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MECHANICS

Gabil G. ALIYEV

LONGITUDINAL VIBRATIONS OF POLYMERIZED
BAR WITH REGARD TO LATERAL MOTION

DYNAMICS

Abstract

In the paper, L.Pohhamer’s generalized equation on investigation of influ-
ence of lateral motion and also polymerization effect on longitudinal eigen vi-
bration of a polymerized bar is suggested. The physical effect consisting in the
fact that controlling the polymerization character of power fibrous structure one
can create composite materials possessing the property of shock wave damper in
dynamical problems of mechanics, is established.

In [1] Pohhammer has investigated influence of lateral motion in homogeneous
elastic bar on longitudinal vibration of a bar. As a result he suggested a correction
for wave propagation velocity in dynamical problems and also a correction for free
vibrations frequency in steel bars that was widely investigated by Rayleigh.

In the suggested paper, we consider longitudinal vibration of a sufficiently long
polymerized annular bar consisting of a set of weaved fibers polymerized in polymeric
cylindrical matrix.

The goal of the paper is to investigate influence of lateral motions that correspond
to compressive and tensile strains of lateral section in its own plane, and also to study
influence of polymerization effect on the character of elastic waves propagation in a
bar and on frequency of its eigen vibrations.

Consider eigen longitudinal vibration of a sufficiently long polymerized bar con-
sisting of many elementary fibers polymerized in polymeric medium Models of Me-
chanical strain of such polymerized fibers σ ∼ ε were suggested in [3]. In the case of
linear elastic strain a mechanical model of polymerized fiber will be of the form [3]:

σH = EH(εx + ν⊥ε⊥) . (1)

Here EH and ν⊥ is elasticity modulus and Poisson type ratio of a polymerized fibre

determined by special tests that were suggested in [3]; εx =
∂u

∂x
, ε⊥ = εy+εz =

∂ν

∂y
+

∂w

∂z
are longitudinal and lateral strains; u, ν, w are displacements in coordinates

x, y, z.
In the case of volumetric incompressibility, i.e. for ε⊥ = −εx mechanical strain

model of polymerized bar (1) is represented in the following one-dimensional form:

σH = EH (1− ν⊥) εx . (2)

We derive equation of motion of a polymerized bar with regard to lateral motion
from energy principle. For that we set up kinetic enrgy of lateral motion that
corresponds to compressive and tensile strains of cross section passing in its own
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plane. Let y and z be the coordinates of any point of the section of the bar referred
to the axes passing though its centre of gravity. In this case, lateral displacement of
this point in the direction of longitudinal axis x is expressed in the form:

u1 = −ν⊥y
∂u

∂x
, u2 = −ν⊥z

∂u

∂x
. (3)

Then total longitudinal displacement along the axis x will equal:

utotal = u− ν⊥(y + z)
∂u

∂x
. (4)

In this case, allowing for (4), kinetic energy of unit of length of a polymerized bar
will be:

K =
1
2
ρnFn

{(
∂u

∂t

)2

+ ν2
⊥(y2 + z2)

(
∂2u

∂x∂t

)2
}
, (5)

where k2 = y2 + z2 is section radius of inertia with respect to gravity center. For
the case of annular section radius of inertia of the section of a polymerized bar will
equal:

k2 =
∫
F

∫
(y2 + z2)dF =

πr4

2
. (6)

Allowing for (2), potential energy of a unit of length of a polymerized bar under
small deformations will equal:

U =
1
2
σHεx =

1
2
EH(1− ν⊥)

(
∂u

∂x

)2

. (7)

On this basis, allowing for (5) and (7), variational equation of motion of a bar
will be represented in the form:

δ

∫
dt

∫ {
1
2
ρnFH

[(
∂u

∂t

)2

+ ν2
⊥k

2

(
∂2u

∂x∂t

)2
]
−

−1
2
FHEH(1− ν⊥)

(
∂u

∂x

)2
}
dx = 0

(8)

where integration with respect to x is extended to all the length of the bar.
Use the following identities:

∂u

∂t

∂δu

∂t
+
∂2u

∂t2
δu =

∂

∂t

(
∂u

∂t
δu

)
∂u

∂x

∂δu

∂x
+
∂2u

∂x2
δu =

∂

∂x

(
∂u

∂x
δu

)
2
(
∂2u

∂x∂t

∂2δu

∂x∂t
− ∂4u

∂x2∂t2
δu

)
=

∂

∂x

(
∂2u

∂x∂t

∂δu

∂t
− ∂3u

∂x∂t2
δu

)
+

+
∂

∂t

(
∂2u

∂x∂t

∂δu

∂x
− ∂3u

∂x2∂t
δu

)
.

(9)
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Integrating (8) by parts, allowing for (9) and equating the coefficient to zero
for variation of δu under the integral sign, we get in terminal form an equation of
longitudinal vibration of a polymerized bar with regard to influence of lateral motion
and also influence of polymerization effect of a bar in the form:

∂2u

∂t2
− ν2

⊥k
2 ∂4u

∂x2∂t2
=
EH(1− ν⊥)∂2u

∂x2
. (10)

Thus, retaining the term ρHν
2
⊥k

2 ∂4u

∂x2∂t2
and also taking into account the coef-

ficient ν⊥in the right hand side, we get an appropriate correction for longitudinal
wave velocity in dynamical problems and correction for free vibrations frequency in
a polarized bar.

Write boundary and initial conditions for a problem on longitudinal vibrations
of a polymerized bar of length ` whose one end x = 0 is fixed, the other end x = `
is free.

In this case, the boundary conditions will be in the form:

u(x, t) |x=0 = 0,
∂u

∂x
|x=` = 0 . (11)

The end x = ` of the bar is stretched to the length `1. Then x = ` is released
and there appears longitudinal vibration in the bar. Accept that at zero time,
displacement of section with abscissa x is proportional to this abscissa, i.e. in the
form:

u(x, t) |t=0 = rx, (0 < x < `) . (12)

Here r is a proportionality factor and is determined as follows. At zero time, dis-
placement at the end x = ` of the bar equals `1 − ` = ∆`, i.e.

`1 − ` = r` or r ==
`1 − `
`

. (13)

As the velocities of all intermediate sections of the bar at zero time equal zero,
then the following condition will hold:

∂u(x, t)
∂t

|t=0 = 0, (0 < x < `) . (14)

Thus, initial conditions of the stated problem are of the form (12) and (14).
Introduce the denotation:

a2 =
EH(1− ν⊥)

ρH
, b2 = ν2

⊥k
2 . (15)

Then, allowing for (15), the systems (10), (11), (12) and (14) will take the following
compact form:
an equation of vibration of a polymerized bar:

∂2u

∂t2
− b2 ∂4u

∂x2∂t2
= a2∂

2u

∂x2
(16)

the boundary conditions:

u(x, t) |x=0 = 0,
∂u

∂x
|x=` = 0 (17)
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the initial conditions:
u |t=0 = rx,

∂u

∂t
|t=0 = 0 . (18)

According to Fourier method, we look for the solution of equation (16) in the
form of separation of variables [2]:

u(x, t) = X(x)T (t) . (19)

Substituting (19) into (16) we reduce the problem to the system of two ordinary
differential equations:

X(x) + λ2X(x) = 0 (20)

T ′′(t) +
a2λ2

1 + λ2b2
T (t) = 0 . (21)

Here the parameter λ is an eigen value of equation (20) under boundary condi-
tions:

X(0) = 0, X ′(`) = 0 . (22)

Non-trivial solutions of the problem on eigen values of the parameter λ for equa-
tion (20) under boundary conditions (22) are possible only for the values:

λn =
(2n+ 1)π

2`
. (n is an integer) . (23)

The eigen functions of the form:

Xn(x) = Sin
(2n+ 1)πx

2`
, (n = 0, 1, 2, 3...) (24)

will correspond to the values λ2
n.

Determine general solution of equation (21) under initial conditions (18).
Presubstitute the value λ2 to the coefficient of equation (21) and get:

A2
n =

a2λ2

1 + λ2b2
=

a2

1 +
[

(2n+ 1)π
2`

]2

b2

[
(2n+ 1)π

2`

]2

. (25)

Considering denotation (25), equation (21) will be of the form:

T ′′(t) +A2T (t) = 0 . (26)

For λ = λn, general solution of equation (26) has the form:

Tn(t) = anCosAnt+ bn SinAnt, (27)

where an and bn are arbitrary constants, and An is of the form:

An =

(2n+ 1)π
2`√

1 +
[
ν⊥k

(2n+ 1)π
2`

]2

√
En(1− ν⊥)

ρn
. (28)
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By (19) we get that the function:

u(x, t) = Tn(t)Xn(t) = [anCosAnt+ bn SinAnt ] Sin
(2n+ 1)πx

2`
(29)

satisfies equation (10) and boundary conditions (11) for any an and bn.
Make up a series:

u(x, t) =
∞∑
n=0

[anCosAnt+ bn SinAnt ] Sin
(2n+ 1)πx

2`
. (30)

In order to satisfy initial conditions (18), it is necessary that

f(x) = rx =
∞∑
n=0

an Sin
(2n+ 1)πx

2`
(31)

F (x) = 0 =
∞∑
n=0

bnAn Sin
(2n+ 1)πx

2`
. (32)

Assuming that series (31) and (32) converge uniformly, we determine the coef-
ficients an and bn. For that, it suffices to multiply the both hand sides of (31) and

(32) by Sin
(2n+ 1)πx

2`
and integrate with respect to x within x = 0 and x = `.

Having taking into attention

`∫
0

Sin
(2n+ 1)πx

2`
Sin

(2k + 1)πx
2`

dx

{0 for k 6= n
`

2
for k = n

}
, (33)

the coefficients an and bn will be of the form:

an =
2r
`

`∫
0

x Sin
(2n+ 1)πx

2`
dx =

(−1)n8`r
(2n+ 1)2π2

bn =
4

(2n+ 1)πa

`∫
0

F (x) Sin
(2n+ 1)πx

2`
dx

∣∣∣∣ = 0
F (x) = 0

. (34)

Substituting (34) into (29), we establish that relative displacement of bar’s sec-
tion with abscissa x is expressed in the form:

u(x, t) =
8`r
π2

∞∑
k=0

(−1)n

(2n+ 1)2
Cos


(2n+ 1)π

2`√
1 +

[
ν⊥k

(2n+ 1)π
2`

]2
×

×

√
En(1− ν⊥)

ρH

}
t Sin

(2n+ 1)π
2`

.

(35)
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It is seen from (35) that longitudinal vibrational motion of the polymerized bar
is a result of summation of simple harmonic vibrations of the form:

8`R
π2

(−1)n

(2n+ 1)2
Sin

(2n+ 1)πx
2`

×

Cos


(2n+ 1)π

2`√
1 +

[
ν⊥k

(2n+ 1)π
2`

]2

√
EH(1− ν⊥)

ρH

 t

36)

executed with amplitude of the form:

8`R
π2

(−1)n

(2n+ 1)2
Sin

(2n+ 1)πx
2`

(37)

and frequencies of the form:

ωn =

(2n+ 1)π
2`√

1 +
[
ν⊥k

(2n+ 1)π
2`

]2

√
EH(1− ν⊥)

ρH
. (38)

Frequency and period of vibration of fundamental tone of a polymerized bar by
means of (39) for n = 0 will be of the form:

ω0 =
π

2`
1√

1 +
(
ν⊥kπ

2`

)2

√
EH(1− ν⊥)

ρH
(39)

T0 =
2π
ω0

= 4`

√
1 +

(
ν⊥kπ

2`

)2√ ρH
EH(1− ν⊥)

. (40)

For the case of not polymerized bar, i.e. for the case ν⊥ = 0, we define eigen
frequency ω00 and oscillations period T00 from (35) and (40) in the form:

ω00 =
π

2`

√
E0H

ρ0H

, (41)

T00 =
2`
ω00

= 2`
√
ρ0H

E0H
. (42)

Here E0H and ρ0H is modulus of elasticity and density of a not polymerized bar.

Considering (35)-(42), determine the relative quantities
ω0

ω00
and

T0

T00
in the form:

ω0

ω00
=

1√
1 +

(
ν⊥kπ

2`

)2

√
EH(1− ν⊥)

EOH

ρOH
ρH

, (43)
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T0

T00
=

√
1 +

(
ν⊥kπ

2`

)2
√

EOH
EH(1− ν⊥)

ρH
ρOH

. (44)

Thus, dependence of eigen frequency ω0 and oscillation period T0 of a polymer-
ized bar on eigen frequency ω00 and oscillation period T00 of a not polymerized bar
is established by formulae (42) and (44)

Eigen vibrations frequency at infinity ω∞ = ωn |n→∞ and also appropriate vi-
brations period will equal:

ω∞ = ωn |n→∞ = lim
n→∞

(2n+1)π
2`√

1 +
[
ν⊥k

(2n+1)π
2`

]2
√
EH(1− ν⊥)

ρH
=

=
1
ν⊥k

√
EH(1− ν⊥)

ρH
, T∞ = 2πν⊥k

√
ρH

EH(1− ν⊥)
.

It follows from these relations that eigen frequency at infinity ω∞ is inversely
proportional to polymerized effect of the bar ν⊥. From the physical point of view
this means that the higher is the value of Poisson type coefficient ν⊥, the lower is
longitudinal vibration frequency of a polymerized bar at infinity, and the longer is
the vibration period.

Example. Investigate numerical influence of above-stated effects on eigen fre-
quency and oscillations period of a polymerized bar. Appropriate number calculation
where-from the following laws of vibrations of polymerized bars follow, is given in
table 1.

Table 1.

Polymerization effect of fibrous structures in reinforced structural elements re-
duces to essential changes of dynamical characteristics of composite materials.
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So, it is numerically shown that a longitudinal elastic wave a =

√
EH(1− ν⊥)

ρH

and also frequency of free vibrations ω0 =
π

2`
1√

1 +
(
ν⊥kπ

2`

)2

√
EH(1− ν⊥)

ρH
in a

polymerized bar is lower for 40% than in not a polymerized bar. And vibration

period T0 =
2π
ω0

is higher for 25-30% than in not polymerized case.

- practical value of the established fact is that managing the character of
polymerization power of fibrous structure, we can create composite materials having
the properties of shock wave dampers in dynamical problems of mechanics.
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