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APPLIED PROBLEMS OF MATHEMATICS AND MECHANICS
Natik K. AKHMEDOV, Sevda B. AKPEROVA

ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF

AN AXISYMMETRIC PROBLEM OF ELASTICITY

THEORY FOR A RADIALLY-INHOMOGENEOUS

TRANSVERSALLY-ISOTROPIC CYLINDER OF

SMALL THICKNESS

Abstract

An axisymmetric problem of elasticity theory is studied by the method of as-
ymptotic integration of equations of elasticity theory [1] for a radially-inhomoge-
neous transversally-isotropic cylinder of small thickness when mixed boundary
conditions are given on lateral surfaces.

Inhomogeneous and homogeneous solutions are constructed. It is shown that
when lateral surfaces are simply supported, some penetrating solution corre-
sponds to the first asymptotic process. The stressed state determined by this
solution is equivalent to the principal vector of forces applied on arbitrary sec-
tion ξ = const. It is obtained that deflected mode in the cylinder is composed of
penetrating deflected mode and edge effect similar to Saint-Venant’l edge effect
in the theory of transversally-isotropic inhomogeneous plates.

1. Let’s consider an axisymmetric problem of elasticity theory for a radially-
inhomogeneous transversally-isotropic hollow cylinder of small thickness. Refer the
cylinder to the cylindrical system of coordinates r, ϕ, z :

r1 ≤ r ≤ r2 , 0 ≤ ϕ ≤ 2π, −L ≤ z ≤ L

In the axisymmetric case the equilibrium equations are of the form [2] :
∂σrr

∂r
+
∂σrz

∂z
+
σrr − σϕϕ

r
= 0

∂σrz

∂r
+
∂σzz

∂z
+
σrz

r
= 0

(1.1)

Here σrr, σrz, σzz, σϕϕ are the stress tensor components that are expressed by
displacement vectors ur = ur (r, z) , uz = uz (r, z) in the following form [3] :

σrr = A11
∂ur

∂r
+A12

ur

r
+A13

∂uz

∂z
, σrz = A44

(
∂ur

∂z
+
∂uz

∂r

)
,

σzz = A13

(
∂ur

∂r
+
ur

r

)
+A33

∂uz

∂z
, (1.2)

σϕϕ = A12
∂ur

∂r
+A11

ur

r
+A33

∂uz

∂z
.
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After substitution of (1.2) into (1.1) we get an equilibrium equation is displace-
ments (

L0 + ∂1L1 + ∂2
1L1

)
u = 0. (1.3)

Here Lk are matrix differential operators of the form

L0 =

∥∥∥∥∥ ∂ (e−ερ (b11∂ + εb12)) + ε (b11 − b12) e−ερ (∂ − ε) 0
0 ∂ (e−ερb44∂) + εb44e

−ερ∂

∥∥∥∥∥
L1 =

∥∥∥∥∥ 0 ε (∂ (b13) + b44∂)
εb13∂ + ε2 (b13 + b44) + ε∂ (b44) 0

∥∥∥∥∥
L2 =

∥∥∥∥∥ ε2b44e
ερ 0

0 ε2b33e
ερ

∥∥∥∥∥
∂1 =

∂

∂ξ
; ∂2

1 =
∂2

∂ξ2
; ∂ =

∂

∂ρ
; u = (uρ;uξ)

T ; uρ (ρ, ξ) , uξ (ρ, ξ) are displacement

vector components; ρ =
1
ε

ln
(
r

r0

)
, ξ =

z

r0
are new dimensionless variables; ε =

1
2

ln
(
r2
r1

)
is a small parameter defining the cylinder thickness; r0 =

√
r1r2, ρ ∈

[−1; 1] , ξ ∈ [−l; l]
(
l =

L

r0

)
; bij = bij (ρ) are elastic characteristics considered as

arbitrary piecewice-continuous function of variable ρ.
Assume that on lateral surfaces of the cylinder the following mixed boundary

conditions are given:

σ|ρ=±1 = (M0 + ε∂1M1) u|ρ=±1 = q± (ξ) (1.4)

where σ = (uρ, σρξ)
T , q± (ξ) = (h± (ξ) ; f± (ξ))T

,

M0 =

∥∥∥∥∥ 1 0
0 ε−1b44e

−ερ∂

∥∥∥∥∥ , M1 =

∥∥∥∥∥ 0 0
b44 0

∥∥∥∥∥
Assume that h± (ξ) ; f± (ξ) are sufficiently smooth functions and with respect

to ε they are of order O (1) .
Assume that arbitrary boundary conditions leaving the cylinder in equilibrium

state are given at the end faces of the cylinder.

2. Let’s consider construction of special solutions of equations (1.3) that satisfy
boundary conditions (1.4), i.e. inhomogeneous solutions.

Assuming that the quantity ε is sufficiently small, for constructing inhomo-
geneuos solutions we use the asymptotic method [1] .

We’ll look for the solution of (1.3) (1.4) in the form:

uρ = uρ0 + εuρ1 + ...; uξ = ε−1 (uξ0 + uξ1 + ...) . (2.1)



Transactions of NAS of Azerbaijan
[Asymptotic behavior of the solution of...]

155

Substitution of (2.1) into (1.3) , (1.4) reduces to the system whose successive
integration with respect to ρ gives relation for the coefficients of the expansion
uρ, uξ:

uρ0 = h− (ξ) +
h (ξ)
a0

ρ∫
−1

1
b11

dx+ c′1 (ξ)

d0

a0

ρ∫
−1

1
b11

dx−
ρ∫

−1

b13
b11

dx

 ,
uξ0 = c1 (ξ) , uξ1 = c2 (ξ) , (2.2)

c′′1 (ξ) =
d0h

′ (ξ) + a0f (ξ)
a0q0 − d2

0

where

f (ξ) = f+ (ξ)− f− (ξ) ; h (ξ) = h+ (ξ)− h− (ξ) ; dk =

ρ∫
−1

b13
b11

ρkdρ;

ak =

ρ∫
−1

ρk

b11
dρ; qk =

ρ∫
−1

(
b213 − b11b33

)
b11

ρkdρ

Analysis of stress state shows that stresses σρρ, σϕϕ, σξξ with respect to ε have
order ε−1, but σρξ have a unit order.

3. Let’s consider a matter on construction of homogeneous solutions. Assume
q± (ξ) = 0 in (1.4) . Searching the solutions of homogeneous systems in the form

uρ (ρ, ξ) = u (ρ) eαξ; uξ (ρ, ξ) = w (ρ) eαξ

we get the following not self-adjoint spectral problem{ (
L0 + αL1 + α2L2

)
a = 0

(M0 + αM1) a|ρ=±1 = 0
(3.1)

where a = (u (ρ) , w (ρ))T .

For solving (3.1) we use the asymptotic method [1] , based on three iteration
processes.

We can get homogeneous solutions corresponding to the first iteration process
from (2.2) if we put therein q± (ξ) = 0. We have

u(1)
ρ = εD

〈
d0

a0

ρ∫
−1

1
b11

dx−
ρ∫

−1

b13
b11

dx+ ε

−
ρ∫

−1

1
b11

 y∫
−1

b13 (b12 − b11)
b11

dx

 dy−

−
ρ∫

−1

b13

b11
xdx+

ρ∫
−1

b12

b11

 y∫
−1

b13
b11

dx

 dy +
d0

a0

 ρ∫
−1

1
b11

 y∫
−1

(b12 − b11)
b11

dx

 dy+
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+

ρ∫
−1

x

b11
dx−

ρ∫
−1

b12

b11

 y∫
−1

1
b11

dx

 dy

+

ρ∫
−1

1
b11

dx

[
d1

a0
− (3.2)

− 1
a0

1∫
−1

1
b11

 ρ∫
−1

b13 (b11 − b12)
b11

dx

 dρ− 1
a0

1∫
−1

b12
b11

 ρ∫
−1

b13
b11

dx

 dρ+

+
d0

a2
0

−a1 −
1∫

−1

1
b11

 ρ∫
−1

(b12 − b11)
b11

dx

 dρ+

 1∫
−1

b12
b11

ρ∫
−1

1
b11

dx

 dρ

+O
(
ε2
)〉

u
(1)
ξ = E +Dξ.

In (3.2) the constant E corresponds to displacement of the cylinder as absolute
solid. Therefore we can equale E to zero: E = 0

Double eigen values α0 = 0 correspond to these solutions. Appropriate stresses
take the form:

σ(1)
ρρ = D

〈
d0

a0
+ ε

d1

a0
−

ρ∫
−1

b13 (b12 − b11)
b11

dx+

+
1
a0

1∫
−1

1
b11

 ρ∫
−1

b13 (b12 − b11)
b11

dx

 dρ− 1
a0

1∫
−1

b12
b11

 ρ∫
−1

b13
b11

dx

 dρ+

+
d0

a0

ρ∫
−1

(b12 − b11)
b11

dx+
d0

a2
0

 1∫
−1

b12
b11

ρ∫
−1

1
b11

dx

 dρ−

−
1∫

−1

1
b11

 ρ∫
−1

(b12 − b11)
b11

dx

 dρ− d0a1

a2
0

+O
(
ε2
)〉

σ(1)
ϕϕ = D

〈
b13 (b11 − b12)

b11
+
d0

a0

b12
b11

+O
(
ε2
)〉

σ
(1)
ξξ = D

〈(
b11b33 − b213

)
b11

+
d0

a0

b13
b11

+O (ε)

〉
(3.3)

σ
(1)
ρξ = 0.

There are no solutions having the edge effect character corresponding to the
second asymptotic process.

By the third asymptotic process, we look for the solution of (3.1) as follows:

u(3) = ε (u0 + εu1 + ...) , w(3) = ε (w0 + εw1 + ...) ,
α = ε−1 (β0 + εβ1 + ...) .

(3.4)
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After substitution of (3.4) into (3.1) for the first terms of expansion we get a
spectral problem describing potential solution of transversally-isotropic plate inho-
mogeneous in thickness:

B (β0) f0 = 0 (3.5)

where

B (β0) f0 =
{
t (β0) f0, C (β0) f0

∣∣
±1

= 0
}
, t (β0) f0 =

(
B0 + β0B1 + β2

0B2

)
f0,

C (β0) f0 = (C0 + β0M1) f0, f0 = (u0;w0)
T ,

B0 =

∥∥∥∥∥ ∂ (b11∂) 0
0 ∂ (b44∂)

∥∥∥∥∥ ; B1 =

∥∥∥∥∥ 0 ∂ (b13) + b44∂

∂ (b44) + b13∂ 0

∥∥∥∥∥ ;

B2 =

∥∥∥∥∥ b44 0
0 b33

∥∥∥∥∥ ; C0 =

∥∥∥∥∥ 1 0
0 b44∂

∥∥∥∥∥ .
Unlike the isotropic case [4, 5] for transversally isotropic plate of inhomogeneous

in thickness, β0k may accept pure imaginary values as well.
By the substitution

u0 = −β−3
0

(
p0ψ

′′)′ + β−1
0 p2ψ

′ + β−1
0 (p1ψ)′ , w0 = β−2

0 p0ψ
′′ − p1ψ (3.6)

spectral problem (3.5) is reduced to the following one:
(
p0ψ

′′)′′ − β2
0

[
(p1ψ)′′ + p1ψ

′′ +
(
p2ψ

′)′]+ β4
0p3ψ = 0(

−β−3
0

(
p0ψ

′′)′ + β−1
0 p2ψ

′ + β−1
0 (p1ψ)′

)∣∣∣
ρ=±1

= 0

ψ′
∣∣
ρ=±1

= 0

(3.7)

where

p0 = b11θ, p1 = b13θ, p2 = b−1
44 , p3 = b33θ, θ =

(
b213 − b11b33

)−1

(3.7) is a generalization of P.F. Papkovich spectral problem [4, 5] for inhomogeneous
transversally-isotropic case.

So, the solutions corresponding to the third iteration process are of the form:

u
(3)
ρ (ρ; ξ) = ε

∞∑
k=1

Fk

[
−β−3

0k

(
p0ψ

′′
k

)′ + β−1
0k p1ψ

′
k + β−1

0k (p2ψk)
′ +O (ε)

]
exp

(
β0kξ

ε

)
u

(3)
ξ (ρ; ξ) = ε

∞∑
k=1

Fk

[
β−2

0k p0ψ
′′
k − p2ψk +O (ε)

]
exp

(
β0kξ

ε

)
(3.8)

For stresses we have

σ(3)
ρρ =

∞∑
k=1

Fk (−β0kψk +O (ε)) exp
(
β0kξ

ε

)
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σ
(3)
ρξ =

∞∑
k=1

Fk

(
ψ′k +O (ε)

)
exp

(
β0kξ

ε

)

σ
(3)
ξξ =

∞∑
k=1

Fk

(
−β−1

0k ψ
′′
k +O (ε)

)
exp

(
β0kξ

ε

)

σ(3)
ϕϕ =

∞∑
k=1

Fk

(
p1 (b11 − b12)β−1

0k ψ
′′
k +

(
b33b12 − b213

)
θβ0kψk +O (ε)

)
exp

(
β0kξ

ε

)

4. Let’s analyze deflected mode corresponding to different groups of solutions.
We represent the replacements in the form.

uρ (ρ, ξ) = u
(1)
ρ (ρ, ξ) +

∞∑
k=1

Fkuk (ρ) eαkξ

uξ (ρ, ξ) = u
(1)
ξ (ρ, ξ) +

∞∑
k=1

Fkwk (ρ) eαkξ

(4.1)

The second term contains displacements defined by the thirs group of solutions.
For stresses we have:

σρξ = σ
(1)
ρξ +

∞∑
k=1

Fkσ1k (ρ) eαkξ, σξξ = σ
(1)
ξξ +

∞∑
k=1

Fkσ2k (ρ) eαkξ (4.2)

where
σ1k (ρ) = b44

(
e−ερε−1w′k (ρ) + αkuk (ρ)

)
,

σ2k (ρ) = b13e
−ερ
(
ε−1u′k (ρ) + uk (ρ)

)
+ αkb33wk (ρ) .

Let’s consider connection of homogeneous solutions with principal vector P, of
stresses acting in the section ξ = const. We have:

P = 2πε

1∫
−1

(σρξ + σξξ) e2ερdρ (4.3)

Substituting (4.2) into (4.3) we have:

P = 2πεω0D + 2πε
∞∑

k=1

Fkωke
αkξ (4.4)

where ω0 =
d2

0

a0
− q0 +O (ε) ; ωk =

1∫
−1

(σ1k (ρ) + σ2k (ρ)) e2ερdρ.

Show that all ωk = 0 (k = 1, 2, ...) . For that we consider the following boundary
value problem:

σρξ|ξ=ξj = σ1k (ρ) eαkξj , σξξ|ξ=ξj = σ2k (ρ) eαkξj (4.5)

where j = 1, 2.
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The principal vector that corresponds to stress state of problem (4.5) in the
section ξ = const is reduced to the form

Pk = 2πεωke
αkξ (4.6)

According to condition of solvability of elasticity theory problem the principal
vector Pk must not depend on the variable ξ. However, in relation (4.6) the right
hand side depends on ξ.Hence it follows that Pk = 0 i.e. ωk = 0.

For the principal vector from (4.4) we get:

P = 2πεω0D (4.7)

Stress strain corresponding to the third group of solutions is self-balanced at each
section ξ = const. Solution (3.2) corresponding to the first asymptotic process de-
termines the internal deflected mode of the cylibder. First terms of its expansion in
ε determine momentless stress state.

The third asymptotic process is determined by solutions (3.8) that are of bound-
ary layer character. The first terms of (3.8) are equivalent to Saint-Venant’s edge
effect of inhomogeneous transversally-isotropic plate. For purely imaginary β0k the
Saint-Venant’s boundary layer damps very slowly and the soloutions (3.8) should
be reckoned to penetrating solutions. Therefore, in this case, deflected mode of
transversally-isotropic and isotropic shell differ qualitatively. When β0k is not pure
imaginary general picture of deflected mode in qualitative respect is similar to ap-
propriate picture for isotropic radially-inhomogeneous cylinders. In quantity respect
they differ by rapidity of damping of Saint-Venant’s boundary layer.

5. Let’s consider a question on stress relief from the end faces of the cylinder.
Assume that the following stresses are given at the end faces of the cylinder:

σρξ|ξ=±l = f1s (ρ) , σξξ|ξ=±l = f2s (ρ) (5.1)

Here f1s (ρ) , f2s (ρ) (s = 1, 2) are sufficiently smooth functions and they satisfy
the equilibrium conditions.

2πε

1∫
−1

(f11 (ρ) + f21 (ρ)) e2ερdρ = 2πε

1∫
−1

(f12 (ρ) + f22 (ρ)) e2ερdρ

As it was shown, not self-balanced part of stresses may be relieved by means of
penetrating solution (3.2) and relation between the constant D and principal vector
P is given by the equation (4.7) .

Further we’ll assume that P = 0. By the accepted supposition D = 0.
We’ll look for the solution in the form (4.2) . For determining arbitrary constants

Fk (k = 1, 2, ...) whose variations will be considered as independent as in [6− 9],
we’ll use Lagrange’s variational principle. Since homogeneous solutions satisfy the
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equilibrium equation and boundary conditions on lateral surface, the variational
principle takes the form:

∞∑
s=1

1∫
−1

[(σρξ − f1s (ρ)) δuρ + (σξξ − f2s (ρ)) δuξ]

∣∣∣∣∣∣
ξ=±l

· e2ερdρ = 0 (5.2)

From (5.2) we get an infinite system of linear algebraic equations

∞∑
k=1

QjkFk = τ j ; (j = 1, 2, ...) (5.3)

where

Qjk =

1∫
−1

(σ1k (ρ)uj (ρ) + σ2k (ρ)wj (ρ)) e2ερdρ×

× [exp (− (αk + αj) l) + exp ((αk + αj) l)]

τ j =

1∫
−1

(f11 (ρ)uj (ρ) + f21 (ρ)wj (ρ)) e2ερdρ exp (−αjl) +

+

1∫
−1

(f12 (ρ)uj (ρ) + f22 (ρ)wj (ρ)) e2ερdρ exp (αjl) .

Solvability and convergence of the reduction method for the system (6.3) is
proved in [10] .

We’ll look for the constants Fk in the form

Fk = Fk0 + εFk1 + ... (5.4)

After substitution of (5.4) into (5.3) we get:

∞∑
j=1

MnjFj0 = gn (n = 1, 2, .....) . (5.5)

Here

Mnj =

1∫
−1

{
ψ′n

[
−β−3

0j

(
p0ψ

′′
j

)′ + β−1
0j p1ψ

′
j + β−1

0j

(
p2ψj

)′]+

+β−1
0nψ

′′
n

[
p2ψj − β−2

0j p0ψ
′′
j

]}
dρ

[
exp

(
−
(
β0n + β0j

)
l

ε

)
+ exp

((
β0n + β0j

)
l

ε

)]
;

gn =

1∫
−1

{
f11

[
−β−3

0n

(
p0ψ

′′
n

)′ + β−1
0n p1ψ

′
n + β−1

0n (p2ψn)′
]

+ f21

[
β−2

0n p0ψ
′′
n − p2ψn

]}
dρ×
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× exp
(
−β0nl

ε

)
+

1∫
−1

{
f12

[
−β−3

0n

(
p0ψ

′′
n

)′ + β−1
0n p1ψ

′
n + β−1

0n (p2ψn)′
]
+

+f22

[
β−2

0n p0ψ
′′
n − p2ψn

]}
dρ exp

(
β0nl

ε

)
.

Definition Fcr (p = 1, 2, ...) is invariably reduced to the inversion of the same
matrices that coincide with matrices of system (5.5) .

Notice that when b12 = b13 = λ; b44 = G; b11 = b33 = 2G+ λ all the solutions
entirely coincide with the solutions for radially inhomogeneous isotropic cylinder
[11].
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