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GRACK NUCLEATION IN THICK-WALLED

CYLINDER

Abstract

Mathematical model of crack-formation in an isotropic thick-walled cylinder
under the conditions of plane deformation is constructed. The solution of a
problem on equilibrium of thick-walled cylinder with germ crack is reduced to
the solution of a singular integral equation with Cauchy type kernel. Condi-
tion of crack appearance is formulated allowing for criterion of limit opening of
prefracture zone focus.

Let the cross section of the considered cylinder fill in the plane z = x + iy the
domain S bounded from the outside by a circle of radius R1 and from the inside-by
a circle of radius R. Consider the stress strain state in the annular domain S under
the action of load normal and tangent to the contour. It is assumed that plane
deformation state holds.

It is accepted that there is a stress concentrator (a zone of weakened interparticle
bonds of the material) in the material of the thick-walled cylinder. When a cylinder is
loaded (interlayer of overstressed material) plastic flow zone is formed therein. After
several number of cycles possibility of plastic deformation in the zone of weakened
interparticle bonds of the material is exhausted and opening of faces of plastic flow
region sharply increases. If at the maximal concentration point the opening of the
faces of prefracture zone (a zone of weakened interpartide bonds of the material)
achieves limiting value δc for the given material of the cylinder, then fatigue crack
originates at this point [1].

As the cylinder operates, there will arise prefracture zones in the metallic cylinder
that will be modelled as zones of weakened interparticle bonds of the material.
Interaction of prefracture zone surface is modelled [1] by introducing plastic sliding
(degenerated zones of plastic deformations) between its faces. It is assumed that
under the action of normal and tangent load on external and internal surfaces on the
cylinder, interaction between the surfaces in prefracture zones is characterized by the
constant normal σT and tangent τT stresses of cohesion. Such an assumption allows
to model plastic flow in the prefracture zones of the material. Physical nature of
such bonds and sizes of prefracture region wherein interaction of faces of interparticle
bonds zones are realized, depends on the form of the material[2,3].

In the considered case arise of a crack in the cross section of the cylinder is a
process of passage of prefracture zone to the zone of destroyed bonds between the
surfaces of the cylinder material. The sizes of the prefracture zone are not known
beforehand and to be determined in solving the considered problem.

We model the cylinder by an isotropic homofeneous body. A solid body (cylinder)
deformed beyond the elasticity limit is represented as a body elastically deformed
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everywhere except some surfaces . Remind that elastic deformation represents itself
as change in distances between elementary particles not changing their location order
but plastic deformation changes relative location of atoms with respect to the other
one (elementary plastic deformations).

Since the indicated zones (interlayer of overstressed material) are small in com-
parison with remaining elastic part of the cylinder, one can remove them mentally
and replace them by cross-cuts whose surfaces interact between themselves by a
low corresponding to the action of the removed material. Thus, a problem on de-
formation of a cylinder beyond the elasticity limit is reduced to the problem on
deformation of some elastic body possessing conventional cross-cuts. The forces act-
ing on the surfaces of these zones are called forces of adhesion of weakened bonds,
and the zones wherein they appear, are called prefractute zones or weakened bonds
domains.

It is accepted that a zone of weakened interparticle bonds of the material is
directed in the direction of action of maximal stretching stresses obtained from the
solution of elastic problem. In the centre of prefracture zone we locate the origin of
local system of coordinates x1Oy1, whose axis x1 coincides with plastic deformations
line and forms an angle α1 with axis x.

Given external forces acting on the boundary of annular domain S

σr − iτ rθ = f1 (θ)− if2 (θ) for |z| = R

σr − iτ rθ = f3 (θ)− if4 (θ) for |z| = R1 (1)

and principal vector and principal moments of these forces equal zero.
Boundary conditions on the surface of the prefracture zone will be

σy1 − iτx1y1 = σT − iτT for y1 = 0, |x1| ≤ `1, (2)

where l1 is a half-length of a prefracture zone, to be determined. We use N.I. Muskhe-
lishvili method [4] for solving boundary value problem (1)-(2). Using Kolosov-
Muskheleshvili formula we write conditions (1)-(2) in the following form:

for r = R Φ (z) + Φ (z)− e2iθ [zΦ́ (z) + Ψ (z)] = f1 (θ)− if2 (θ)

for r = R1 Φ (z) + Φ (z)− e2iθ [zΦ́ (z) + Ψ (z)] = f3 (θ)− if4 (θ) (3)

for y1 = 0 |t| ≤ `1 Φ (t) + Φ (t) + tΦ́ (t) + Ψ (t) = σT + iτT . (4)

We look for the complex potentials Φ (z) and Ψ (z) describing strese-strain state
in an annular domain S in the form:

Φ (z) = Φ0 (z) + Φ1 (z) + Φ2 (z) ;

Ψ (z) = Ψ0 (z) + Ψ1 (z) + Ψ2 (z) , (5)

where

Φ0 (z) =
∞∑

k=−∞
akz

k; Ψ0 (z) =
∞∑

k=−∞
bkz

k (6)
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Φ1 (z) =
1
2π

`1∫
−`1

g1 (t) dt

t− z1
;

Ψ1 (z) =
1
2π

e−2iα1

`1∫
−`1

[
g1 (t)
t− z1

− T 1e
−2iα1

(t− z1)
2 g1 (t)

]
dt; (7)

Here g1 (x) is a desired function characterizing opening of prefracture zone faces
while passing throung the prefracture zone line.

The unknown desired function g1 (x) and complex potentials Φ2 (z) and Ψ2 (z)
should be satisfied from boundary conditions on the prefracture zone faces and on
the contour r = R1. After some transformations and calculations of appropriate
integrals we find

Φ2 (z) =
1
2π

`1∫
−`1

{(
1

zT 1 − 1
+

1
2

)
T 1e

iα1g1 (t) +

+

[
T1

2
− z2T 1 − 2z + T1(

zT 1 − 1
)2

]
e−iα1g1 (t)

}
dt;

Ψ2 (z)
1
2π

`1∫
−`1

[
eiα1T

3
1(

zT 1 − 1
)2 g1 (t) +

+
(
z2T

2
1 + 4− 3zT 1 + zT1T

2
1 − 3T1T 1

) T 1e
−iα1(

zT 1 − 1
)3 g1 (t)

]
dt (8)

T1 = teiα1 + z0
1 ; z1 = e−iα1

(
z − z0

1

)
.

For finding complex potentials Φ0 (z) and Ψ0 (z) we can write boundary condi-
tions (3) of the problem in the following form

Φ0 (τ) + Φ0 (τ)− e2iθ [τ Φ́0 (τ) + Ψ0 (τ)] = f1 (θ)− if2 (θ)−

− (f∗1 (θ)− if∗1 (θ)) for τ = R eiθ (9)

Φ0 (τ1) + Φ0 (τ1)− e2iθ [τ1Φ́0 (τ1) + Ψ0 (τ1)] =

= f3 (θ)− if4 (θ) for τ1 = R1 eiθ

Here f∗1 (θ)− if∗1 (θ) = Φ∗ (τ) + Φ∗ (τ)− e2iθ [τ1Φ́∗ (τ) + Ψ∗ (τ)] ,

Φ∗ (z) = Φ1 (z) + Φ2 (z) ; Ψ∗ (z) = Ψ1 (z) + Ψ2 (z) .

The solution of boundary value problem (9) is attained by the method of power
series [4]. To this end it is necessary to expand the right hand sides of boundary
conditions in Fourier series. These expansions are of the form:

f∗1 (θ)− if∗1 (θ) =
∞∑

k=−∞
A∗ke

ikθ,
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f1 (θ)− if2 (θ) =
∞∑

k=−∞
Ake

ikθ, for r = R (10)

f3 (θ)− if4 (θ) =
∞∑

k=−∞
Bke

ikθ, for r = R1

where

A∗k =
1
2π

2π∫
0

(f∗1 (θ)− if∗2 (θ)) e−ikθdθ (k = 0,±1,±2, ...)

Ak =
1
2π

2π∫
0

(f1 (θ)− if2 (θ)) e−ikθdθ

Bk =
1
2π

2π∫
0

(f3 (θ)− if4 (θ)) e−ikθdθ

We don’t cite here expansion coefficients in obvious form because of their bulky
form.

Satisfying boundary conditions (9) by complex potentials (6), after some trans-
formations we get a system of linear algebraic equations with respect to the desired
coefficients ak and bk:

a0 + a0 − b−2R
−2 = A0 −A∗0

a0 + a0 − b−2R
−2
1 = B0 (11)

(1− k) akR
k + a−kR

−k − bk−2R
k−2 = Ak −A∗k

(1− k) akR
k
1 + a−kR

−k
1 − bk−2R

k−2
1 = Bk

The solution of infinite linear system (11) is easy and has the following form:

a0 =
B0R

2
1 − (A0 −A∗0)R

2

2
(
R2

1 −R2
) ; a−1 =

(A1 −A∗1)R
2

1 + k0
; k0 = 3− 4ν;

b−1 = −k0 (A1 −A∗1) R

1 + k0
; a1 =

M−1

R4
1 −R4

− 2 (A1 −A∗1) R

(1 + k0)
(
R2

1 + R2
) (12)

ak =
(1 + k0)

(
R2

1 −R2
)
Mk −

(
R−2k+2

1 −R−2k+2
)

M−k

(1− k2)
(
R2

1 −R2
)2 − (R2k+2

1 −R2k+2
)(

R−2k+2
1 −R−2k+2

) ;

(k = ±2,±3, ...)

Mk = BkR
−k+2
1 − (Ak −A∗k) R−k+2

1 ;

b−2R
−2 = 2a0 −A0 + A∗0;

bk−2R
k−2
1 = (1− k) akR

k
1 + a−kR

−k
1 −Bk.
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Satisfying boundary conditions by the functions (5)-(8) on the prefracture zone
faces we get complex singular integral equation with respect to the unknown function
g1 (x1):

`1∫
−`1

[
R (t, x1) g1 (t) + S (t, x1) g1 (t)

]
dt = πf (x1) , |x1| ≤ `1. (13)

Here f (x1) = σT − iτT + f0 (x1) ,

f0 (x1)−
[
Φ0 (x1) + Φ0 (x1) + x1Φ́0 (x1) + Ψ0 (x1)

]
R (t, x1) =

eia1

2

(
1

T1 −X1
+

e−2ia1

T 1 −X1

)
−

−eia1

2

(
X1T

2
1

1−X1T 1

+
X

2
1T1 − 2X1 + T 1(

1− T1X1

)2 +

+e−2ia1
2X1

(
T1T 1 − 1

)
+ T

2
1

(
X1 + T 1

) (
X1T1 − 3

)
+ 4T1(

1− T1X1

)3 ;

S (t, x1) =
e−ia1

2

[
1

T 1 −X1

− T1 −X1(
T 1 −X1

)2 e−2ia1

]
−

−e−ia1

2

[
T 2

1 X1

1− T1X1

+
X2

1T 1 − 2X1 + T1(
1−X1T 1

)2 +
T 2

1 (X1 − T1) e−2ia1(
1− T1X1

)3
]

;

X1 = x1e
−ia1 + z0

1 .

For internal layer of prefracture the additional condition

`1∫
−`1

g1 (t) dt = 0 (14)

providing uniqueness of displacement in tracing the prefracture zone boundary should
be added to the singular integral condition.

Using change of variables ξ = t/`1 and η = t/`1 we pass to dimensionless variables
in the integral equation (13).

We represent the solution of integral equation (13) in the form [5,6]:

g1 (η) =
ϕ0 (η)√
1− η2

. (15)

Applying the algebraization proceduce [5,6] to singular integral equation (13) and
additional condition (14) we get a system of M algebraic equations for determining
m unknowns g1 (tm) = υ (tm)− iu1 (tm):

1
M

M∑
m=1

`1

[
ϕ0 (tm) R (`1tm, `1ηr) + ϕ0 (tm)S (`1tm, `1ηr)

]
= f (ηr) ;
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(r = 1, 2, ..., M − 1) (16)

M∑
m=1

ϕ0 (tm) = 0

Here tm = cos
2m− 1

2M
π (m = 1, 2, ...,M)

ηr = cos
ηr

M
(r = 1, 2, ..., M − 1) .

If in the system (16) to pass to complexly adjoint values, we get some more M

algebraic equations.
Since the stresses in the cylinder are restricted everywhere, the solution of singu-

lar integral equation should be sought in a class of everywhere bounded functions.
Cousequently, it is necessary to add to the system of equation (16) stress finiteness
conditions in the vicinity of the ends of prefracture zone.

Writing these conditions

M∑
m=1

(−1)m ϕ0 (tm) ctg
2m− 1

4M
π = 0; (17)

M∑
m=1

(−1)M+m ϕ0 (tm) tg
2m− 1

4M
π = 0.

we get a finite algebraic system (16),(17) for determining M unknowns

ϕ0 (tm) (m = 1, 2, ...,M)

and dimension of prefracture zone.
Because of the unknown dimension of prefracture zone length `1 algebraic system

(16),(17) became non-linear. For solving the obtained algebraic systems (16),(17)
we used successive approximations method. For determining limit equilibrium of
prefracture zone in the cylinder we use criterian of critical opening of prefracture
zone faces.

We accept that break of interparticle bonds of the material on the prefracture
zone faces (for x1 = x0) occurs in fulfilling the condition√[

u+
1 (x0, 0)− u−1 (x0, 0)

]2 +
[
υ+

1 (x0, 0)− υ−1 (x0, 0)
]2 = δc, (18)

where the parameter δc is a characteristics of resistance of material of the cylinder
to crackformation, is determined experimentally.

Using the solution of a problem on equilibrium of prefracture zone in the cylinder,
we calculate displacements on the prefracture zone faces

υ∗1 (x0, 0)− iu∗1 (x0, 0) = −1 + k0

2µ

π`1

M

M1∑
m=1

g1 (tm) (19)
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where υ∗1 (x0, 0) = υ+
1 (x0, 0)− υ−1 (x0, 0) ; u∗1 (x0, 0) = u+

1 (x0, 0)− u−1 (x0, 0) ;
M1 is the number of nodal points belonging to the segment (−`1, x0) ; µ is a

shear modulus of the material.
Obviously break of interparticle bonds of the material will occur in the middle

part of the prefracture zone i.e. M1 =
1
2
M .

From relation (19) separating real and imaginary parts and calculating displa-
cament vector modulus V1 on the prefracture zone faces for x = x0 we get

V1 =
1 + k0

2µ

π`1

M

√
C2

1 + C2
2 ,

where

C1 =
M1∑

m=1

υ1 (tm) ; C2 =
M2∑

m=1

u1 (tm) .

Thus,
1 + k0

2µ

π`1

M

√
C2

1 + C2
2 = δc (20)

is the condition determining limit value of external load under which crack arises.
Joint solution of equations (12),(16),(17) and (20) allows to determine critical

value of external load and dimension of prefracture zone `c
1 for limit equilibrium

state for the given characteristics of thick-walled cylinder.
Changing the values of parameters α1 and z0

1 we can investigate different cases
of prefracture zone location in the material of the cylinder.

In the case when prefracture zone arrives at the surface of the cylinder by one
end, necessity in additional equality (14) falls off.
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