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Aydin H. HUSEYNOV

ON SOLUTIONS OF A NONLINEAR BOUNDARY
VALUE PROBLEM FOR DIFFERENCE EQUATIONS

Abstract

We study a boundary value problem (BVP) for second order nonlinear differ-
ence equations. A condition is established that ensures existence and uniqueness
of solution to the BVP under consideration.

1. Introduction
Let Z denote the set of all integers. For any [,m € Z with | < m, [I,m] will
denote the discrete interval being the set defined by

Iml={neZ:l<n<m}={Ll+1,...,m}.

Throughout the paper all intervals will be discrete intervals.
In this paper, we consider the nonlinear boundary value problem (BVP)

Ay(n—1) + f(n,y(n)) =0, n € [a,b], (1)

yla—1)=y(b+1) =0, (2)
where a,b € Z with a < b; y(n) is a desired solution defined for n € [a — 1,b+1]; A
denotes the forward difference operator defined by
Ay(n) =y(n+1) —y(n)
so that
A%y(n —1) = y(n — 1) = 2y(n) + y(n + 1);
f:]a,b] x R — R (R denotes the set of all real numbers) is a given function.

The main result of this paper is the following theorem.

Theorem 1. Suppose f : [a,b] x R — R satisfies the Lipschitz condition

[f(n, &) = f(n,m)| < LI§—nl, (3)

for all n € [a,b] and §,m € R, where L > 0 is a constant (Lipschitz constant).

Suppose further that
T

2(b—a+2)
Then the BVP , (@ has a unique solution.

L < 4sin?

(4)

Problem , under the Lipschitz conditon (3)) was earlier studied in [2,
Chapt.9] where it is proved that if

8
L< m, (5)

then the BVP , has a unique solution.
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Since b — a > 0, using the inequality

2v/2
sinxzix for nggz,
T 4
we have
T S 8
2b—a+2) — (b—a+2)%
Therefore it is seen that our condition is better than condition .

Proof of Theorem [1.] is presented below in Section 3 and it uses a Hilbert space
technique.

4 sin?

2. The difference operators
Let Z denote the set of all integers and let y : Z — R be a given function
(sequence). The forward and backward difference operators A and V are defined by

Ay(n) =y(n+1)—y(n) and Vy(n)=y(n)-ym-1),
respectively. We easily see that
A%y(n) = A(Ay(n)) = y(n +2) — 2y(n + 1) + y(n),
V2y(n) = V(Vy(n)) = y(n) — 2y(n — 1) + y(n — 2),
AVy(n) = y(n+1) = 2y(n) + y(n — 1) = VAy(n) = A%y(n — 1) = V?y(n + 1).

For any integers a,b € Z with a < b we have the summation by parts formulas

b b
Y (Ay(n)z(n) = y(n+1)z(n) oy =Y y(n)Vz(n)
b
= y(b+1)z(0) ~y(a)z(a—1) =Y y(n)Vz(n),  (6)
b b
Y (Vyn))z(n) = y(m)z(n+1) oy =Y y(n)Az(n)
b
= y(®)z(b+1) —yla—1)z(a) = Y y(n)Az(n),  (7)
b b
Y (AVy(n)z(n) = (Ay(n)=(n) [o_y =D _(Vy(n))Vz(n), (8)
b b
Y (AVy(n)z(n) = (Ay(n)z(n+1) [o_y — D (Ay(n))Az(n), (9)
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= [(Ay(b))z(b) — y(b)Az(b)] — [(Ay(a — 1)z(a = 1) —y(a = 1)Az(a - 1)].  (10)

3. Proof of Theorem 1
First we prove the following Lemma.

Lemma 2. Let Ay be the least positive eigenvalue of the problem
A%y(n — 1)+ Ay(n) =0, n € [a,b], (11)

yla—1)=y(b+1) =0, (12)
and L be the Lipschitz constant presented in the condition @ If

L < AL (13)

then the BVP , @ has a unique solution.

Proof.  Denote by H the real Hilbert space of all functions (finite sequences)
y : [a,b] — R with the inner product (scalar product)

b

(y,2) =Y _y(n)z(n)

n=a

and the norm )
b 2
Iyl =V {y,y) = {Z yQ(H)} :

Obviously, H is a finite dimensional real linear space and its dimension is equal to
the number b — a + 1 of all points of the discrete interval [a, b]. Next, we define the
operators A: H — H and F : H — H as follows. For any y € H we put

(Ay)(n) = =A%y(n — 1) = =AVy(n) = —y(n — 1) + 2y(n) — y(n + 1),

(F'y)(n) = f(n,y(n)),

for n € [a,b], taking into account that when we calculate (Ay)(a) and (Ay)(b) we
use the boundary conditions setting y(a — 1) = 0 and y(b+ 1) = 0, respectively.
The latter means that for all y € H we extend y(n) given for n € [a, b] to the values
n=a—1and n=>b+1 by setting y(a —1) =y(b+ 1) =0.

Note that the operator A is linear, while F' is nonlinear in general. The eigen-
values of problem , coincide with the eigenvalues of the operator A.

Using summation by parts formulas and @D and remembering that, accord-
ing to the boundary conditions , we put

yla—1) =y +1) =0,
for all y € H, we find that
(Ay, 2) = (y, Az), (14)

b
(Ay,y) = y*(a) + >_[Ay(n)), (15)

n=a
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for all y,z € H. Relation shows that the operator A is self-adjoint, while
shows that it is positive:

(Ay,y) >0 forall ye H, y+#0.

Therefore each eigenvalue of the operator A is real and positive, and the eigenvectors
corresponding to the distinct eigenvalues are orthogonal. It also follows from Linear
Algebra (see [1]) that the operator A has exactly N = dim H = b—a+1 orthonormal
eigenvectors (eigenfunctions) ¢y, 1 < k < N, with the corresponding eigenvalues g,
1 <k < N, being real and positive. Note that existence of eigenvalues and basisness
of eigenvectors for the operator A can be proved directly. We prove also that the
eigenvalues are distinct. In fact, denote by ¢(n,A) the solution of equation
satisfying the initial conditions

@(a -1, >‘) = 07 QO(CL, >‘) =L (16)
Using , we can recursively find p(n, ), forn =a,a+1,...,b+ 1, from
90(?14—1,)\):(2—)\%0(71,)\)—(,0(71—1,)\), ne [avb]7

and ¢(n,A) will be a polynomial in A of degree n — a. It is easy to see that every
solution y(n, ), n € [a — 1,b + 1], of equation satisfying the initial condition
y(a —1,\) = 0 is equal to ¢(n,\) up to a constant factor:

y(n,A) = cp(n, N, nefa—1,b+1],

with ¢ = y(a, A). Indeed, the both sides are solutions of and they coincide for
n =a — 1 and n = a. Hence they coincide for all n by the uniqueness of solution. It
follows that the eigenvalues of , coincide with the roots of the polynomial
©(b+1, ) and to each eigenvalue Ao there corresponds, up to a constant factor, single
eigenfunction which can be taken to be the function ¢(n, \g), n € [a—1,b+1]. Since
w(b+1, ) is a polynomial of degree b—a+1, it has b—a+1 roots. Now we show that
the roots of ¢(b+ 1, A) are simple. Hence we will get that there exists N =b—a+1
distinct eigenvalues. Differentiating the equation

en—1,A) + (A =2)p(n,A) +¢(n+1,A) =0
with respect to A, we get
QO(TL -1, A) + SO(TL, >‘) + ()‘ - 2)90(717 )‘) + (p(n +1, >‘) =0,

where the dot over the function indicates the derivative with respect to A. Multiply-
ing the first equation by ¢(n, ) and the second one by ¢(n, \), and subtracting the
left and right members of the resulting equations, we get

[@(n -1, )‘)So(na )‘) - Qp(n -1, )\)QD(H, )‘)]

7[@(77” A)(p(n + 17 )‘) - Qp(na A)(p(n + 17 )‘)] = 902(’”7 )‘)
Summing the last equation for the values n = a,a 4+ 1,...,b and using the initial
conditions , we get

b
—o(b, @b+ 1,0) + (b, V(b + 1,A) = > ¢*(n, A).

n=a
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Setting here A = )¢, where )\ is a root of polynomial ¢ (b+1, \), that is, (b+1, \g) =

0, we obtain
Z@ n, do).

The right-hand side of the last equation is different from zero because the eigenvalue
Ao is real, the polynomial ¢(b+ 1, A) has real coefficients, and ¢(a, \g) = 1 by .
Consequently ¢(b+ 1, Ag) # 0, that is, the root Ay of the polynomial p(b+ 1, ) is
simple.

Note also that the eigenvalues of the operator A (that is, of problem , )
coincide with the eigenvalues of the real symmetric Jacobi matrix

*(p(b, )\0) b +1 )\0

T2 1 0 0 0 7
1 2 -1 0 0
0 -1 2 0 0
J = .
0 0 0 2 -1
0 0 0 -1 2 |

Thus we have that the operator A has N = b — a+ 1 = dim H distinct positive
eigenvalues A\, 1 < k < N, which we arrange in the form

D<M <X<...<AN.

The corresponding orthonormal eigenvectors ¢, 1 < k < N, form a basis for the
space H. Thus
Apy, = Ao, 1<kE<N,

(o, ) =0ifk #1,and =1if k=1.

It follows that for arbitrary y € H we have (expansion formula and Parseval’s
equality)

N
Y= ckpr, k= (Y, %), (17)
k=1
lyll* = ch

Since the operator A is positive it is invertible. We have

N

Ay =" crdrpy,
k=1

al Ck
V=25

for all y € H, where ¢i are defined in . Hence

N N
1 1
47l =35 < o= i
i) 1

lk:

:vw‘?rw
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Thus we have established the following result: The operator A is invertible and
1 1
HA yH < N llyl| forall ye H. (18)

The BVP , is equivalent to the vector equation
Ay=Fy for ye€H,
with the operators A and F' defined above. This equation can be written in the form
y=A"1Fy for yeH.
Let us set S = A~'F. Then we get that the BVP , is equivalent to the equation
y=Sy for yeH.
The last equation is a fixed point problem.

We will use the following well-known contraction mapping theorem: Let H be a
Banach space and suppose that S : H—H 1is a contraction mapping, i.e., there is
an o, 0 < o < 1, such that ||Sy — Sz|| < ally — z|| for all y,z € H. Then S has a
unique fized point in H.

It will be sufficient to show that the operator S = A~!F is a contraction mapping
on the space H. We have, using ,

1
ISy — Sz|| = HA_le — AT'Fe|| = |[|[AT (Fy — F2)|| < N |Fy— Fz||. (19)

Next, making use of the Lipschitz condition , we get
b
IFy—Fz[> = Y [f(n,y(n) = f(n,2(n))”
n=a

b
< 23 Jy(n) — =(n)?
n=a
= Ly—2|?

so that
|Fy—Fz|| < L|ly—z|| foral y,ze€H.

Thus, from ([19)) we obtain
L
|Sy — Sz| < N ly—=z| forall y,z€ H.
1

Consequently, we see that under the condition , S is a contraction mapping and
hence it has a unique fixed point in H by the contraction mapping theorem. Lemma
is proved. W

Now we compute the eigenvalues of problem , . Since the eigenvalues of
, are real, we can deal only with real values of A. Consider the equation

A’y(n—1)+ Ay(n) =0, n€Z,
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that is,
yln—1)+A=2)y(n)+y(n+1)=0, neZ, (20)

where A € R. Let us look for solutions of of the form
y(n)=q", nek, (21)

where ¢ is an undetermined complex number. Substituting into (20)) we get the
characteristic equation
C+A=2qg+1=0.

C2-a+/( 224 (22
= : :

Consider possible cases separately.
(a) If |\ — 2| > 2, then according to (22)) we get two values ¢; and g2 which are
real and distinct. A general solution of equation has the form

Hence

q

y(n) = Cl(]{l + Cqua ne Z7

where ¢, co are constants. Substituting this expression of y(n) into boundary con-
ditions (12)), we find that ¢; = ¢ = 0. Therefore if |A — 2| > 2, then there are no
eigenvalues.

(b) If [N —2| =2, then A =0 or A = 4. In the case A = 0 a general solution of
equation has the form

y(n) =c1 +can, née€z,
and in the case A = 4 a general solution of equation has the form
y(n) =(c1 + con)(=1)", neZ,

where c;, co are constants. Substituting these expressions of y(n) into boundary
conditions , we again find that ¢; = co = 0. Therefore in the case |\ —2| = 2
also there are no eigenvalues.

(c) Finally, consider the case |A — 2| < 2. We can set

2—X=2cosf, OF#mm, mecZ. (23)

Then '
q=cosf+ising = et

Hence a general solution of equation is
y(n) = cycosnb + cpsinnf, n € Z.
From the boundary conditions , we have
y(a —1) = ¢j cos(a — 1)0 + casin(a — 1)§ = 0,

y(b+1) =cicos(b+1)0 + casin(b+ 1) = 0.

This system has a nontrivial solution (c1,c2) if and only if its determinant is equal
to zero:
cos(a — 1)0sin(b+ 1) — cos(b + 1)fsin(a — 1)8 = 0,
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that is,
sin(b—a+2)8 = 0.

Hence
(b—a+2)0=rk, kecZ,

and we get the values of 0 in the form

k
ek:EE%I? k€7 and k#m(b—a+2) for all m € Z.
Substituting these values of # into (23)), we get the following values for A:
wk
M = 2(1 —cos ) =4sin? ————
k (1 — cosby) sin a2’

where k € Z and k #m(b—a+2) forallm € Z. For k =1,2,...,b—a+ 1 we get
N = b —a+ 1 distinct values of A\. Further integers values of £ would give values
already obtained. For instance, k = b — a + 3 gives

k (. mb—a+1)
2b—a+2) <” 2@—a+m>’

hence the A corresponding to k = b — a + 1, etc. Consequently, problem ,
has the N = b — a + 1 distinct eigenvalues
wk

A =4dsin® —————
B S —at ey

ke{l,2,....b—a+1}. (24)

Obviously we have
0<)\1<>\2<...<)\N,

where N = b — a+ 1. Therefore the least (positive) eigenvalue of problem ,

1S
m

2b—a+2)
Now the statement of Theorem [L] follows from Lemma [2
Remark 1. The orthonormal eigenfunctions ¢, (n), 1 <k < b—a+ 1, of problem

, , corresponding to the eigenvalues have the form
wk(n —a+1)
b—a+2

where o are normirating constants.

A\ = 4sin®

vr(n) = ag sin , ne€la—1,b+1],
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