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ON COMPLETENESS OF ELEMENTARY
SOLUTIONS OF A FOURTH ORDER

OPERATOR-DIFFERENTIAL EQUATION ON A
FINITE SEGMENT

Abstract

In the paper we find conditions providing completeness of elementary solu-
tions in the space of generalized solutions of operator-differential equation of
fourth order on finite segment.

Let H be a separable Hilbert space, A be a positive-definite self-adjoint operator
in H, and Hθ be a space of Hilbert scales generated by the operator A, i.e. Hθ =
D

(
Aθ

)
, (x, y)θ =

(
Aθx,Aθy

)
, x, y ∈ D

(
Aθ

)
, θ ≥ 0. For θ = 0 we assume that

H0 = H.
Let’s consider the following boundary value problem

P (d/dt)u (t) =
d4u

dt4
+A4u+

4∑
j=1

Aj
d4−ju

dt4−j
= 0, t ∈ (0, 1) (1)

u(j) (0) = ϕj , u(j) (1) = ψj , j = 0, 1, (2)

where the vector-function u (t) with values from H, ϕj , ψj (j = 0, 1) are the known
vectors from H, the derivatives are understood in the sense of distributions theory
[1], Aj (j = 1, 4) are linear, generally speaking, unbounded operators in H.

Let’s define the following Hilbert spaces [1]. Let a, b ∈ R = (−∞,∞), a < b and

L2 ((a, b) ;H) =

f : ‖f‖L2((a,b);H) =

 b∫
a

‖f (t)‖2 dt


1
2

<∞

 ,

and
W 2

2 ((a, b) ;H) =
{
u : u′′ ∈ L2 ((a, b) : H) , A2u ∈: L2 ((a, b) ;H)

}
with the norm

‖u‖W 2
2 ((a,b);H) =

(∥∥u′′∥∥2

L2((a,b);H)
+

∥∥A2u
∥∥2

L2((a,b);H)

) 1
2

Further, we denote by

◦
W

2

2 ((a, b) ;H) =
{
u : u ∈W 2

2 ((a, b) ;H) , u(j) (a) = u(j) (b) = 0, j = 0, 1
}

Let D ([a, b] ;H4) be a linear set of vector-functions u (t) with values in H4 and
possesing compact carriers in the segment [a, b].

This set is everywhere dense in the space W 2
2 ((a, b) ;H) [1]. The linear set

◦
D ([a, b] ;H4) =

{
u : u ∈ D ((a, b) ;H) , u(j) (a) = u(j) (b) = 0, j = 0, 1

}
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is determined in the similar way.

It follows from the theorem on traces [1,p.29] that the set
◦
D ([a, b] ;H4) is every-

where dense in the space
◦
W

2

2 ((a, b) ;H).
The following lemma is specifically proved in the paper [2]:
Lemma 1. Let the following conditions be satisfied:
1) A is a positive-definite self-adjoint operator with completely continuons inverse

A−1 = C.
2) Bj = AjA

−j ( j = 1, 2) and Bj = A−2AjA
2−j ( j = 3, 4) are the bounded

operators in H.
Then the bilinear functional P (u, g) = (P (d/dt)u, g)L2((0,1);H) continues by con-

tinuity from the space D ([0, 1] ;H4) ⊕
◦
D ([0, 1] ;H4) to the space W 2

2 ((0, 1) ;H) +
◦
W

2

2 ((0, 1) ;H) as a bilinear functional, acting in the following way:

P (u, g) = (u, g)W 2
2 ((0,1);H) + P1 (u, g) , (3)

where
(u, g)W 2

2 ((0,1);H) =
(
u′′, g′′

)
L2((0,1);H)

+
(
A2u,A2g

)
L2((0,1);H)

and

P1 (u, g) =
2∑

j=1

(
Aju

(2−j), g′′
)

L2((0,1);H)
+

4∑
j=3

(
Aju

4−j , g
)
L2((0,1);H)

(4)

Definition 1. If the vector-function u ∈W 2
2 ((0, 1) ;H) satisfies the equality (3)

for all g ∈
◦
W

2

2 ((0, 1) ;H) and lim
t→0

∥∥u(j) (t)− ϕj

∥∥
2−j− 1

2

= 0, lim
t→1

∥∥u(j) (t)− ψj

∥∥
2−j− 1

2

=

0, j = 0, 1, then u (t) is said to be a generalized solution of problem (1), (2).
In the paper [2] the following theorem is also proved:
Theorem 1 [2]. Let the conditions 1) and 2) from lemma 1 be fulfilled and it

hold the inequality

α =
4∑

j=1

mj ‖Bj‖ < 1, (5)

where m1 = m3 =
1√
2
, m2 =

1
2
, m4 = 1. Then for any ϕj ∈ H2−j− 1

2
and

ψj ∈ H2−j− 1
2

( j = 0, 1) there exists a unique generalized solution and for any

g ∈
◦
W

2

2 ((0, 1) ;H) it holds the inequality

ReP (g, g) ≥ (1− α) ‖g‖2
W 2

2 ((0,1);H) . (6)

In the present paper under some additional conditions we’ll prove the four-fold
completeness of a system of chains of eigen and adjoint vectors responding to the
boundary value problem 1), 2) corresponding to the operator pencil

P (λ) = λ4E +A4 +
4∑

j=1

Ajλ
4−j , (7)
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and also completeness of elementary solutions of homogeneous equation P (d/dt)u =
0 in the space of generalized solutions.

Under another conditions the similar problems were studied for instance, in the
papers [3,4,8,9].

Definition 2. If for some λ0 the equation P (λ0)ϕ0 = 0 has a non-zero solution,
the number λ is said to be an eigen value of the operator pencil P (λ), and ϕ0 an
eigen vector of the pencil P (λ), responding to the eigenvalue λ0. if the vectors ϕ0,
ϕ1,...,ϕm satisfy the equations

k∑
j=0

1
j!
P (j) (λ0)ϕk−j , k = 0,m,

then ϕ0, ϕ1,...,ϕm is said to be a chain of eigen and adjoint elements of the operator
pencil P (λ), responding to the eigen vector ϕ0.

Definition 3. If {ϕ0, ϕ1, ..., ϕm} is a chain of eigen and adjoint vectors of the
pencil P (λ) responding to the eigenvalue λ0, the vector-functions

uh (t) = eλ0t

(
ϕh +

t

1!
ϕh−1 + ...+

th

h!
ϕ0

)
, h = 0,m

satisfy the equation P (d/dt) u (t) = 0 and are said to be elementary solutions re-
sponding to the eigenvalue λ0 [5].

If λ0 are eigenvalues, the elementary solutions have the following traces

ϕ
(ν)
h =

dν

dtν
uh (t)

∣∣∣∣
t=0

, ψ(ν)
h =

dν

dtν
uh (t)

∣∣∣∣
t=1

, h = 0,m, ν = 0, 1,

that are said to be derivative chains.
By means of derivative chains ϕ(ν)

h and ψ(ν)
h (ν = 0, 1) we determine the vectors

ϕ̃h =
(
ϕ

(0)
h , ϕ

(1)
h , ψ

(0)
h , ψ

(1)
h

)
∈ H4, h = 0,m.

By K (Π) we denote all positive vectors ϕ̃h responding to all eigen values and
eigen vectors of the pencil P (λ).

Definition 4. The system K (Π) is said to be four-fold complete in the traces
space if the system K (Π) is complete in the space

H̃ =
(

1
⊕
i=0
H2−i− 1

2

)
⊕

(
1
⊕
i=0
H2−i− 1

2

)
.

Lemma 2. Let the conditions 1) and 2) be satisfied. In order the system K (Π)
be four-fold complete in the traces space, it is necessary and sufficient that for any
vectors χ ∈ H2−i− 1

2
and θi ∈ H2−i− 1

2
, i = 0, 1 from the holomorphic property of the

vector-functions
1∑

i=0

A2−i− 1
2P−1

(
λ
)∗ (

λiA2−i− 1
2χi + λieλA2−i− 1

2 θi

)
in the complex

plane Π it follows χi = θi = 0, i = 0, 1.
The proof of the lemma follows from Loran expansion

(
P−1

(
λ
))∗ in the vicinity

of eigen values (see [3], [5], [6]).
At first we prove that the pencil P (λ), whose coefficients satisfy the conditions

1) and 2) from lemma 1, under some additional conditions has a discrete spectrum.
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It holds
Lemma 3. Let the conditions 1), 2) from lemma 1 be satisfied and the operator

E + B4 be invertible in H. Then the operator pencil P (λ) has a discrete spectrum
with a unique limiting point at infinity. If A−1 = C ∈ σp, p > 0, the resolvent
P−1 (λ) is represented in the form of ratio of two entire functions of order p and
minimal type at order p.

Proof. Obviously

P (λ) =
(
λ4E +A4

)
+

4∑
j=1

λ4−jAj = A2

(
λ4C4 + E

)
+

4∑
j=1

λ4−jC2AjC
2

A2 =

= A2
((
λ4C4 + E

)
+ λ3C2

(
A1A

−1
)
C + λ2C2

(
A2A

−2
)
+

+λ
(
A−2A3A

−1
)
C +

(
A−2A4A

−2
))
A2 =

A2
((
λ4C4 + E

)
+ λ3C2B1C + λ2C2B2 + λB3C +B4

)
A2 ≡ A2L (λ)A2,

where L (λ) = λ4C4 + E +
4∑

j=1

λ4−jTj , where T1 = C2B1C ∈ σp/3, T2 = C2BC ∈

σp/3, T3 = B3C ∈ σp, T4 = B4.
Since L (0) = E + T4 is invertible, then the pencil

L (λ) = (E + T4)

λ4 (E + T4)
−1C4 +

3∑
j=1

λ4−j
(
E + T 4

)−1
Tj + E


by the Keldysh theorem is invertible except denumarable points that have a unique
limiting point at infinity. Since (E + T4)

−1C4 ∈ σp/4, (E + T4)
−1 Tj ∈ σp/4−j , j =

1, 3, then by M.G.Gasymov’s lemma from [6] L−1 (λ) is represented in the form of
ratio of two entire functions of order p and of minimal type at order p. This property
relates to the operator pencil P (λ) as well. The lemma is proved.

Lemma 4. When fulfilling the conditions of theorem 1, for ξ ∈ R and ϕ ∈ H4

the following inequalities

Re (P (iξ)ϕ,ϕ) ≥ δ
((
ξ4E +A4

)
ϕ,ϕ

)
, ξ ∈ R, ϕ ∈ H4 (8)

Re (P (iξ)ϕ,ϕ) ≥ δ1
((
ξ4E +A4

)
ϕ,ϕ

)
, ξ ∈ R, ϕ ∈ H4 (9)

hold.
Proof. Let’s prove inequality (8). Inequality (9) is proved similar to inequality

(8).
Let g (t) = η (t)ϕ where η (t) 6≡ 0 is an infinitely differentiable scalar function,

moreover η(κ) (t) = 0 for t ≤ 0 and t ≥ 1, k ≥ 0, and ϕ ∈ H4. Then by theorem 1
we have

Re (P (d/dt) η (t)ϕ, η (t)ϕ)L2((0,1);H) ≥ (1− α) ‖η (t)ϕ‖2
W 2

2 ((0,1);H)

After the Fourier transformation we have

Re (P (iξ)ϕ,ϕ) ‖η̂ (ξ)‖2 ≥ (1− α)
((
ξ2η̂ (ξ)ϕ, ξ2η̂ (ξ)ϕ

)
L2(R:H)

+
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+A2η̂ (ξ)ϕ
)
, A2η̂ (ξ)ϕ

))
L2(R:H)

= (1− α)
((
ξ4E +A4

)
ϕ,ϕ

)
L2(R:H)

‖η̂ (ξ)‖2
L2(R:H)

Hence the truth of inequality (8) follows.
Lemma 5. Let the conditions of theorem 1 be fulfilled. Then for ξ ∈ R the

following estimates ∥∥A2P−1 (iξ)A2
∥∥ ≤ const, ξ ∈ R (10)∥∥A2P−1 (ξ)A2
∥∥ ≤ const, ξ ∈ R (11)

hold.
Proof. Let’s prove inequality (10). Inequality (11) is proved in the similar way.
Obviously,

A2P−1 (ξ)A2 = A2

ξ2E +A4 +
4∑

j=1

(iξ)4−j Aj

A2 =

= A2
(
−iξ2E +A2

)−1

E +
4∑

j=1

(iξ)4−j (
iξ2E +A2

)−1 ×

×Aj

(
−iξ2E +A2

)−1
)−1 (

iξ2E +A2
)−1

A2 (12)

It follows from spectral expansion of the operator A that∥∥∥A2
(
−iξ2E +A2

)−1
∥∥∥ ≤ sup

µ∈σ(A)

µ2(
µ2 + ξ2

) 1
2

≤ sup
µ≥µ0>0

µ2(
µ4 + ξ4

) 1
2

≤ 1 (13)

On the other hand, it follows the equality∥∥∥(iξ)3
(
iξ2E +A2

)−1
A1

(
−iξ2E +A2

)−1
∥∥∥ =

=
∥∥∥(iξ)2

(
iξ2E +A2

)−1 (
A1A

−1
)
A

(
−iξ2E +A2

)−1
∥∥∥

Since
∥∥A1A

−1
∥∥ = ‖B1‖, and∥∥∥(iξ)2

(
iξ2E +A2

)−1
∥∥∥ ≤ sup

µ≥µ0

ξ2√
ξ4 + µ4

≤ 1,

and ∥∥∥(Aiξ)
(
−iξ2E +A2

)−1
∥∥∥ ≤ sup

µ≥µ0

µ |ξ|√
ξ4 + µ4

≤ 1√
2
,

then ∥∥∥(iξ)3
(
iξ2E +A2

)−1
A1

(
−iξ2E +A2

)−1
∥∥∥ ≤ 1√

2
‖B1‖ . (14)

Let’s estimate the other terms. Obviously∥∥∥(iξ)2
(
iξ2E +A2

)−1
A2

(
−iξ2E +A2

)−1
∥∥∥ ≤

≤
∥∥∥(iξ)2

(
iξ2E +A2

)−1 (
A2A

−2
)
A2

(
−iξ2E +A2

)−1
∥∥∥ ≤
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≤
∥∥∥(iξ)2

(
iξ2E +A2

)−1
∥∥∥ · ‖B2‖ ·

∥∥∥A2
(
−iξ2E +A2

)−1
∥∥∥ ≤

≤ ξ2√
ξ4 + µ4

µ2√
ξ4 + µ4

· ‖B2‖ ≤
1
2
‖B2‖ (15)

In sequel, we have:∥∥∥(iξ)
(
iξ2E +A2

)−1
A3

(
−iξ2E +A2

)−1
∥∥∥ =

=
∥∥∥(
iξ2E +A2

)−1
A2

(
A−2A3A

−1
)
Aiξ

(
−iξ2E +A2

)−1
∥∥∥ ≤

≤
∥∥∥A2

(
iξ2E +A2

)−1
∥∥∥ · ‖B3‖ ·

∥∥∥A (iξ)
(
−iξ2E +A2

)−1
∥∥∥ ≤ 1√

2
‖B3‖ (16)

Finally, we have: ∥∥∥(
iξ2E +A2

)−1
A4

(
−iξ2E +A2

)−1
∥∥∥ =

=
∥∥∥(
iξ2E +A2

)−1
A2

(
A−2A4A

−2
)
A2

(
−iξ2E +A2

)−1
∥∥∥ ≤ ‖B4‖ (17)

Considering inequalities (13)-(17) in the equality (12), from inequality (5) we get
the proof of the lemma.

For proving the four-fold completeness of the system K (Π) we’ll use the method
of the papers [3,4]. Therefore, we’ll reduce the unbounded operator pencil to the
bounded pencil [3].

Denote L (λ) = A−2P (λ)A−2 = C2P (λ)C2.
As is seen from the proof of lemma 2

L (λ) = E + λ2C4 +
4∑

j=1

λ4−jTj ,

where T1 = C2B1C, T2 = C2B, T3 = B3C, T4 = B4.
Denote the space of generalized solutions of the problem (1), (2) by PO. It

follows from the uniqueness of solutions and from the Banach theorem on the inverse
operator that for u ∈ PO it holds the inequality

c1 ‖ϕ̃‖ eH ≤ ‖u‖W 2
2 ((0,1);H) ≤ c2 ‖ϕ̃‖ eH , ϕ̃ = (ϕ0, ϕ1, ψ0, ψ1) (18)

For proving the completeness of elementary solutions of first we’ll prove that the
system K (Π) is four-fold complete in H̃.

Theorem 2. Let the conditions of theorem 1 and one of the conditions:
a) A−1 ∈ σp, 0 < p ≤ 2; or b) Bj ∈ σ∞, A−1 ∈ σp, 0 < p <∞; be fulfilled.
Then the system K (Π) is four-fold complete in H̃.
Proof. Obviously, the four-fold completeness of the system K (Π) is equivalent

to four-fold completeness in H4 of the system of all derivative chains of eigen and
adjoint vectors of the pencil L (λ), responding to eigenvalues λk by the collection of
operator-functions (see [3], p.24)(

C
1
2 , λC

3
2 , eλC

1
2 , λeλC

3
2

)
.
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If there is no four-fold completeness of the indicated system, then (see [3], p.8)
there will be found such non-zero vector z̃ =

(
x0, x1, y0, y1 ∈ H4

)
, that the vector-

function

R (λ) =
(
L∗

(
λ
))−1

 1∑
j=0

λjC
1
2
(2j+1)xj + eλλjC

1
2
(2j+1)yj

 ≡

≡
(
L∗

(
λ
))−1

χ (λ)

is entire.
Here, taking into account lemma 5 and lemma 3 we get that on an imaginary

axis and on negative semi-axis the vector-function R (λ) grows no more rapid than
a polynomial, but on a positive semi-axis it grows exponentially. Then by the
Fragmen-Lindeloff theorem [7] the vector-function R (λ) is a vector-function of ex-
ponential type and in the left half-plane it grows no rapid than a polynomial.

Now, let’s consider the entire scalar function [3,4]

F0 (λ) =
((
L∗

(
λ
))−1

χ (λ) , χ
(
λ
))

=
(
R (λ) , χ

(
λ
))

= F1 (λ) + F2 (λ)

where

F1 (λ) =

R (λ) ,
1∑

j=0

λ
j
C

1
2
(2j+1)xj

 ,

and

F2 (λ) = eλ

R (λ) ,
1∑

j=0

λ
j
C

1
2
(2j+1)yj


are entire functions. Let’s prove that on an imaginary axis F1 (λ) and F2 (λ) behave
as o

(
|λ|−1

)
.

Prove it for F1 (λ). For F2 (λ) it is proved in the similar way. Represent L (λ) in
the form

L (λ) = LR (λ) + L1 (λ) ,

where

LR (λ) = Re
(
I + λ4C4

)
+ Re

4∑
j=1

λ4−jTj ,

L1 (λ) = Im
(
I + λ4C4

)
+ Im

4∑
j=1

λ4−jTj .

It follows from lemma 4 that

LR (iξ) ≥ σ
(
ξ4C4 + E

)
, ξ ∈ R (19)

Similar to the problem [3] for ξ ∈ R we denote

G (iξ) =
(
I − iξ2C2

)−1
LR (iξ)

(
I + iξ2C2

)−1
.
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Then, obviously, for ξ ∈ R

(G (iξ)ϕ,ϕ) =
(
LR (iξ)

(
E + iξ2C2

)−1
ϕ,

(
E + iξ2C2

)−1
ϕ
)
≥

≥ σ
(
ξ4C4 + E

) (
E + iξ2C2

)−1
ϕ
)
,
(
E + iξ2C2

)−1
ϕ
)
≥ σ (ϕ,ϕ)

Thus, G (iξ) ≥ σ then G−1 (iξ) ≤ σ−1, ξ ∈ R.
For ξ ∈ R we have (see [3], p.18)

L∗
(
iξ

)−1 =
(
E + iξ2C2

)
G− 1

2 (iξ) [I − i (T (iξ))]−1G− 1
2 (iξ)

(
E − iξ2C2

)−1
,

where

T (iξ) = G− 1
2 (iξ)

(
E − iξ2C2

)−1

Im
4∑

j=1

(iξ)4−j Tj

×
×

(
E + iξ2C2

)
G− 1

2 (iξ) .

Since T (iξ) is a self-adjoint operator for any ξ ∈ R, then∥∥∥(E − iT (iξ))−1
∥∥∥ ≤ 1, ξ ∈ R

Since G− 1
2 (iξ) ≤ σ−

1
2 , then for ξ ∈ R we have

|F1 (iξ)| ≤ c

1∑
i,j=0

|ξ|i+j
∣∣∣(L∗ (

iξ
)−1

C
1
2
(2i+1)fi, C

1
2
(2i+1)xj

)∣∣∣ ≤
≤ c

1∑
i,j=0

|ξ|i+j

∣∣∣∣(G− 1
2 (iξ) (E − iT (iξ))−1G− 1

2 (iξ)
(
E − iξ2C2

))−1
C

2i+1
2 fi

(
E − iξ2C2

)−1×

×C
2i+1

2 xj

)∣∣∣ = c

1∑
i,j=0

|ξ|i+j o
(
|ξ|−2 2j+1

4

)
= o

(
|ξ|−1

)
, |ξ| −→ ∞,

where fi = xi or fi = yi (i = 0, 1).
Here we used the the following lemma from the paper [3].
Lemma 6 [3, p.13]. Let Q > 0, Q ∈ σ∞ then in the domain Λε = {λ : |arg λ| ≥ ε},

−π < arg λ ≤ π for β ∈ (0, 1) and for any T ∈ σ∞ the estimations∥∥∥(E − λQ)−1Qβ
∥∥∥ ≤ c (ε, β) |λ|−β ,

lim
η→∞

sup
|λ|≥η,λ∈Λε

∥∥∥λβ (E − λQ)−1QβT
∥∥∥ = 0.

are fulfilled.
In the similar way we can get |F1 (ξ)| = o

(
|λ|−1

)
for ξ ∈ R− = (−∞ : 0),

|ξ| → ∞.
Since F1 (λ) is an entire function and grows no more than a polynomial, then by

the Fragmen-Lindeloff theorem F1 (ξ) = o
(
|λ|−1

)
in the left half-plane. F2 (λ) has

the same property, i.e. F2 (ξ) = o
(
|λ|−1

)
in the left half-plane.
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Now, let’s denote Φ (λ) = F1

(
λ
)

+ F2 (λ) that in the left plane decreases as

o
(
|λ|−1

)
. It is easy to see that Re Φ (λ) = ReF0 (λ) for λ = iξ. Then Re Φ (iξ) ≥ 0

for ξ ∈ R, i.e. Re (−Φ (iξ)) ≤ 0. If Re Φ (iξ) 6≡ 0 differs from zero even if at one point,
then by the Caratheodory inequality (see [3], p.20, or [7] p.28) for ξ ∈ R− = (−∞ : 0)
and |ξ| > 1 we get |Φ (ξ)| > c |ξ|−1, c > 0. This contradicts the estimation o

(
|λ|−1

)
.

So, Re Φ (λ) = ReF0 (λ) = 0 for λ = iξ. Hence by inequality (19) we get
χ (λ) ≡ 0. So, x0 = x1 = y0 = y1 = 0. The theorem is proved.

Now, we can prove a theorem on completeness of elementary solutions.
Theorem 3. Let all the conditions of theorem 2 be fulfilled. Then the system of

all elementary solutions is complete in the space of generalized solutions of problem
(1), (2).

Proof. Let u (t) ∈ PO (a space of generalized solutions). Let u (0) = ϕ0,
u′ (0) = ϕ1, u (1) = ψ0, u′ (1) = ψ1. Then by theorem 2, for any ε > 0 we can find
such a number ck,N (ε) that∥∥∥∥∥

N∑
K=1

ck,N (ε)ϕ(ν)
k − ϕν

∥∥∥∥∥
H2−ν− 1

2

<
ε

2c2
,

∥∥∥∥∥
N∑

K=1

ck,N (ε)ψ(ν)
k − ψν

∥∥∥∥∥
H2−ν− 1

2

<
ε

2c2
, ν = 0, 1

Then by inequality (18) we get∥∥∥∥∥u (t)−
N∑

K=1

ck,N (ε)uk (t)

∥∥∥∥∥
W 2

2 ((0,1);H)

< ε.

The theorem is proved.
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