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MECHANICS

Allahverdi B. HASANOV, Ahmad BARZKAR

RESEARCH OF MAIN CHARACTERISTICS
CHANGE OF SEISMIC WAVES IN SATURATED

EARTH SOLIDS

Abstract

Energy dissipation stipulated by viscoelastic properties of material should be
taken into account while investigating wave processes in multilayer media. We
reserch properties of viscous wave propagation in laminated earth solids on the
example of plane waves in unbounded laminated medium. The fact that even
ignoring the dissipation effects in soft layers some forms are attenuated for
certain frequencies, is typical for laminated media. These are so-called non-
transmission zones. Taking into account viscous properties of material in soft
layers the amplitude of majority of possible wave forms decrease during their
propagation. Attenuation rate of the waves that were not attenuated for perfect
ideal laminated medium, is many times less than the attenuation rate of waves
in non-transmission zones.

1. Introduction. Inhomogeneity of structure of earth solid simulated as a
viscoelastic medium, reduces to change of configuration of propagating waves of
attenuation and dispersion, and also cumulation-amplification of waves [1, p.152].
Besides, by propagation of periodic waves in periodic inhomogeneous medium there
appear opacity (choking), when propagating waves either don’t exist in general, or
exponentially decrease due to growth of length.

In this paper we study these quality effects on the example of propagation of
harmonic waves in an inhomogeneous viscoelastic earth solid.

2. Problem Statement. Let’s consider a periodically inhomogeneous plane-
laminated medium and derive an equation describing the wave propagation in the
direction Oz, perpendicular to the plane of layers. In such a statement deflected
mode will be monoaxial with an axis Oz, and we’ll wtire the motion equation in the
form [1, p.35]

∂σ

∂z
= ρ (z)

∂2ϑ

∂t2
, (2.1)

where

σ (z, t) = E (z) · ∂ϑ (z, t)

∂z
, (2.2)

σ (z, t) is stress, ϑ = ϑ (ϑ, t) is displacement, ρ(z) is density of the earth solid mate-
rial, E (z) is Young modulus.

Proceeding from physical characteristics of the earth solid we’ll assume

E (z) = E0 + v0 cos (T0z) , E0 = const
ρ (z) = ρ0 + v1 cos (T0z) , ρ0 = const

(2.3)

where v0, v1 are small (in comparison with E0, ρ0), T0 =
2π

k
, k is homogeneity period

along the axis Oz. Introducing the denotation

c20 = E0/ρ0; ε =
v1
ρ0

− v0
E0

(2.4)



182
[A.B.Hasanov,A.Barzkar]

Transactions of NAS of Azerbaijan

we’ll have ε << 1. After substitution of (2.2) and (2.3) into (2.1), assumiong that

the quantity
∂E

∂z

∂ϑ

∂z
is slightigly small in comparison with the quantities E0

∂2ϑ

∂z2
,

v0
∂2ϑ

∂z2
, ρ

∂2ϑ

∂t2
, v1

∂2ϑ

∂t2
, ignoring the quantities of order ε2 in comparison with the

quantities or order ε, we get the equation

∂2ϑ

∂z2
=

1

c20
(1 + ε cos (T0z)) ·

∂2ϑ

∂z2
(2.5)

In the case of harmonic seismic wave

ϑ (z, t) = A (z) · eiωt (2.6)

where ω is frequency of seismic wave. Allowing for (2.6) in (2.5) we get:

A′′ (z) +
ω2

c20
(1 + ε cos (T0z))A (z) = 0 (2.7)

3. Problem solution. In principle, the small parameter method may be
applied to the solution of this equation, however, the use of the theory of Mathieu-
Hill equations is more useful.

The equation (2.7) acquires standard form of the Mathieu equation [2, p.231]. If
we introduce the denotation

T0
z

≡ ξ;
ω2

c20
= η; ηε = γ (3.1)

instead of (2.7) we’ll wave:

d2A

dξ2
+ (η + γ cos (2ξ))A (ξ) = 0 (3.2)

By Floquet’s theorem [2, p.234], general solution of equation (3.2) will take the form:

A = c1F1 (ξ) enξ + c2F2 (ξ) e−nξ (3.3)

where c1, c2 and c are arbitrary constants, F1, F2 are periodic functions of variable
ξ with period π;n = const is determined by η and γ.

The solutions of the Mathieu equation are called Mathieu functions [3, p.320],
and the tables were made up for them. Not going into the theory of these functions,
we notice that all the plane of variables (η, γ) is divided into three subdomains (fig.1).
In the domain I, where η < −γ the propagating waves can’t exist, in domains II
and III in the zones shaded by waves n is pure imaginary quantity, consequently, the
solution (3.3) in this case will be a superposition of two sustained waves propagating
in opposite directions, in shaded zones of subdomains II and III the quantity n is
complex, consequently, here propagating waves are exponentially attenuated, and
these zones are called opacity zones.

Thus, a periodic inhomogeneity medium functions as a filter, leaks the waves
with the same frequencies and dampens the waves with frequencies corresponding
to opacity zones. In general case, the dependence of the number n on ω is nonlinear,
consequently, the propagating waves disperse.
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If periodicity of medium’s properties is not trigonometric, then repeating the
reasonings by means of which equation (2.7) was obtained, we arrive at the equation

d2A

dz2
+
ω2

c2
(1 + εf (z))A (z) = 0 (3.4)

where f (z) is an arbitrary periodic function, equation (3.4) is said to be Hill’s
equation.

When f(z) has the form represented in figure 3, for a piece-wice homogeneous
medium we get

A (z) =

{
c1e

ik1z +D1e
−ik1z, −l1 < x < 0

c1e
ik1z +D1e

−ik1z, −0 < x < l2
(3.5)

where k21 = k2 (1 + εf1) , k22 = k2 (1 + εf2) , k = ω2/c20 is a wave number.
By Floquet’s theorem for Hill’s equation, for a wave propagating in positive

direction of the axis Oz, there should be

A (z) = F (z) eikz (3.6)

where k is a desired wave number, F (z) is periodic with period d = l1 + l2 . We
compare (3.5) and (3.6) on the interval l2 < z < d, use the equality F (z − d) = F (z)
and arrive at the expression

A (z) = c1e
ikd · eik1(z−d) +D1e

ikd · e−ik1(z−d). (3.7)

Having required continuity of the ”amplitude” A(z) and its first derivative on
the interface of layers with different properties, we arrive at the homogeneous linear
system with respect to the coefficients C1D1, C2D2 from whose condition of existence
of non-trivial solution (equality of adeterminant to zero), we get the equation

2eikd (cos (k1l1) · cos (k2l2)−

−1

2

(
k1
k2

+
k2
k1

)
· sin (k1l1) · sin (k2l2)

)
= e2ikd − 1. (3.8)

The roots z1 = eik1d and z2 = eik2d are conjugated, consequently z1 · z2 = 1, whence
allowing for the properties of the roots of quadratic equation we find

z1 + z2 = 2
(
cos kd

)
=

= 2

(
cos (k1l1) · cos (k2l2) −

1

2

(
k1
k2

+
k2
k1

)
· sin (k1l1) · sin (k2l2)

)
. (3.9)

(the index k is omitted).
From the last relation we can find the opacity zones (non-transmission or chok-

ing), determining a frequency range for which the expression in the paranthesis in
(3.9) will be greater than a unit in modulus. Thus, piecewise-homogeneous media
can filter waves in a definite frequency bands as well. For real earth solids opacity
zones appear in frequencies of order 104 ÷ 108Gc.

If we consider the earth medium as an homoheneous medium, i.e. ρ (z) = ρ0 =
const after some transformations we get a motion equation in displacements [1, p.36]

∂2ϑ

∂t2
− c20

∂2u

∂t2
= −c20

t∫
−∞

R (t− τ)
∂2

∂z2
ϑ (z, τ) dτ (3.10)
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whose solution is found in the form:

ϑ (z, τ) = βei(ωt−kz) (3.11)

Substitution of (3.11) and (3.10) gives

ei(ωt−kz)
(
−ω2 + c20k

2
)

= c20k
2

t∫
−∞

R (t− τ) e−iωt−ikzdτ. (3.12)

Let’s consider a special case, when the relaxation function

R (t− τ) = A · e−β(t−τ), A, β ∼ const.

then from equation (3.12) we get

−ω2 + c20k
2 =

Ac20k
2

βeiω
or k2 =

ω2 (β + iω)

(β + iω −A) c20
.

Fig.1.
Change of contractive (normal) stresses in earth solid with regard to earth’s
rheology α = 0 an elastic model, α = [0; 0, 2] a viscoelastic model in different

relaxation functions.

A real part of k corresponds to dependence of phase velocity on frequency (ob-
viously nonlinear), imaginary part to dependence of attenuation coefficient of wave
amplitude on frequency. Thus, viscoelasticity of the material reduces simultaneously
to dispersion and attenuation of waves.

Numerical realization of the obtained theoretical result is given for the case of
abyssal rocks of earth arranged in depth of 10 ÷ 30 km, where lamination of solid
specially differs [4, p.116]. The obtained number values of physical characteristics
of waves for elastic and viscoelastic media distinctly shows difference between the
results of corresponding problems.

The cited calculation experiments have for an object of quality analysis of stress
changes in earth during passage of longitudinal and transverse seismic waves.

The patterm of change of contractive normal stresses arising under the action of
longitudinal waves is given in figure 1. These waves propagate with the velocity of
elastic waves and there is no essential difference between these models.
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Fig.2.
Change of stretching (destroying) stresses depending on the account of earth’s
rheology. α = 0 an clastic model, α = [0; 0, 2] a viscoelastic model for different

creeping functions.

Fig.3.
Dispersive curves for longitudinal waves in the area with wells for different

rheological characteristics of earth (solid lines for an elastic model of earth, a
dotted line for a viscoelastic model of earth).

The coefficient α = 0÷0, 2 determines the level of calculation of solid’s rheology.
α = 0 corresponds to the solution of elastic problem.

The graph of change of stretching stresses arising under the action of shear and
reflected longitudial waves is in figure 2. It is known that the earth is structurally
granular medium that doesn’t resist to tension. This king of loading destroys earth
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rock, account of earth’s viscosity remarkably decreases the dectruction probability
at initial (peak) stages of earthquakes.

The results of calculation of a problem on dispersion of longitudinal seismic waves
in the area with wells are given in figure 3. The values of frequencies of vibrations
of underground pipelines for elastic and viscoelastic models of earth, are reduced.

Account of viscosity properties of an earth medium refines the solution of the
problem, changung the values of stresses about 5−35% for different values of period
of seicmic actions. This is explained by dampening properties of enveronment and
perceptible values of the adjoint earth solid.

4. Conclusions. It is seen from the obtained solution that ignorance of rhe-
ological properties of medium while studying occuring wave prcesses reduces to
qualitative and quantitative improper results. Account of real physical properties of
earth solid refines the solution of the problem for 5 ÷ 7%, depending on the choice
of the model of periodicity of layers.
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