{n}} \leq \sum_{j=1}^{n} \frac{|Q| l_{j}(Q)}{\beta} \int_{G} \left| \frac{\partial f}{\partial z_{j}} \right| dz,$$

whence

$$1 \leq \sum_{j=1}^{n} \frac{l_{j}(Q)}{\gamma^{2} |Q| \beta} \int_{G} \left| \frac{\partial f}{\partial z_{j}} \right| dz,$$

then

$$1 \le \sum_{j=1}^{n} \left(\frac{n^{\frac{q-1}{n}} l_{j}(Q)}{\beta \gamma^{2} |Q|} \int_{C} \left| \frac{\partial f}{\partial z_{j}} \right| dz \right)^{q}. \tag{15}$$

From (15), by Holder inequality we get

$$1 \le \sum_{j=1}^{n} \left(\frac{n^{\frac{q-1}{n}} l_j(Q)}{\beta \gamma^2 |Q|} \left(\int_{Q} \omega_j^{-1}(y) dy \right)^{1/2} \right)^q \left(\int_{G} \left| \frac{\partial f}{\partial z_j} \right| \omega_j dz \right)^{q/2}. \tag{16}$$

From (16) condition (2) we get

$$1 \le \sum_{j=1}^{n} \left(\frac{n^{\frac{q-1}{n}} A_{2q}}{\beta \gamma^{2}} \right)^{q} \frac{1}{V(Q)} \left(\int_{C} \left| \frac{\partial f}{\partial z_{j}} \right| \omega_{j} dz \right)^{q/2}. \tag{17}$$

[R.A.Amanov]

Then

$$V\left(Q \cap D_{2,\beta}\right) \leq \frac{n^q A_{2q}^q}{\gamma^{2q} \beta^q} \sum_{j=1}^n \left(\int_G \left| \frac{\partial f}{\partial z_j} \right| \omega_j\left(z\right) dz \right)^{q/2}. \tag{18}$$

From (13) and (18) it follows

$$V\left(Q \cap D_{2\beta}\right) \le \frac{C\gamma^{\delta}}{1 - C\gamma^{\delta}}V\left(Q \cap D_{\beta}\right) +$$

$$+\frac{n^{q}}{\gamma^{2q}\beta^{q}}\sum_{j=1}^{n}\left(\int_{Q\cap\left(D_{\beta}\setminus D_{2\beta}\right)}\left|\frac{\partial f}{\partial z_{j}}\right|\omega_{j}\left(z\right)dz\right)^{q/2}.$$
(19)

A system of quasisphere $\{Q = Q_{r(x)}^x : x \in D_{2\beta}\}$ forms a covering for $D_{2\beta}$. On the basis of Bezikovich's lemma for quasimetric spaces [5] from the system $\{Q\}$ we can isolate a sub-covering $\{Q_i\}_{i=1}^{\infty}$ covering $D_{2\beta}$ and having finite multiplicity i.e.

$$\sum_{i=1}^{\infty} \chi_{Q_i}(x) \le C_n, \tag{20}$$

where χ_{Q_i} are quasicharacteristical functions of quasispheres Q_i , C_n is a constant independent on i, x. Summing over i all the inequalities

$$V\left(Q \cap D_{2\beta}\right) \leq \frac{C\gamma^{\delta}}{1 - C\gamma^{\delta}} V\left(Q \cap D_{\beta}\right) + \frac{n^{q}}{\gamma^{2q}\beta^{q}} \sum_{j=1}^{n} \left(\int_{G} \left| \frac{\partial f}{\partial z_{j}} \right|^{2} \omega_{j}(z) dz \right)^{q/2}, \quad (21)$$

obtained from (19) for $Q = Q_i$ and considering (20), we get

$$V\left(D_{2\beta}\right) \leq \frac{C_{n}C\gamma^{\delta}}{1 - C\gamma^{\delta}}V\left(D_{\beta}\right) + \sum_{j=1}^{n} \frac{C_{n}n^{q}A_{2q}^{q}}{\gamma^{2q}\beta^{q}} \left(\int_{D_{\beta}\setminus D_{2\beta}} \left|\frac{\partial f}{\partial z_{j}}\right|^{2} \omega_{j}\left(z\right) dz\right)^{q/2}. \tag{22}$$

Integrate (22) in the interval $(0, \infty)$:

$$\int_{0}^{\infty} V\left(D_{2\beta}\right) d\beta^{q} \leq \frac{CC_{n}\gamma^{\delta}}{1 - C\gamma^{\delta}} \int_{0}^{\infty} V\left(D_{\beta}\right) d\beta^{q} +$$

$$+\sum_{j=1}^{n} \frac{C_{n} n^{q}}{\gamma^{2q}} \int_{0}^{\infty} \frac{d\beta}{\beta} \left(\int_{D_{\beta} \setminus D_{2\beta}} \left| \frac{\partial f}{\partial z_{j}} \right|^{2} \omega_{j}(z) dz \right)^{q/2}.$$
 (23)

Whence allowing for the fact that

$$\int_{0}^{\infty} V(D_{2\beta}) d\beta^{q} = \frac{1}{2^{q}} \int_{D^{i}} f(x)^{q} V(x) dx;$$

[On some nonuniform weighted embedding theorems]

$$\int_{0}^{\infty} V(D_{\beta}) d\beta^{q} = \int_{D^{i}} f(x)^{q} V(x) dx$$

by means of Minkowski inequality we'll have

$$\left(\frac{1}{2^{q}} - \frac{C_{n}C\gamma^{\delta}}{1 - C\gamma^{\delta}}\right) \int_{D^{i}} f(x)^{q} V(x) dx \le$$

$$\leq \frac{C_n q n^q A_{2q}^q}{\gamma^{2q}} \sum_{j=1}^n \left(\int_{D^i} \left| \frac{\partial f}{\partial z_j} \right|^2 \omega_j(z) \left[\int_{f(z)/2}^{f(z)} \frac{d\beta}{\beta} \right] dz \right)^{q/2}, \tag{24}$$

whence choosing γ so small that

$$\frac{1}{2^q} - \frac{C_n C \gamma^\delta}{1 - C \gamma^\delta} = \frac{1}{2^{q+1}}$$

from (24) we get the inequality

$$\int_{D^{i}} f(x)^{q} V(x) dx \le c_{0} A_{2q}^{q} \sum_{j=1}^{n} \left(\int_{D^{i}} \left| \frac{\partial f}{\partial x_{j}} \right|^{2} \omega_{j}(x) dx \right)^{q/2}, \tag{25}$$

where the constant c_0 depends on γ, n, q and C, η from condition (1). Summing all the inequalities of (25) over all D^i , we get

$$\int_{Q_0^+} f(x)^q V(x) dx \le c_0 A_{2q}^q \sum_{j=1}^n \left(\int_{Q_0} \left| \frac{\partial f}{\partial x_j} \right|^2 \omega_j(x) dx \right)^{q/2}.$$
 (26)

Similar inequality holds for the function f(x) in Q_0^- :

$$\int_{Q_0^-} \left(-f(x)\right)^q V(x) dx \le c_0 A_{2q}^q \sum_{j=1}^n \left(\int_{Q_0} \left|\frac{\partial f}{\partial x_j}\right|^2 \omega_j(x) dx\right)^{q/2}.$$
 (27)

Inequality (3) follows from (26), (27):

$$\int\limits_{Q_{0}}\left|f\left(x\right)\right|^{q}V\left(x\right)\leq\int\limits_{Q_{0}^{+}}f\left(x\right)^{q}V\left(x\right)dx+\int\limits_{Q_{0}^{-}}\left(-f\left(x\right)\right)^{q}V\left(x\right)dx\leq$$

$$\leq 2c_0 A_{2q}^q \sum_{j=1}^n \left(\int_{Q_0} \left| \frac{\partial f}{\partial x_j} \right|^2 \omega_j(x) dx \right)^{q/2}.$$

Theorem 1 is proved.

[R.A.Amanov

Proof of theorem 2: There will be found $A \in R$ such that

$$|x \in Q_0: f(x) > A| \le \frac{1}{2} |Q_0| \le |x \in Q_0: f(x) \ge A|.$$

Assume $Q_0^+ = \{x \in Q_0 : f(x) > A\}$, $Q_0^- = \{x \in Q_0 : f(x) < A\}$. Let D^i (i = 1, 2, ...) be some connected subset of Q_0^+ . Denote, $D_\beta = \{x \in D^i : f(x) < A + \beta\}$, $\beta > 0$. Then $|Q_0 \setminus Q^+| \ge \frac{1}{2} |Q_0|$, $|Q_0 \setminus Q^-| \ge \frac{1}{2} |Q_0|$. Let $\beta > 0$ be such that $D_{2\beta}$ is non-empty. For any fixed $x \in D_{2\beta}$ there will be found a quasisphere $Q_{r(x)}^x$:

$$\left| \left(Q_{r(x)}^x \cap Q_0 \right) \setminus D_\beta \right| = \gamma \left| Q_{r(x)}^x \cap Q_0 \right|, \tag{28}$$

where $0 < \gamma < \frac{1}{2}$ is a sufficiently small number whose value will be defined later. Indeed, It suffices to choose r(x) from the condition

$$r(x) = \sup \{t > 0 : |(Q_t^x \cap Q_0) \setminus D_\beta| \le \gamma |Q_t^x \cap Q_0|\}.$$

Fix some quasisphere $Q = Q_{r(x)}^x$ from the system $\left\{Q = Q_{r(x)}^x : x \in D_{2\beta}\right\}$. Then, if a) $|D_{2\beta} \cap Q| < \gamma |Q \cap Q_0|$ then $V(Q \cap D_{2\beta}) \le C\gamma^{\delta}V(Q \cap Q_0)$. On the other hand by (28) and (4)

$$V(Q \cap Q_0) = V((Q \cap Q_0) \setminus D_\beta) + V(Q \cap D_\beta) \le$$

$$\le C\gamma^{\delta}V(Q \cap Q_0) + V(Q \cap D_\beta),$$

whence, if we choose γ from the condition $C\gamma^{\delta} < 1$ we get

$$V(Q \cap Q_0) \le \frac{1}{1 - C\gamma^{\delta}} V(Q \cap D_{\beta}),$$

then

$$V(Q \cap D_{2\beta}) \le \frac{C\gamma^{\delta}}{1 - C\gamma^{\delta}} V(Q \cap D_{\beta})$$
(29)

now, if now b)

$$|D_{2\beta} \cap Q| \ge \gamma |Q \cap Q_0|, \tag{30}$$

then all the reasonings of theorem 1 are repeated. In this case (30),(28) yield the estimations

$$|D_{2\beta} \cap Q| > \varepsilon \gamma |Q|, \quad |Q \cap Q_0 \setminus D_\beta| > \varepsilon \gamma |Q|,$$
 (31)

where $\varepsilon \in (0,1)$ is a number dependent on n. Reasoning as in theorem 1, as a result we get the estimation

$$\left(\int_{Q_0} |f(x) - A|^q V(x) dx\right)^{1/q} \le c_0 A_{2q} \sum_{j=1}^n \left(\int_{Q_0} \omega_j f_{x_j}^2 dx\right)^{1/2}.$$
 (32)

It remains to show the estimation

$$||f - \overline{f}_{V,Q_0}||_{q,V}^{Q_0} \le 2 ||f - A||_{q,V}^{Q_0}.$$
 (33)

 $\frac{\text{Transactions of NAS of Azerbaijan}}{[\text{On some nonuniform weighted embedding theorems}]}$

By Minkowskii inequality

$$\|f - \overline{f}_{V,Q_0}\|_{q,V}^{Q_0} \le \|f - A\|_{q,V}^{Q_0} + |\overline{f}_{V,Q_0} - A|V(Q_0)^{1/q}$$
 (34)

and the Holder inequality

$$|f_{V,Q_0} - A| \le \frac{1}{V(Q_0)} \int_{Q_0} |f(x) - A| V(x) dx \le (V(Q_0))^{1/Q} ||f - A||_{q,V}^{Q_0},$$

whence by (34) we get (33).

Proof of statement of example 1. Apply theorem 1 in the case

$$V(x) \equiv 1, \omega_j(x) = |x|_{\sigma}^{\alpha_j}, \sigma_j = \frac{\alpha_j + \delta}{2}; j = 1, 2, ..., n.$$

It suffices to verify condition (2) (condition (1) is obvious). Let's consider two cases: 1) $\rho(a) < CR$; 2) $\rho(a) > CR$, where C > 1 is sufficiently large number independent of R, a.

In the case 1) for any quasisphere $Q = Q_r^x$, where $x \in Q_R^a$, r < R two cases are possible: a) $\rho(x) < Cr$; b) $\rho(a) \ge Cr$; (C is the some as in 1)).

If 1) and a) hold, we verify condition 2) for j = 1, 2, ..., n:

$$(V(Q))^{1/q} |Q|^{-1} l_j(Q) \left(\int_Q \omega_j^{-1} dy \right)^{1/2} \le |Q_r^x|^{\frac{1}{q} - 1} r^{\sigma_j} \left(\int_{Q_r^x} |y|_{\sigma}^{-\alpha_j} dy \right)^{1/2}.$$
 (35)

Notice that $\frac{1}{n}|y|_{\sigma} \leq \rho(y) \leq |y|_{\sigma}$, then

$$\int_{Q_r^x} |y|_{\sigma}^{-\alpha_j} dy \int_{Q_r^x} \rho(y)^{-\alpha_j} dy \le Cr^{k=1} \int_{Q_r^x}^{\infty} \sigma_k - \alpha_j,$$

therefore, by the choice $\sigma_j = \frac{\alpha_j + \delta}{2}$ the right hand side of (35) doesn't occur

$$|Q_r^x| \qquad \frac{\frac{1}{q} - \frac{1}{2} + \frac{\left(2\sigma_j - \alpha_j\right)}{2\sum_{k=1}^n \sigma_k}}{\left/\left(2\sum_{k=1}^n \sigma_k\right) = C \mid Q_r^x|} \qquad \frac{\frac{1}{q} - \frac{1}{2} + \frac{\delta}{2\sum_{k=1}^n \sigma_k}}{\left/\left(2\sum_{k=1}^n \sigma_k\right) \leq C.\right.$$

If 1) and b) hold, then for the left hand side of (35) we have the estimation

$$r^{\sigma_j} |Q_r^x|^{\frac{1}{q} - \frac{1}{2}} |x|_{\sigma}^{-\frac{\alpha_j}{2}} \le C$$

by the fact that

$$|x|_{\sigma}^{-\frac{\alpha_j}{2}} \le \rho(x)^{-\alpha_j/2} \le C_1 r^{-\alpha_j/2}.$$

[R.A.Amanov]

Case 2) is similar to case b) for any quasisphere Q_r^x where $x \in Q_R^a$, r < R the left hand side of (35) is estimated by the expression

$$C |Q_r^x|^{\frac{1}{q} - \frac{1}{2}} R^{\sigma_j - \alpha_j/2} \le C.$$

All the conditions of theorem 1 are fulfilled. It remains to apply this theorem to the function $f \in Lip_{\circ}(Q_R^a)$:

$$\left(\int_{Q_R^a} |f|^q \, dx \right)^{1/q} \le C \sum_{j=1}^n \left(\int_{Q_R^a} |x|_{\sigma}^{\alpha_j} f_{xj}^2 dx \right)^{1/2},$$

where C is independent of n, α, δ whence by condition (7) we get inequality (8).

Proof of the statement of example 2. Apply theorem 2 to the case $V(x) \equiv 1$, $\omega_j(x) = |x|_{\sigma}^{\alpha_j}$, $\sigma_j = \frac{\alpha_j + \delta}{2}$. It suffices to verify conditions (4),(5). Condition (4) is obvious, condition (50 is shown in example 1.

References

- [1]. Franchi B., Gutieres C.E., Wheeden R.L. Weighted Sobolev-Poincare inequalities for Grushin type operators. // Com. P.D.E., 1994, v. 19, pp. 523-600.
- [2]. Franchi B., Lanconelli E. Holder regularity for a class linear nonuniformly elliptic operators with measurable coefficients. // Ann Scuola Norm. Sup. Pisa (IV), 10, 1983, pp. 523-541.
- [3]. Danelli d. Requiarity at the boundary for solutions of nonlinear subelliptic equations. // Indiana Univ. Math. J. v. 44, N1, pp. 269-285.
- [4]. Sawyer E.T., Wheeden R.L. Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. // Amer. J. Math., 114, 1992, pp. 813-874.
 - [5]. Gusman M. Differentiation in \mathbb{R}^n . Moscow, "Mir", 1978, 200 p.

Rabil A. Amanov

Institute Mathematics and Mechanics of NAS of Azerbaijan.

9, F. Agaev str., AZ1141, Baku, Azerbaijan.

Tel.: (99412) 439 47 20 (off.).

Received April 03, 2009; Revised June 17, 2009