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ASYMPTOTIC INVESTIGATION OF THE ROOTS
OF A CHARACTERISTIC EQUATION OBTAINED
IN A PROBLEM OF ELASTICITY THEORY FOR
TRANSVERSALLY-ISOTROPIC HOLLOW CONE

Abstract

We investigate the roots of a characteristic equation of a problem of elasticity
theory for transversally-isotropic hollow cone of variable thickness with respect
to spectral parameter. Statement on the existence of three groups of zeros with
asymptotic properties is proved.

In the paper [1] an axially-symmetric problem on elastic equilibrium of trans-
versally-isotropic frustum of hollow cone of variable thickness is considered. The
following characteristic equation that was not studied completely is obtained.

In the present paper we conduct complete analysis of the roots of the character-
istic equation depending on the thinwallness of the construction.

The characteristic equation is of the form [1]:
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where

d1 = A1 + (z − 3/2)b0, d2 = A2 + (z − 3/2)b0

C11 =

[
b12

(
z − 1

2

)
+ b22 + b23

]
A1 − γ1(γ1 + 1)b22b0

C13 = (b23 − b22)b0, C14 = C13

C12 = [b12(z − 1/2) + b22 + b23]A2 − γ2(γ2 + 1)b22b0.
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As we see from (1) the characteristic equation is of complicated structure. In
order to study its roots effectively, we make some assumptions for the geometrical
parameters of a conic body, namely we assume

θ1 = θ0 − ε, θ2 = θ0 + ε (2)

where θ0 is an opening of a surface of a shell, ε is dimensionless parameter defining
its thickness. Below we’ll assume that ε is a small parameter,

0 < ξ1 < θ0 < ξ2 <
π

2
.

Substituting (2) into (1) we get

D(z, ε, θ0) = ∆(z, θ1, θ2) = 0

For the roots of the functions D(z, ε, θ0) we can formulate the following state-
ments.

Statement. The function D(z, ε, θ0) has three groups of roots:

a) the first group consists of two multiple roots z1 = −1

2
and z2 =

1

2
.

b) the second group consists of four roots that as ε→ 0 have the order 0
(
ε−

1
2

)
.

c) the third group of roots consists of denumerable set of roots that as ε → 0
have the order 0

(
ε−1

)
.

Let’s give the proof scheme of the first statement. For this assuming εz → 0 and

expanding the function D
(s,l)
z (φ, ϕ) in the vicinity θ = θ0 in a series of ε, we get:
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×z(z + 1) + 288ctg2θ0 + 240)z2(z + 1)2 − 64z3(z + 1)3
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ε6 + ...
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+16z2(z + 1)2
]
ctgθ0ε

5 +
1

6!

[
394ctg6θ0 + 663ctg4θ0 + 286ctg2θ0 + 16−

−(776ctg4θ0 + 1028ctg2θ0 + 231)z(z + 1)+

+(228ctg2θ0 + 240)z2(z + 1)2 − 64z3(z + 1)3
]
ε6 + ...

}
Substituting (3) into (1) and performing very complicated calculations we rep-

resent the function D(z, ε, θ0) in the form:

D(z, ε, θ0) = 2−1 sin−2 θ0C13(d22 − d11)
2(1− ν)2E0G

−1
0 b−1

22 ×

×
[
z2 + 2(G0 − 1)

](
z2 − 1

4

)
ε2

{
2(1− ν1ν2)ctg

2θ0 +
1

3
×

×
[
2E0z

4 + (8ν1 − 5E0 − 4− 8(1 + ν)(G0 − ν2)E0ctg
2θ0)z

2+

+6ν1(ν2 − 1)− 8ν2 + 5 +
2

E0
+

9

8
E0 + (10(1− ν1ν2)+

+2(1 + ν)(G0 − ν2)E0)ctg
2θ0 + 18(1− ν1ν2)ctg

4θ0
]
ε2+

+
1

45

[
−16E2

0

(1 + ν)(G0 − ν2)

1− ν1ν2
z6 + ...
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ε4 + ...

}
= 0

(4)

Hence, it follows that

lim
z→− 1

2

D1(z, ε, θ0) ̸= 0, lim
z→− 1

2

D
(1.1)
γ2

z + 1/2
̸= 0

lim
z→− 1

2

D2(z, ε, θ0) = 0

It follows there from that z1 = −1

2
is a double zero of the function D(z, ε, θ0).

Since D(z, ε, θ0) is an even function of z, it follows that z2 =
1

2
is also a double

zero of the function D(z, ε, θ0).
Prove that all the remaining zeros of the function D(z, ε, θ0) infinitely increase

as ε → 0. Proceed from the contrary having assumed that zk → z∗k ̸= ∞ as ε → 0.
Then the limiting relation

D(z, ε, θ0) → ε2D0(z
∗
k, θ0)

is valid as ε → 0. Thus, limiting points of the set of the roots zk as ε → 0 are
determined from the equation

D0(z
∗
k, θ0) = 0
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In the present case

D0(z
∗
k, θ0) = 16(1− ν2)G0 sin

2 θ0ctg
2θ0

(
z∗k −

1

4

)
= 0.

It follows from the last equality that besides z1, z2 there are no other bounded
roots.

So, it is proved that all the remaining zeros of the function D(z, ε, θ0) tend to
infinity as ε→ 0.

We can divide them into three groups depending on their behaviour as ε → 0.
The following limiting relations are possible:

1) εzk → 0 as ε→ 0
2) εzk → const as ε→ 0
3) εzk → ∞ as ε→ 0
At first we determine such zk that εzk → 0 as ε → 0. To this end we use

expansion (4).
Let the principal term of the asymptotes zk have the form

zk = η0ε
−α, η0 = 0(1) as ε→ 0 (5)

Substituting (5) into (4) and leaving in it only principal terms for η0, we get the
following limit equation:

2(1− ν1ν2)ctg
2θ0 +

1

3

[
2E0η

4
0 + 0(ε2α)

]
ε2−4α+

+0
[
max

(
ε4−6α, ε2−2α

)]
= 0

(6)

Let’s consider three cases:

a) 0 < α <
1

2
;

b) α =
1

2
;

c)
1

2
< α < 1.

In the case a) passing to limit in (6) as ε→ 0 we’ll get η0 = 0, this contradicts the
assumption (5). Similarly, in the case c) we get η0 = 0 and we also get contradiction.
In the case b) we have:

η40 + 3(1− ν1ν2)E
−1
0 ctg2θ0 = 0 (7)

We’ll look for zk in the form of the expansion

zk = αkε
− 1

2 + α
(0)
k + α

(1)
k ε

1
2 + ..., k = 3, 4, 5, 6 (8)

where αk = η0, α
(0)
k = 0

α
(1)
k = (40αk0)

−1
[
24(1 + ν)(G0 − ν2)ctg

2θ0+

+5(4 + 5E0 − 8ν1)E
−1
0

]
In order to construct asymptotics of zeros in the case 2) (εzk → const for ε→ 0)

we look for zn (n = k − 6, k = 7, 8, ...)
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in the form

zn = ε−1δn + 0(ε) (9)

Substituting (9) into the equation

b22µ
2(µ+ 1)2 −

[(
b11b22 − b212 − 2b12

)
λ(λ+ 1)+

+2b22 + 2(b12 − b22 − b23)(G0 − 1)]µ(µ+ 1)+

+b11λ
2(λ+ 1)2 + 2 [b11(G0 − 1) + b12 − b22 − b23]λ(λ+ 1)+

+4(b12 − b22 − b23)(G0 − 1)] = 0,

we have:
τ2 − 2q1δ

2
nτ + q2δ

4
n = 0 µi =

√
τ i

τ i = δ2nsi, si =
√
q1 − (−1)i

√
q21 − q2 (i = 1, 2)

2q1 = b−1
22 (b11b22 − b212 − 2b12), q2 = b11b

−1
22 .

(10)

The parameters q1 and q2 accept different values depending on mechanical para-
metres ν, ν1, ν2, G0.

Thus, we arrive at different notation of solutions by the Legendre function and
it in its turn leads to different asymptotic representations.

Let’s consider the following possible cases:
1) q1 > 0, q21 − q2 > 0, µ1,2 = ±siδn, µ3,4 = ±s2, δn,

s1,2 =

√
q1 ±

√
q21 − q2, q21 > q2

s1,2 = η ± iβ =

√
q1 ±

√
q2 − q21, q21 < q2

2) The roots of characteristic equation (10) are multiple

µ1,2 = η3,4 = ±δnp, q1 > 0, q21 − q2 = 0, p =
√
q1

3) q1 < 0 q21 − q2 ̸= 0 µ1,2 = ±isδn, µ3,4 = ±is2δn
s1,2 =

√
|q1|+ i

√
q2 − q21, q21 < q2

4) q1 < 0 q21 − q2 = 0 µ1,2 = µ3,4 = ±iδnp
p =

√
|q1|

In cases 1), 2) after substitution (9) into (1) and its transformation by means of
asymptotic expansions Pz(cos θ), Q2(cos θ).

P k
z (cos θ) =

Γ(z + k + 1)

Γ(z + 3/2)

(π
2
sin θ

)−1/2
×

×
{
cos

[(
z +

1

2

)
θ − π

4
+
kπ

2

]
+O(z−1)

} (11)

Qk
z(cos θ) =

Γ(z + k + 1)

Γ(z + 3/2)

( π

2 sin θ

)1/2
×

×
{
cos

[(
z +

1

2

)
θ +

π

4
+
kπ

2

]
+O(z−1)

}
,
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for δn we get

(s2 − s1) sin(s1 + s2)δn ± (s1 + s2) sin(s2 − s1)δn = 0 (12)

γ sin 2βδn ± βsh2γδn = 0 (13)

sin 2pδn ± 2pδn = 0 (14)

The results for cases 3) and 4) are obtained from cases 1), 2) replacing s1, s2, p
by is1, is2, ip.

These equations coincide with equations determining the Saint Venant edge con-
ditions in the theory of transversally-isotropic plates.

Asymptotics of roots is obtained in the paper [2]. Character of roots essentially
influence on general picture of stress-strain state of a shell.

As in the isotropic case, we can show that the case εzk → ∞ as ε → 0 is not
possible here.
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