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Abstract

The paper in devoted to the investigation of liquid-filled cylindrical shells
under axial compression reinforced by discretely distributed cross ribs. It is as-
sumed that the ribs are uniformly distributed on the surface of the shell. The
problem is solved by energetic method. Using the Hamilton-Ostrogradskii prin-
ciple, freqnency equations are found and its least root is found. Analysis of
influence of external medium parametrs of contractive force on parameter of
eigen vibrations frequency of the system in carried out.

Indroduction. One of the reasons that impel desiners to reinforce thin shells
by ribs is stipulated by necessity of protection of their reliability under the action
of different type loads, calling appearance of contracting stresses. In working condi-
tions the reinforced cylindrical shells are in contact with different media. Different
capacities and pipelines, special purpose constructions and others are reduced to
design model of reinforced, liquid-filled cylindrical shells. Therefore, elaboration of
theory and calculation methods for vibrations of reinforced cylindrical shells with
regard to external actions and under axial compression is an urgent problem of great
practical value. The solutions given in references belong mainly to liquidless cylin-
drical shells [1]. Problems of vibrations of such constructions with medium have not
been studied practically. Notice that vibrations of smooth cylindrical shells with
filler are sufficiently studied in the paper [2]. Accepting a shell to be structurally-
orthotropic, the vibrations of elastic medium-filled cylindrical shells reinforced by
longitudinal ribs are researched in [3].

The present paper is devoted to the investigations of virations of liquid-filled
cylindrical shells under axial compression reinforced by discretely allocated cross
ribs. The influence of parametrs of external medium on the parameter of eigen vi-
brations frequency of the system is analyzed.

Problem Statement. The problem is solved by energetic method. Potential
energy of a shell loaded by axial contracting forces is of the form [1]:
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x

r
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y

r
; Eh, Gh are elasticity and shear modulus of the material of

longitudinal ribs, respectively; k1 is the quantity of cross ribs; σx are axial contractive
stresses; u, v, w are components of displacament vector of the shell; h and r are
thickness and radius of the shell, respectively; E, ν are Young modulus and Poisson
ratio of the shell; Fh, Ixh, Icr.h are area and inertia moment of cross sectian of the
longitudinal shell with respect to the axis ox and oz and also inertia moment in
torsian.

Kinetic energy of the shell is as follows;
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where ρ0 and ρh are densities of shell and cross bar materials,

respectively, θi =
2π
k1
i.

Influence of liquid on the shell is determined as of external surface loads applicd
to the shell and is calculated as a work done by, these loads when changing over the
system from strained state to initial unstrained one and is represented as:

A0 = −
ξ1∫

0

2π∫
0

qzwdξdθ, (3)

where qz is the pressure of liquid on the shell.
The total energy of the system is as follows:

Π =3 +K +A0 (4)
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Lineariazed wave equation describing small perturbations propagation in ideal
compressible liquid is of the from [3]:

∆Φ− 1
c2
∂2Φ
∂t2

= 0, (5)

where Φ is a potential, c is sound propagation velocity in liquid.
Shell motion equation (1) and liquid motion equation (2) are complemented

by contact conditions. On the contact surface ”shell-liquid” continuity of radial
velocities and presures

ϑr =
∂w

∂t
, qz = −p (6)

is observed.
Hydrodynamic pressure p and radial velocity ϑr in liquid are determined in the

following way [3]:
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where ρ is density of liquid.
Velocity potential Φ is represented as

Φ = AJn (γr) cosχξ cosnθ sinω1t1, (8)

where γ2 = −χ2 +
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c2
, Jn are Bessel functions of first kind n-th order, A is an

integration constant.
Using formula (4) and contact conditions (3) for qz we can obtain:
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Solution method. We’ll look for the displacements of the shell in the form:
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After substituting (9) into (3) and integrating with respect to ξ and θ for the
work of external pressures from the side of liquid applied to the shell we get
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Using (1),(2) and (11) for total energy of the system we get a second order
polynomial for the parameters of constants A,B,C :
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Notice that the quantities ϕ̆ii (i = 1, 2, ..., 6) , ψii (i = 1, 2, 3) , li (i = 1, 2) have
a bulky from and we don’t city them here.

Extremum conditions Π by the parametrs A,B,C reduce the solution of the
problem on vibrations of longitudinally reinforced, liquid-filled shells subjected to
longitudional compression to homogeneous systems of linear algebrain equations of
third order whose non-trivial solutions are possible only in the case when determi-
nant of this system equats zero. Further, equating the determinants of the indicated
systems to zero, we get the following frequance equations:
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It is easy to see that in the case of incompressible liquid the system of eqations
(12) is reduced to cubic equation with respect to ω2

1 , otherwise it is transcendental.
Since in future wi’ll be interested only in low frequencies of flexural vibrations, in
the case of incompressible liquid we can simplify this equation having rejected the
terms with ω4

1 and ω6
1. As a resuet we get
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Analysis of calculation result. We cite the results of investigations on influ-
ence of the number of ribs and mediumrigidity on critical stress of axial compression.
Calculations are carried out for a shell, medium and ribs with the following para-
meters:

E = Eh = 6, 67 · 109n/m2; ν = 0, 3; χ = 1; n = 8; hh = 1, 39 mm; R = 160 mm;

L1 = 800mm; h = 0, 45mm; Fh = 5, 75mm2; Ixh = 19, 9 mm4; Ikp.h = 0, 48mm4.
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Fig. 1. Dependence of ω1 on the number of n waves in peripheral
direction.

Fig. 2. Dependence of ω1 on contractive stress.

The results of calculations are represented in figures 1 and 2. Here we give
dependence of ω1 on the number of n waves in peripheral direction and on contractive
force, respectively k1 = 4 corresponds to solid lines, k1 = 6 to dotted lines. It is seen
from figure 1 that with increase of n at first ω1 decreases and then attains minimum
and begins to increase. Besides, eigen frequencies of vibrations of the considered
sysrem also increase according to the number of longitudinal ribs. It is see from
figure 2 that when contractive force increases, the frenquencies of the system fall off.
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