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ON CONTINUATION OF BOUNDED OPERATORS

Abstract

In the paper, the notion FT -invariance of Banach space is introduced and
using this notion sufficient condition on possibility of minimal continuation of
a bounded operator is given.

Hahn-Banach classic theorem on continuation with preservation of norm (mini-
mal continuation) of a bounded functional in a Banach space is known well. In this
relation there arises a question if one get similar result for bounded (not everywhere
defined) operators. It is founded that it is not always possible. It is known that
if a subspace X0 of the Banach space X is not topologically complemented, there
exists a Banach space Y and a bounded operator T ∈ L(X0;Y ) that has no minimal
continuation (here L(X;Y ) is a Banach space of bounded operators acting from X
to Y ). We can be acquainted with this fact in detail in [1, p.184]. Hilbert spaces
are excepted since any subspace is topologically complemented therein.

There are also results on possibility of minimal continuation of bounded operators
in concrete cases. The notion of Banach space of type M was introduced by Nakhbin
and he gave criterion on possibility of minimal continuation of bounded operators in
real spaces [2, p.241]. Notice that consideration of the real case is essential in these
results, and the criterion doesn’t cover complex analogy of Hahn-Banach classic
theorem.

Let X0 ⊂ X be some sub-space and

X∗
f ≡

{
g ∈ X∗: ‖g‖X∗ = ‖f‖X∗

0
, g |X0 = f

}
, ∀f ∈ X∗

0 .

Denote by π an operator that associates to each f ∈ X∗
0 its minimal continuation

g ∈ X∗
f : πf = g. The paper [3] is devoted to study of a uniqueness and linearity of

minimal continuation operator π in the terms of weak differentiability of the norm
and complementary subspace.

In the present paper we prove a sufficient condition on the existence of minimal
continuation operator. Cite some necessary denotation and definitions:

B-space –a Banach space;
‖·‖X -the norm in X;
X∗-a space adjoint to X;
T |M -contraction of T on M ;
T ∗-an operator adjoint to T ;
DT -domain of definition of the operator T ;
RT -a set of values of the operator T ;
M -closure of the set M ;
L(X;Y )-a Banach space of bounded operators acting from X to Y ;
o-a composition sign.
Definition. Let X be a B-space and F ≡ {F : F ⊂ X∗} be some linear structure

from the subsets X∗. X is said to be F-additive, if for ∀x ∈ X it holds

x(F1 + F2) = x(F1) + x(F2), ∀Fi ∈ F , i = 1, 2,
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where
x(F ) = inf

f∈F
f(x) + sup

f∈F
f(x).

Before we pass to the statement of main results, we form some constructions.
So, let T ∈ L(DT , Y ), DT ⊂ X, X and Y be some B-spaces. In Y ∗ we introduce
an equivalence ratio ∼ in the following form:

g1 ∼ g2 ⇐⇒ g1(Tx) = g2(Tx),

where
∀x ∈ DT and gi ∈ Y ∗ for i = 1, 2.

Thus, Y ∗ is divided into the co-sets Y ∗ |∼ . By G we denote the elements of Y ∗ |∼ .
Let g ∈ Y ∗. Clearly, g(Tx) is a bounded linear functional on DT , i.e. g ◦ T ∈ D∗

T .
Denote the norm of the functional g ◦ T on DT by ‖g ◦ T‖D∗

T
. Obviously

‖g1 ◦ T‖D∗
T

= ‖g2 ◦ T‖D∗
T

, ∀gi ∈ G, i = 1, 2;

i.e. the norms of the functional of the same class co-sets coincide. The class G0

containing 0 ∈ Y is a zero element of Y ∗ |∼ . Thus, for ∀x ∈ DT : we can determine
G(x) = g(Tx) where ∀g ∈ G. Introduce in Y ∗ |∼ a linear structure: under λG we’ll
understand a class containing an element λg for some g ∈ G. Such a definition is
correct, since it follows from g1 ∼ g2 that λg1 ∼ λg2 and vice versa, if λg ∈ λG then
λf ∈ λG for ∀f ∈ G.

By Gg we denote a class G containing an element g. Define Gg1 + Gg2 as Gg1+g2

i.e. Gg1 + Gg2

def
= Gg1+g2 . It is easy to see that such definition of the sum is also

correct and thus Y ∗ |∼ becomes a linear space. Accepting ‖G‖D∗
T

= ‖g ◦ T‖D∗
T

for
∀g ∈ G and show that ‖G‖D∗

T
is a norm in Y ∗ |∼ . We have:

‖λGg‖D∗
T

= ‖λGλg‖D∗
T

= ‖(λg) ◦ T‖D∗
T

=

= ‖λ(g ◦ T )‖D∗
T

= |λ| · ‖g ◦ T‖D∗
T

= |λ| · ‖Gg‖D∗
T

‖Gg1 + Gg2‖D∗
T

= ‖Gg1+g2‖D∗
T

= ‖(g1 + g2) ◦ T‖D∗
T
≤

≤ ‖g1 ◦ T‖D∗
T

+ ‖g2 ◦ T‖D∗
T

= ‖Gg1‖D∗
T

+ ‖Gg2‖D∗
T

.

‖Gg‖D∗
T

= 0 =⇒ ‖g ◦ T‖D∗
T

= 0 =⇒ g(Tx) = 0, ∀x ∈ DT .

Hence we have g ∈ G0, consequently Gg = G0.
So, Y ∗ |∼ with the norm ‖·‖D∗

T
is a normed space.

Obviously, a G1 6= G2 will mean ∃x0 ∈ DT :

g1(x0) 6= g2(x0), where ∀gi ∈ Gi, i = 1, 2.

Moreover, it is easy to see that G ∈ D∗
T i.e. Y ∗ /∼ ⊂ D∗

T . Take some Hamel
basis F ≡ {Gα}α∈M ⊂ Y ∗ |∼ in Y ∗ |∼ and ∀G ∈ Y ∗ |∼ . Assuming

X∗
G ≡

{
x∗ ∈ X∗:x

∗
/DT

= G; ‖x∗‖X∗ = ‖G‖D∗
T

}
,
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we consider a family
{
X∗

Gα

}
α∈M

. Determine

λX∗
Gα

det= X∗
λGα

, ∀λ ∈ C

and
X∗

Gα
+ X∗

Gβ

det= X∗
Gα+Gβ

.

Thus, under λX∗
Gα

+ µX∗
Gβ

we’ll understand X∗
λGα+µGβ

:

λX∗
Gα

+ µX∗
Gβ

det= X∗
λGα+µGβ

.

We denote the obtained linear space by FT . In other words, on the base of Hamel
basis FT we take

{
X∗

Gα

}
α∈M

. It is easy to see that with respect to the introduced
linear operations, the family

{
X∗

Gα

}
α∈M

is an independent system. Thus, for ∀F ∈
FT there exists a unique finite sequence of numbers {λk} ⊂ C: F = X

∗∑
k

λkGαk

,

and vice versa, for ∀G ∈ Y ∗ |∼ there exists a unique element F ∈ FT : F = X∗
G.

Considering that for G ∃! {λk} ⊂ C : G =
∑
k

λkGαk
we have X∗

G = X
∗∑
k

λkGαk

∈ FT .

We get that between Y ∗ |∼ and FT there exists a linear one-to-one correspondence
T̃ : Y ∗ |∼ ↔ FT defined by the expression:

T̃

(∑
k

λkGαk

)
= X

∗∑
k

λkGαk

∈ FT .

Determine the norm FT in ‖·‖FT
in the following way:

‖F‖FT
=

∥∥∥T̃−1F
∥∥∥

D∗
T

, ∀F ∈ FT . (1)

Now, show that ‖·‖FT
is really a norm in FT . Notice that X∗

G0
= {0} i.e.

X∗
G0

contains only zero functional from X∗. In fact, it follows from ‖G0‖ = 0
that ‖x∗‖X∗ = 0 for ∀x∗ ∈ X∗

G0
and so x∗ = 0. Consequently,T̃−10 = G0 whence

T̃G0 = 0. So, we have:

‖F‖FT
= 0 =⇒

∥∥∥T̃−1F
∥∥∥

D∗
T

= 0 =⇒ T̃−1F = G0 =⇒ F = 0.

The relation ‖λF‖FT
= |λ| · ‖F‖FT

is obvious. Further,

‖F1 + F2‖FT
=

∥∥∥T̃−1F1 + T̃−1F2

∥∥∥
D∗

T

≤

≤
∥∥∥T̃−1F1

∥∥∥
D∗

T

+
∥∥∥T̃−1F2

∥∥∥
D∗

T

= ‖F1‖FT
+ ‖F2‖FT

.

So, ‖·‖FT
is a norm in FT . It directly follows from (1) that T̃ is an isometric

isomorphism between Y ∗ |∼ and FT : T̃ ∈ L (Y ∗ |∼ ;FT ) Let’s consider T̃ ∗ : F∗
T →

(Y ∗ |∼ )∗. By the definition of adjoint operator we have:

F ∗(T̃G) = (T̃ ∗F ∗)G, ∀G ∈ Y ∗ |∼ , ∀F ∗ ∈ F∗
T . (2)
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Now we formulate the main lemma.
Lemma. Let X; Y be real B-spaces, Y = Y ∗∗. T : DT → Y be a bounded

operator, DT be a subspace of the space X. If X is FT invariant and <T = Y then
we can continue the operator T on the whole of the space X preserving the norm.

Proof. Let’s take ∀x ∈ X and consider the functional x : FT → R determined
by the expression:

x(F ) =
1
2

[
inf
f∈F

f(x) + sup
f∈F

f(x)

]
, F ∈ FT .

Show that this functional is bounded. Really, if f ∈ F , then

|f(x)| ≤ ‖f‖X∗ · ‖x‖X =
∥∥∥T̃−1F

∥∥∥
D∗

T

· ‖x‖X = ‖x‖X · ‖F‖FT
,

and as the result,
|x(F )| ≤ ‖x‖X · ‖F‖FT

, ∀F ∈ FT . (3)

Consequently, the functional x(F ) is bounded. Obviously, if λ ≥ 0 then

x(λF ) = λx(F ).

We have:

2x(−F ) = inf
f∈−F

f(x) + sup
f∈−F

f(x) = inf
f∈F

(−f)(x) + sup
f∈F

(−f)(x) =

= −sup
f∈F

f(x) +
(
− inf

f∈F
f(x)

)
= −2x(F ).

It directly follows from this relation that x(λF ) = λx(F ), λ < 0 and so x(F )
is a homogeneous functional. It follows from the condition of the lemma that it is
additive as well. As the result we get that X is imbedded into F∗

T . Now in (2) as F
we take x ∈ X;

x(T̃G) = (T̃ ∗x)G, ∀G ∈ Y ∗ |∼ . (4)

If x ∈ DT , clearly
x(T̃G) = g(Tx), ∀g ∈ G. (5)

Really, T̃G ∈ FT consists of functionals f ∈ X∗ for which f /DT = G and
consequently f(x) = G(x) = g(Tx), ∀f ∈ T̃G and ∀g ∈ G.

On the other hand, it is easy to see that if <T = Y then each class of G ∈ Y ∗ |∼
consists of a unique element g ∈ Y ∗. Thus, in this case we get the imbedding
Y ∗ ⊂ Y ∗ |∼ and this imbedding is continuous since for ∀g ∈ Y ∗ we have:

‖g‖Y ∗/∼
= ‖Gg‖D∗

T
= ‖g ◦ T‖D∗

T
≤ ‖T‖DT

· ‖g‖Y ∗ .

Consequently, (Y ∗ |∼ )∗ ⊂ Y ∗∗ = Y and as the result, T̃ ∗:F∗
T 7−→ Y . Taking into

account (5) in (2) we get:

g(Tx) = g(T̃ ∗x), ∀g ∈ Y ∗,



Transactions of NAS of Azerbaijan
[On continuation of bounded operators]

41

and so
Tx = T̃ ∗x, ∀x ∈ DT . (6)

Thus, the operator T̃ ∗ is a bounded continuation of the operator T from DT to
F∗

T , moreover X ↪→ F∗
T .

Further, the operator T ∗ acting from F∗
T to (Y ∗ |∼ )∗ has the norm equal to a

unit, since ∥∥∥T̃ ∗
∥∥∥
L(F∗T ;(Y ∗|∼ )∗)

=
∥∥∥T̃

∥∥∥
L(Y ∗|∼ ;FT )

= 1.

On the other hand we can consider T̃ ∗ as an operator acting from X to Y . In
this case we’ll have directly from (6):∥∥∥T̃ ∗

∥∥∥
L(X;Y )

≥ ‖T‖DT
.

Moreover, from (4) we have:∣∣∣(T̃ ∗x
)

Gg

∣∣∣ ≤ ‖x‖F∗T ·
∥∥∥T̃Gg

∥∥∥
FT

= ‖x‖F∗T · ‖Gg‖Y ∗|∼ =

= ‖x‖F∗T · ‖g ◦ T‖D∗
T
≤ ‖x‖F∗T · ‖T‖DT

· ‖g‖Y ∗ , ∀g ∈ Y ∗.

Considering T̃ ∗x as a functional acting from Y ∗ we get∥∥∥T̃ ∗x
∥∥∥

Y ∗∗
≤ ‖T‖DT

· ‖x‖F∗T .

Identifying Y ∗∗ with Y we get:∥∥∥T̃ ∗x
∥∥∥

Y
≤ ‖T‖DT

· ‖x‖F∗T .

On the other hand, it follows from (3) that

‖x‖F∗T ≤ ‖x‖X .

As the result ∥∥∥T̃ ∗x
∥∥∥

Y
≤ ‖T‖DT

· ‖x‖X =⇒
∥∥∥T̃ ∗

∥∥∥
L(X;Y )

≤ ‖T‖DT
.

From the last two relations we get∥∥∥T̃
∥∥∥
L(X;Y )

= ‖T‖DT
,

that completely proves the lemma.
Now, let’s consider the general case, i.e. let, generally speaking, <T = Y0 6=

6= Y . It follows from Y = Y ∗∗ that Y0 = Y ∗∗
0 . In the previous lemma considering

instead of the operator T :DT → Y the operator T :DT → Y0 we get the main result
of the paper.

Theorem. Let X;Y be real B-spaces, Y = Y ∗∗ and the operator T :X → Y be
bounded on DT ⊂ X. It the space is X FT -invariant, then we can continue T on
the whole of X preserving the norm.
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